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Solution for a semi-infinite plate with radial crack and 
radial crack emanating from circular hole under bi-axial 

loading by body force method
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Abstract. Machine or structural members subjected to fatigue loading will have a crack initiated during
early part of their life. Therefore analysis of members with cracks and other discontinuities is very
important. Finite element method has enjoyed widespread use in engineering, but it is not convenient for
crack problems as the region very close to crack tip is to be discretized with very fine mesh. However, as
the body force method (BFM), requires only the boundary of the discontinuity (crack or hole) to be
discretized it is easy versatile technique to analyze such problems. In the present work fundamental
solution for concentrated load x + iy acting in the semi-infinite plate at an arbitrary point z0 = x0 + iy0 is
considered. These fundamental solutions are in complex form φ (z) and ψ (z) (England 1971). These
potentials are known as Melan potentials (Ramakrishna 1994). A crack in the semi-infinite plate as shown
in Fig. 1 is considered. This crack is divided into number of divisions. By applying pair of body forces
on a division, the resultant forces on the remaining ‘N’divisions are to be found for which φ1 (z) and
ψ1 (z) are derived. Body force method is applied to calculate stress intensity factor for crack in semi-
infinite plate. Also for the case of crack emanating from circular hole in semi-infinite plate radial stress,
hoop stress and shear stress are calculated around the hole and crack. Convergent results are obtained by
body force method. These results are compared with FEM results.

Keywords: body force method; complex potentials; Melan potentials.

1. Introduction

Stress analysis of components is important in design and development of machines and structures.

For determining stress distribution in a body, fourth order partial differential equation (Bi-harmonic

equation) for the stress function is to be solved. Closed form solutions are available for a simple

geometry, load and boundary conditions. Presence of geometrical discontinuity is a big challenge. A
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slight change in the shape and geometrical discontinuity will affect the problem entirely different.

Timoshenko and Goodier (1982), Love (1934) and Muskhelishvili (1953) have developed methods

to solve a number of problems of practical relevance. Complex variable approach is well suited for

stress analysis of problem and discontinuity with holes, cracks etc. Honein and Hermann (1988)

employed complex variable approach to solve the problem of infinite plate with circular hole /

inclusions subjected to in plane concentrated load. Ramakrishna (1994) extended the approach to

solve the problem of half plane. This problem becomes very difficult when the geometry of

discontinuity becomes complex. The boundary (body) force method proposed by H.Nisitani which

is hybrid theoretical and numerical method is found to be versatile method when discontinuities like

holes or cracks are present. 

2. Body force method

This method is based on the fundamental solution of concentrated load acting in either infinite

plate or semi-infinite plate. To start with infinite / semi-infinite plate is considered with hole. The

actual hole is considered to be imaginary circle. The imaginary circle is divided into number of

equal divisions. At the mid-point of each divisions of circle unit concentrated load in x and y

directions are applied. The resultant forces due to all concentrated loads at all divisions are

calculated from the complex potentials of fundamental solution of finite / semi-infinite plate. These

resultant forces acting on each divisions of imaginary circle are nullified due to bi-axial load.

Finally a square matrix with influence coefficients (resultant force at Nth division due to

concentrated load acting at Mth division), column matrix with unknown body forces and column

matrix containing resultant forces on all divisions due to bi-axial load is obtained. After solving this,

body forces in x-direction and y-directions are obtained. If these body forces are applied at mid-

point of each division, the imaginary circle boundary becomes stress free and it will be equivalent

to hole in a plate subjected to bi-axial load. The stress at any point is given by the sum of the

stresses due to all body forces and bi-axial loading (principle of super position).

If it is a case of crack in a infinite / semi-infinite plate, actual crack is considered to be an

imaginary ellipse with major axis equal to the length of crack and minor axis approaching zero. The

imaginary crack is divided into number of equal divisions. At the mid-point of each divisions of

crack a pair of body forces are applied. The resultant forces due to pair of body forces at all

divisions are calculated from the complex potentials of fundamental solution of finite / semi-infinite

plate. Fundamental solution for pair of loads applied on crack are obtained by differentiating

fundamental solutions of concentrated loads applied on infinite / semi-infinite plates.

 3. Crack in semi-infinite plate 

Consider semi-infinite plate with crack subjected to bi-axial load as shown in Fig. 1. The stress

intensity factor is to be determined at both ends of crack. (At “A” and “B”) by body force method.

Crack is treated as an infinitely slender elliptical hole, i.e., the short axis approaches zero. On the

imaginary crack, continuous distribution pairs of symmetrical body forces acting at infinitesimal

distances are applied. When a semi- infinite plate is subjected to a concentrated force X + iY acting

at an arbitrary point z0 = x0 + iy0, as shown in Fig. 3, in the plane stress condition, the Melan
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potentials are semiexpressed as (Ramakrishna 1994, England 1971, Wang 1994).

(1)

(2)

(3)

where

The components of the stress and the resultant force can be expressed in terms of the complex

potentials as (England 1971).
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Fig. 1 Crack in semi-infinite plate
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 (5)

 

 (6)

where  and  are resultant force along divided segments in  and  directions respectively.

When a pair of body forces acts at an arbitrary site on the imaginary crack, as shown in Fig. 2,

one can obtain the resultant force along the path from point “A” to point “B” (A and B are the end

points of each divisions of crack) through the following procedure. First, put X = T, Y = 0 in Eqs. (1)

and (3) Second find derivatives of  and  with respect to ‘x0’ (Fig. 3) and multiply each

of them by “ε”. Then, the complex potentials of a pair of body forces can be obtained and denoted

by  and 
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Fig. 2 Pair of body forces on a division of crack

Fig. 3 Melan-type loading
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Differentiating Eq. (6) twice, we get

(9)

(10)

Differentiating Eq. (7)

(11) 

where R = Tε (product of ‘T’ and ‘ε’ ) and ‘ε’is twice the modulus of x0 (ε = 2 l x0 l→ 0) which

tends to approach zero. ‘T’ is pair of body force shown in Fig. 2. This ‘R’ is substituted for dR = 4γ (x)

 (Wang 1994, Nisitani 1978).

3.1 DETAILED PROCEDURE

The imaginary crack is divided into ‘N’ equal segments as shown in Fig. 4. The values of the

density functions of pairs of boundary forces of the dividing points and the ends of the imaginary

crack are denoted by , assuming that they change linearly within each

segment. The values of density functions of pairs of boundary forces are the unknowns, whose total

number is N + 1. By using the above equations, the resultant force along each segment created by

the applied pairs of boundary forces should compensate that created by bi-axial loading. Thus,’N’

equations can be established by boundary conditions of the semi-infinite plate with one crack (Wang

1994). But the number of equations is less than the number of unknowns. In order to increase the

number of equations, other segments  are taken, considering the boundary

conditions, where  are the midpoints of the previously divided segments of
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Fig. 4 Crack divisions
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imaginary crack. Then the number of unknowns is equal to the number of equations. The solution

of this problem can be uniquely determined. “When continuous distribution pairs of boundary forces

are applied on the full imaginary crack length. i.e., from point (-a, 0) to (a,0),(-a and +a are extreme

ends of the crack), these pairs of boundary forces acting on the element dx, denoted by dR can be

expressed as dR = 4γ (x)  (Wang 1994, Nisitani 1978) where x is the x-coordinate of the

element dx. Here, γ (x) is called the density function of pairs of boundary forces”. Substituting dR

for R in Eqs. (6), (7), (8), (9) and (10) and integrating along the full imaginary crack,  and

 are obtained which are created by the continuous distribution pairs of boundary forces acting

on the full imaginary crack length. Because the density function of pairs of boundary forces is

unknown function, which is determined by numerical method, the integrals along the full imaginary

crack length are replaced by summations of the integrals along each segment of the imaginary crack.

3.2 Numerical results

The stress intensity factor s at A and B of Fig. 1 can be calculated as K1A =  and K1B =

where  and  are the density functions at first and N th divisions of crack respectively. The stress

intensity correction factors obtained by body force method are compared with FEM results as

shown in below Table 1 and Table 2.

Stress intensity correction factor at ‘A’ is given by 

 where ‘σ’ is applied bi-axial stress.

4. Solution for a semi-infinite plate with radial crack emanating from circular hole

under bi-axial loading by body force method

A semi-infinite plate with crack emanating from circular hole is shown in Fig. 5.
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Table 1 Stress intensity correction factor 

 b/e  BFM  FEM

 0.2  1.0112  1.0114

 0.4  1.0528  1.0428

 0.6  1.1491  1.1462

 0.8  1.3879  1.3719

Table 2 Stress intensity correction factor

 DIVISIONS OF CRACK  BFM  FEM

 12  1.09033  1.09112

 16  1.09063  1.09022

 24  1.09091  1.08021

 32  1.09104  1.08022

 48  1.09115  1.09111
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The periphery of the imaginary circular hole is divided into ‘N’ equal segments, as shown in Fig.

6. At the midpoint of each segment, a x-direction and a y-direction concentrated boundary force are

applied. The imaginary crack is divided into ‘M’ equal segments as shown in Fig. 6. The values of

the density functions of pairs of boundary forces of the dividing points and the ends of the

imaginary crack are denoted by  assuming that they change linearly within

each segment. These concentrated forces and the values of density functions of pairs of boundary

forces are the unknowns, whose total number is 2N + M + 1. By using the above equations, the

resultant force along each segment created by the applied concentrated boundary forces and the

applied pairs of boundary forces should compensate that created by bi-axial loading. Thus, 2N + M

equations can be established by boundary conditions of the semi- infinite plate with one hole and

one crack whose divided case is shown in Fig. 5. But the number of equations is less than the

number of unknowns. In order to increase the number of equations, other segments ,

 are taken, considering the boundary conditions, where  are the

midpoints of the previously divided segments. 

γ1 γ2 γ3………γn 1+, ,

K1K2

K2K3 K3K4……, K2 K3 K4……, ,

Fig. 5 Crack and hole

Fig. 6 Crack and hole divisions
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Imaginary crack. Then the number of unknowns is equal to the number of equations. These

equations are expressed in matrix form. The solution of this problem can be uniquely determined.

For 32 divisions of hole and 4 divisions of crack, we get 69 × 70 as order of matrix as shown below.

 (12)

Influence coefficients inside the square matrix are resultant forces along each hole divisions and

crack divisions due to concentrated unit loads along x and y directions and pair of body forces

where 

 is X-component of resultant force acting along 1st division of hole due to unit concentrated

load acting along x-direction in 2nd division of hole.

 is X-component of resultant force acting along 1st division of hole due to pair of body forces

acting in M1 division of crack.

 is X-component of resultant force acting along 1st division of hole due to unit concentrated

load acting along y-direction in 2nd division of hole. 

 is resultant force acting along 1st division of hole in y-direction due to pair of body forces

acting in M1 division of crack.

 is X-component of resultant force acting along 1st division of hole due to Bi-axial load.

 is Y-component of resultant force acting along 1st division of hole due to Bi-axial load.

 is body force in x-direction.

 is body force in y-direction. 

4.1 Numerical results 

The circular hole of radius 2 units is considered in the problem with 4 mm radial crack subjected

to bi-axial type loading of 10 units. The normalized radial, hoop and shear stresses along radial

direction at angle 10 degree clock-wise from x-axis (Fig. 5) is computed and compared with FEM

results. Stresses along 10-degree radial line are shown in Fig. 7, Fig. 8, and Fig. 9. Convergence

study is carried out by making hole divisions 8, 16, 32, 64 and Crack divisions 4, 6, 8, 10.

Convergent results of radial stress, hoop stress and shear stresses at a distance of 4 mm from the

origin along 10degree radial line from x-axis (Fig. 5) is shown in Table3, 4 and 5.
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Fig. 7 Variation of normalised radial stress 

Fig. 8 Variation of normalised hoop stress

Fig. 9 Variation of normalised shear stress

Table 3 Convergent results of radial stress

HOLE
 DIVISIONS

CRACK
DIVISIONS

BFM FEM

98 94 -.2546 -.2513

16 96 -.2544

32 98 -.2541

64 10 -.2543
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5. Conclusions

As the BFM is semi-numerical method and requires less mesh divisions than FEM, it can be

concluded that BFM gives better results for crack problems. The body force method is applied for

the case of hole in infinite plate subjected in plane concentrated load (Kelvin-type loading)

(Manjunath and Ramakrishna 2007c), flamant case with hole (Manjunath and Ramakrishna 2006)

and Melan case with hole (Manjunath and Ramakrishna 2007a). The results obtained are compared

with analytical solution (involution technique) (Ramakrishna 1994) and FEM solutions. It is found

that FEM solutions are not as close as body force method with involution technique. As body force

method is semi-numerical, it is very powerful technique to handle crack problems
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Nomenclature

a: Half crack length

BFM: Body Force Method

ε: Crack thickness

γ: Angle of inclination of load w.r.t x-axis

κ: (3--4ν) for plane strain (3 − ν) / (1 + ν) for plane stress

Z: X + iY

γ1 γ2 γ3 …. Density functions 

φ (Z), ψ (Z): Complex potentials, functions of

Complex variable X + iY

ρX1: Body force in X-direction 

ρY1: Body force in Y-direction

z0: x0 + iy0

: Conjugate of z = (x − iY) 

01: Conjugate of z01 = x01 − iY01

z

z




