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Abstract. This paper proposes an interaction field concept based on the field theory of plasticity.
Relative deformation between two arbitrary scales, e.g., macro and micro fields, is defined which can be
implemented in the crystal plasticity-based constitutive framework. Differential geometrical quantities
responsible for describing dislocations and defects in the interaction field are obtained, based on which
dislocation density and incompatibility tensors are further derived. It is shown that the explicit interaction
exists in the curvature or incompatibility tensor field, whereas no interaction in the torsion or dislocation
density tensor field. General expressions of the interaction fields over multiple scales with more than three
scale levels are derived and implemented into the present constitutive equation. 

Keywords: multiscale modeling; crystal plasticity; field theory; differential geometry; non-Riemannian
plasticity.

1. Introduction

Developments of realistic and practically feasible multiscale modeling and simulations in

polycrystalline plasticity of metallic materials have been highly expected for a long time, however,

we must admit that we are still at a primitive stage, in the sense that many researchers seem to have

tried to capture the related subjects in quite reductionistic way without looking into the real

complexities underlying them. It may safely be said that boundless demands for the computational

power and pursuits of larger-scale massively parallelized simulations relying largely upon the brutal

forces would be the indications of such trend. Huge amount of experimental data accumulated to

date, on the other hand, strongly requires us to proceed to the “next stage” multiscale modeling and

simulation of materials beyond such reductionistic perspectives. Since polycrystalline metallic

materials can be regarded as one of the simplest examples of complex systems, where concurrently

interacting inhomogeneities in distinctively multiple spatiotemporal scales accompanied by

associated feedback loops substantially control the mechanical properties, what we definitely and

urgently need should be the construction of theoretical frameworks and methodologies that can

allow us to deal with them in an appropriate manner. We must also recognize the importance of

inhomogeneously deforming fields in multiple scales, e.g., dislocation substructures evolving into

sub-micrometer ordered patterns, intra-granular deformation structures such as lamellar bands and
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those associated with collective behavior of crystal grain assemblage, most of which are averaged

out macroscopically. No one has clarified hitherto, however, what the interactions among them on

earth and their essential roles are as well in conspiring to dictate the mesoscopic and macroscopic

mechanical responses of complex kinds. 

Homogenization method (e.g. Benssousan et al. 1978, Terada and Kikuchi 2001) is a

mathematically well-established scheme applicable to such coupling problems, however, its

applicability is limited basically to the case with completely separable scales where the scale ratio

must tend to zero, in addition to the rigid prerequisite of the periodicity of the assumed

microstructure to be dealt with. Furthermore, the effects from the microscale are reflected via

perturbation to the macro-field in this framework, whose shortcomings is that the phase transition-

like phenomena cannot be described, i.e., the evolution of the system to be dealt with is always

limited within the non-singular response. These drawbacks will be a fatal impediment to accomplish

the above-mentioned ambition over the multiscale modeling. 

Another open question of immense significance is how to describe the “inhomogeneites” in

various scales. In the homogenization method, such spatial information is numerically modeled via

direct discretization, e.g., by utilizing FEM. This seems to be convenient and effective; however, we

also need mathematically tractable way for more general treatments of the inhomogeneities that can

be easily extended to multiple scale interactions. For describing the inhomogeneities in a

generalized sense, an effective as well as rational use of the differential geometrical language has

been attempted by the author (Hasebe 2004a, 2004b, 2006) based on the unique framework known

as “non-Riemannian plasticity” (Kondo 1955). In particular, the prominent features of the

incompatibility tensor, given by second gradient of strain, have been clarified in the present context

(Hasebe 2006, Aoyagi and Hasebe 2007). Another use of differential geometry along somewhat

different lines has been proposed (Epstein and Elzanowski 2007) also for describing the

inhomogeneities, where Eshelby stress is regarded as a candidate for the “driving force” responsible

for the field evolutions. The next important step for us to take is to develop a method to rigorously

describe the interplay among the inhomogeneities in multiple scales, which will also contribute to

the field evolutions. 

This paper intends to construct a mathematical framework for describing the interplay among

multiple-scale inhomogeneities based on the differential geometrical field theory. A detailed

derivation process of the two-scale interaction and its interpretation together with the extension to

multiple scales are provided, after giving a brief review of the differential geometrical quantities

followed by a new intuitively tangible physical image of the incompatibility tensor field which is

responsible for the inhomogeneous field descriptions. Application examples of the three-scale

interaction field formalism constructed here will be given in Part II of the present paper (Hasebe

2009). 

2. Theory of interaction fields

2.1 About differential geometrical field theory

Since the differential geometrical descriptions of dislocations and defects have been well-

documented (e.g. Kondo 1955, Amari 1962), here we will encapsulate the intuitive images and the

definitions of them. Fig. 1 presents schematics of primitive physical images of “torsion” and
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“curvature” of a crystalline space in terms of plasticity, both of which are expressed via higher rank

tensors based on differential geometry. By using the two quantities, we can thoroughly express all

kinds of imperfections in principle (Kondo 1955, Ohnami 1988). The “torsion,” characterized by a

closure failure of the circuit enclosing the defected field, i.e., known as Burgers vector, accounts for

the one-signed dislocations, while the “curvature,” featuring imperfections accompanied by the

rotation of material vector during encircling the field, expresses not only pairs of dislocations like

dislocation dipole and multi-poles but also other kinds of defects including vacancy, foreign atoms,

and precipitates. 

Torsion and curvature tensors are defined by, 

 (1)

respectively, where  indicate the coefficients of connection in non-Riemannian space.

Contractions of these higher order tensors considering the symmetry lead to well-known second

rank tensors. They are called “dislocation density tensor” and “incompatibility tensor,” respectively,

further given by a curl of distortion tensor and double curl of strain tensor in the context of

continuum mechanics, i.e., 

 (2)

This means that the theory intrinsically requires “strain gradients” at least up to the second order as

far as the present framework is concerned. Note, another definition or interpretation of the

incompatibility tensor is the Einstein tensor derivable from the 4th rank, 

 (2a)

where  is the Ricci curvature and  is called the scalar curvature. Here,  or

represents the metric tensor of the space, which measures the strain in the field theory. Also 

can be rewritten in terms of the gradient of , i.e., 

 (2b)

where “sym” stands for the summarization with respect to i and j.

2.2 Intuitive physical image of incompatibility tensor-driven inhomogeneity evolution 

The torsion and curvature tensors defined above can play pivotal roles in describing not only

dislocation and defect fields but also generalized inhomogeneously deforming fields in any scale

levels, e.g., dislocation substructures in grain size orders and stress supporting structure in grain-

aggregate orders. Since the inhomogeneous fields are evolved ultimately as a consequence of

motions and interactions of crystallographic imperfections including both dislocations and defects,

their generalized physical images are also attributed ultimately to the redistributions of dislocations
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and defects. 

Introducing the incompatibility tensor to, e.g., the hardening law, in an “appropriate” manner as

detailed in section 4 has been demonstrated to soften the overall response, associating with

additionally introduced “modulations” in the deformation field (Aoyagi and Hasebe 2007). This

stems from supplementary accommodation mechanisms to be embodied by the incompatibility field.

An intuitive physical image of this accommodation process is given in Fig. 2, schematizing a

dislocation rearrangement into a kink band configuration as one of the possibilities. When a region

of a material is subject to localized shear (right-hand side of Fig. 2(a)), a non-uniform plastic

deformation should be introduced resulting in localized strain gradient at around the interfacial

region between before and after the passage of one-signed dislocations, producing locally

“incompatible” deformation. Fig. 2(b) illustrates the corresponding “virtual” configuration, which is

conventionally interpreted as being compensated by the “geometrically-necessary” dislocations (e.g.

Fleck and Hutchinson 1997). To lower the strain energy of the whole system, however, further

rearrangement of the dislocations will be necessary which can accommodate thus locally-intruded

“incompatible” deformation. Such process can be achieved by introducing incompatibility tensor

field roughly given by the second gradient of the locally introduced strain, e.g., ultimately leading to

the kink band formation, corresponding to a band-like pattern in the incompatibility distribution

extending plus and minus signs as schematically illustrated in Fig. 2(c) 

The “appropriate manner” in the above means the following. In taking account of the

incompatibility tensor, e.g., in the hardening law, one must consider the sign in addition to its

magnitude. Clearly, the incompatibility distributions extending both positive and negative signs are

indispensable to the above-mentioned accommodation processes, without which only the additional

hardening may result by doubly counting the contribution. The modulated patterns that emerge in

the incompatibility field is thus introduced, whose morphological features such as directionality are

Fig. 1 Differential geometrical quantities for describing crystal imperfections via torsion and curvature
tensors, further reduced to dislocation density and incompatibility tensors by contractions, respectively
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depending on the crystallography, i.e., crystal orientation and the associated number of active slip

systems (Aoyagi and Hasebe 2007). 

The above image can also capture another important feature of the incompatibility tensor-based

description of inhomogeneous fields in field theory of plasticity. The use of the incompatibility

tensor at a certain scale level allows us to account for the underlying “smaller scale”-degree of

freedom that is not explicitly considered in the model being used. In the above example, a

redistribution of dislocations can be expressed via incompatibility field without introducing or

modeling dislocation-degree of freedom explicitly. 

3. Theory of interaction fields 

3.1 Relative deformation and interaction fields 

Let us consider two scales as the simplest case, i.e., coordinates in macro and micro scales, to be

denoted by  and  etc., respectively. Here, i, j = 1, 2, 3 in the present paper. All the other

quantities referring to the microscale will be expressed by attaching a single “bar” to the

xi Xi, xi Xi,

Fig. 2 Schematic indicating an intuitive physical image of incompatibility tensor field, accommodating
excessive local deformation via redistribution of dislocations
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macroscopic counterparts. The quantities in the interaction field, on the other hand, will be similarly

expressed by attaching “tilde” instead. 

We introduce a relative deformation between the two scales for the purpose of considering field

interactions between them in the differential geometrical sense. The relative deformation is defined

as the transformation between the line elements . and  for a current configuration (Ikeda

1975), i.e., 

 (3)

where  defines the relative deformation between the two scales. The inverse relationship is given

by

 

(3a)

The above exists only when the determinant of the relative deformation tensor satisfies

 (4)

This insures the coexistence of the two scales during field evolution. 

The transformation of the line vectors before and after deformation is expressed in terms of

deformation gradient tensor for both the scales, namely,

 (5)

 (6)
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If we assume affinly interacting deformation fields, the relative deformation tensor is simply

expressed by a scalar quantity having a meaning of “scale ratio” characterizing a spatial degree

of separation between the two scales, i.e.,  with , multiplied by Kronecker’s

delta (identity tensor). Considering this simplest case, we rewrite Eq. (9) by using the scale ratio as,

 (9a)

Substituting  into Eq. (3)1, we have a relationship between the two-scale deformation

gradient tensors, i.e., 

 (10)

3.3 Expressions for differential geometrical quantities

For the two-scale interaction field, the differentiation is defined as, 

 (11)

Therefore, by definition, the coefficients of connection are given as, 

 (12)
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The significance of the above results is the following. Explicit inter-scale interactions can come

into play only through the curvature tensor field as far as the above framework insists. Since the

curvature tensor, as is discussed in the following section, can describe inhomogeneities in any scale

levels, we now have a definite way to be able to deal with inter-scale couplings and consequent

evolutions of multiple inhomogeneously deforming fields within the framework of continuum

mechanics in an explicit manner. 

Next, we derive the corresponding continuum mechanics-based expressions to the torsion and

curvature tensors obtained above. As shown in Eq. (2), single and double contractions of the torsion

and curvature tensors produce two second-rank tensors, called dislocation density and

incompatibility tensors, respectively, i.e., 

 (16)

and

 (17)
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 (19)

where  is used in the second line of Eq. (19). Note, the product of scale ratios in the

third line reads . Eqs. (18) and (19) can be rearranged in a more compact form, 
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e.g., during the alternating curl operations with respect to the distinct scales. A pair of the off-

diagonal components in the curl matrix can become symmetric only when the two scales coincide.

The loss of information can be measured by the commutation relation of the curl operations, i.e.,

exchange of the order of curl operations. 

 (22)

where, in the present case, the subscripts I and J express either of A, B or C. On the other hand, the

non-commutativity of the curl operations with respect to the distinct two scales measures the

strength of the field interaction, i.e., the measure of inter-scale correlation. 

 (23)
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4. Implementation of interaction field into constitutive framework

4.1 Constitutive framework 

The above-constructed interaction field framework is implemented into the crystalline plasticity

model through the strain gradient terms (Aoyagi and Hasebe 2007). A constitutive model applicable

both to FCC and BCC metals have been proposed by the author based on statistical mechanics-

based dislocation dynamics. The explicit form is given by, 

 (24)

with

 (24a)

where  and  are drag and back stress, respectively, responsible for isotropic and kinematic

types of hardening. In Eq. (24a),  are mobile dislocation density, mean flying distance

of dislocations, the Debye frequency, the magnitude of Burgers vector and the damping

coefficient due to, e.g., phonon drag, respectively, and  stands for the

activation energy for dislocation processes at T = 0K with  being the normalized one and

 the temperature dependent shear modulus. For BCC metals, we can set , whereas

for FCC we normally assume . The exponents p and q in Eq. (24)1 are the parameters

specifying the thermal obstacle of interest, provided 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2. In the above case, a

pair of values p = 1/2, q = 3/2 is used for representing dislocation processes. Furthermore in Eq.

(24)1,  represents the Mackauley parenthesis, with  expressing the

effective stress for Peierls overcoming process given by,

 (25)

where  and  are parameters for the thermal activation process via

Peierls overcoming event of dislocations. 

The hardening evolution models are introduced through drag stress  and back stress 

(Hasebe et al. 1998b) given respectively by, 

 and (26)

where  represents hardening modulus for a referential stress-strain curve. Hardening ratio 

is used to evaluate the effective cell size which characterizes the average size of dislocation

substructure like cell, given by 
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 and (27)

where k represents the initial cell size normally coinciding with a fraction of the initial grain size.

For the evolution equation of the back stress ,  and  is the mean moving distance

of dislocations evaluated by multiplying  with .

4.2 Hardening law and field theoretical strain gradient terms 

The hardening ratio , in Eq. (26)1 through which the contributions of  and  are

accounted for, is given by,

 (28)

where  represents dislocation interaction matrix, and  expresses history matrix further given

as an increasing function of plastic work done by the effective stress that responsible for dislocation

processes. No summation is taken in the last term in the right-hand side of Eq. (28). Here,

 expresses the field theoretical “strain gradient terms” given

respectively as (Aoyagi and Hasebe (2007)),

 (29)

 (30)

where  are coefficients related with the contributions of  and  to the change in the

effective cell size dcell, while lcell represents the characteristic length of the defect field considered,

e.g., ldefect = b for dislocation dipoles and ldefect ~ 10−6 for dislocation substructures like

cells. Here  and  are the resolve components of  and , respectively, defined as,

 and (31)

where  with  being the unit vectors in the slip direction and slip plane

normal, respectively. Note, that the first and second terms of  respectively correspond to the

edge and screw components of dislocation density.

The explicit forms of Eqs. (29) and (30) were obtained as follows. Since the hardening ratio 

physically dictates the inverse of the effective cell size, in the present context as understood from

Eq. (27), characterizing the mean dislocation free path, the strain gradient terms to be introduced

should have the same dimensionality, bearing the effect of either enhancing or reducing it. For the

dislocation density, we can evaluate the mean spacing of dislocations via

 (32)

since  counts “geometrically-necessary” types of dislocation density. Assuming the

proportionality between the cell size and  based on empirical facts, i.e., 
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 (33)

with  being the proportionality factor, we arrive at Eq. (29). 

The same is true also for the incompatibility tensor, except one additional parameter ldefect and the

sign of . The former is to be introduced for the dimensionality reason, while the latter is to take

account of the accommodation ability of the quantity, dictating how the dislocations are

redistributed to relax the excessive deformation as described in section 2.2, Hence, we have

 (34)

By combining the contributions given by Eqs. (33) and (34) to the effective cell size evolution,

we ultimately have,

leading to the final expression in Eq. (28). Note, the effect of evaluation method of the derivative

for obtaining  distribution is extensively discussed in (Aoyagi et al. 2008). 

5. Conclusions

This paper describes in detail a concept and the associated derivation process of the interaction

fields applicable to multiple scale problems based on field theory of plasticity. Relative deformation

between two distinct scales, e.g., macro and micro fields, are considered based on which all the

other differential geometrical quantities, i.e., the coefficients of connection, torsion tensor and

curvature tensor, are derived. Thus obtained two-scale interaction formalism is extended to multiple

scales with more than three levels. Demonstrated are the explicit coupling exists in the curvature

tensor field, equivalent to incompatibility tensor field, whereas no coupling in the torsion, i.e.,

dislocation density, tensor field. The interaction fields are implemented into a crystal plasticity-based

constitutive equation through which we can tackle multiscale problems in the light of interactions in

an explicit manner. 
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