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Abstract. A Galerkin meshfree method is presented for analyzing shear deformable cylindrical panels.
Based upon the analogy between the cylindrical panel and the curved beam a pure bending mode for
cylindrical panel is rationally constructed. The meshfree approximation employed herein is characterized
by an enhanced moving least square or reproducing kernel basis function that can exactly represent the
pure bending mode and thus meets the requirement of Kirchhoff mode reproducing condition. The
variational form is discretized using the efficient stabilized conforming nodal integration with a smoothed
nodal gradient based curvature. The resulting meshfree formulation satisfies the integration constraint for
bending exactness. Moreover, it is shown here that the smoothed gradient preserves several desired
properties which are valid for the standard gradient obtained by direct differentiation, such as partition of
nullity and reproduction of a constant strain field. The efficacy of the proposed approach is demonstrated
by two benchmark cylindrical panel examples.

Keywords: cylindrical panel; meshfree method; stabilized conforming nodal integration; smoothed
nodal gradient.

1. Introduction

Galerkin meshfree methods based on the moving least square (MLS, [Lancaster and Salkauskas

1981, Belytschko et al. 1994]) or reproducing kernel (RK, [Liu et al. 1995, Chen et al. 1996])

approximation have essential advantages on stability and accuracy and thus have attracted noticeable

research attention from the academia as well as industry (Belytschko et al. 1994, Liu et al. 1995,

Chen et al. 1996, Krysl and Belytschko 1996, Li et al. 2000, Li and Liu 2004, Hallquist 2003).

Nonetheless for Galerkin type of formulations the domain integration has to be carried out using

certain ways, among them the Gauss quadrature rule is frequently employed. The non-polynomial

feature of MLS/RK shape functions makes higher order quadratures necessary and therefore the

domain integration becomes much more computationally intensive compared with its FEM
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counterpart. The high CPU cost actually prevents the Galerkin meshfree methods from widespread

practical applications with large models. Collocation of the Galerkin weak form directly at meshfree

nodal points provides desired computational efficiency but suffers from spatial stability problem

(Beissel and Belytschko 1996).

To accelerate the meshfree computation and overcome the stability issue associated with nodal

integration as well, (Beissel and Belytschko 1996) introduced a stabilization term consisting of the

residual of the equilibrium equation into the weak form. Employment of the extra set of stress

points in the meshfree formulations provides another applicable way to improve the stability

behavior. This method was first proposed by Dyka and Ingel (1995) in one dimension and was

generalized to higher dimensions by Randles and Libersky (2000). Rabczuk et al. (2004) also

investigated the stress point stabilization within the Galerkin meshfree environment. (Chen et al.

2001, 2002) took a different path to enhance the stability of nodal integration through the

employment of a novel smoothed nodal gradient and the assumed strain method. The proposed

smoothed gradient matrix was shown to meet the integration constraint for linear exactness in the

Galerkin approximation. This approach is referred as the stabilized conforming nodal integration

(SCNI, [Chen et al. 2001]) meshfree formulation. Thereafter the SCNI formulation was generalized

to meet bending exactness and analyze shear deformable beam/plate/shell problems (Chen et al.

2004, Wang and Chen 2004, Wang et al. 2006, Wang and Chen 2006, Chen and Wang 2006).

Recently it was also further adapted to solve thin plate problems where the shear deformation can

be neglected (Wang 2006, Wang and Chen 2008). Good numerical performance has been observed

for these SCNI-based meshfree formulations.

In this work we wish to develop an SCNI meshfree method with particular refer to the problem of

shear deformable cylindrical panels. A pure bending mode for the cylindrical panel is constructed

based on its counterpart for the curved beam (Wang and Chen 2006). Then according to the

Kirchhoff Mode Reproducing Condition (KMRC), a meshfree basis function is deduced to exactly

represent this pure bending deformation. Consequently a curvature smoothing operation is

performed and a resulting SCNI formulation is set up which is capable of reproducing the pure

bending solution under the Galerkin framework. It is also shown that the smoothed nodal gradient

preserves some desired properties of the conventional nodal gradient obtained by direct

differentiation, i.e., the salient partition of nullity.

The rest of this paper is outlined as follows. In Section 2 the preliminaries of a shear deformable

cylindrical panel are summarized. The pure bending deformation with constant curvature and zero

membrane and shear deformations is discussed in Section 3. Then in Section 4 the approximation of

field variables using a special meshfree approximation is illustrated. The integration constraint,

smoothed gradient and its properties, and the resulting SCNI formulation are presented in Section 5.

In Section 6 the efficacy of the proposed method is demonstrated by two numerical examples.

Finally conclusions are given in Section 7.

2. Basic equations of cylindrical panel

Consider a cylindrical panel or shell with a curvature radius R occupying a domain B = Ω × [−h,

h] / 2 as shown in Fig. 1, where Ω ∈ R2, Ω = Ω Γ, Ω and Γ represent the mid-surface and

associated boundary of shell, h is the shell thickness. The panel geometry is described by a right

hand coordinate system (x, s, z) with x and s = Rθ being the axial and hoop coordinates on the shell

∪



An efficient Galerkin meshfree analysis of shear deformable cylindrical panels 341

mid-surface and z as the radial coordinate measuring from the mid-surface. The panel’s thickness/

radius ratio (h / R) is assumed small compared to unity and is neglected in this formulation. Let

 be the displacements at a generic field point (x, s, z) along these coordinate directions, in a

first order shear deformation theory they are assumed to vary linearly over the shell thickness and

can be expressed as follows:

(1)

û v̂ ŵ, ,

û x s z, ,( ) u x s,( ) zβx x s,( )–=

v̂ x s z, ,( ) v x s,( ) zβθ x s,( )–=

ŵ x s z, ,( ) w x s,( )=

Fig. 1 Sign conventions for cylindrical panel
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where (u, v, w) and (βx, βθ) denote the mid-surface displacements and two bending rotations at the

location (x, s), respectively. The other dependent field variables are the eight deformation measures

(εxx, εθθ, γxθ, γxz, γθz, κxx, κθθ, κxθ), and their corresponding force and couple resultants (Nx, Nθ, Nxθ,

Qx, Qθ, Mx, Mθ, Mxθ). The sign conventions used in this study are also shown in Fig. 1. 

For convenience of development, as shown below the strain measures are grouped into three parts,

i.e., the in-plane membrane strain ε, the out-of-plane bending curvature κ and the shear strain γ. By

substituting the displacement field of Eq. (1) into the standard displacement–strain relationship

defined under the cylindrical coordinates (Timoshenko and Woinowsky-Krieger 1959), it can be

found that these strains are related to the mid-surface displacements via:

(2)

(3)

(4)

The constitutive equations linking the membrane force and moment resultants to their

corresponding deformation measures for a linear elastic isotropic material are:

(5)

(6)

In addition the shear constitutive relations are given as:

(7)

ε

εxx

εθθ

γxθ⎩ ⎭
⎪ ⎪
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⎪ ⎪
⎧ ⎫

u x,

v s,

w
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----+

v x, u s,+⎩ ⎭
⎪ ⎪
⎪ ⎪
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⎪ ⎪
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κ
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where E, ν and µ are Young’s modulus, Poisson’s ratio, and shear modulus respectively, and k = 5 / 6

is the shear correction factor.

The five equilibrium equations of cylindrical panel are of the form:

(8)

where (px, pθ, q, mx, mθ) are the applied tangential and normal tractions and moments. The

equations in (8) are subjected to the following boundary conditions:

 on      or  on (9)

where the over-bar denotes a prescribed quantity,  and  represent the essential and natural

parts of the boundary Γ with unit outward normal and tangential vectors n and t.

A variational statement of the equilibrium of Eq. (8) can be written as

(10)

where u = {u, v, w, βx, βθ}
T, and use is made of the constitutive equations from (5) to (7). 

3. Pure bending mode

The purpose of discussing the pure bending mode here is that to alleviate the shear and membrane

locking, a numerical approximation is expected not to produce parasitic shear and membrane

deformations when representing a pure bending mode, as also known as the KMRC. So the pure

bending mode can serve as a useful basis for constructing effective numerical schemes free of

locking. This has been demonstrated in the previous works (Wang and Chen 2004, Wang and Chen

2006). However for a cylindrical panel it is not straightforward to find a general pure bending

Nxx x, Nxθ s, px+ + 0=

Nxθ x, Nθθ s, Qθ R⁄ pθ+ + + 0=

Qx x, Qθ s, Nθθ R q+⁄–+ 0  in Ω=
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solution. Rather than sticking to directly solve a pure bending solution, here we build a pure

bending solution for cylindrical shell by generalizing the counterpart of curved beam, which was

discussed in details in (Wang and Chen 2006). Based on the pure bending of curved beam, the

displacement field of a bending mode for cylindrical panel can be written as:

(11)

with c being an arbitrary constant. 

Invoking the kinematics and constitutive relationships from Eqns. (2) to (7), the resulting

deformation, force and couple fields of Eq. (11) are obtained as:

(12)

= constant (13)

The constant curvatures and moments verify the displacement field defined in Eq. (11)

corresponds to a pure bending mode of cylindrical panel. Thus it is desired that the employed

approximation and discretized Galerkin meshfree equations can reproduce this mode exactly. 

4. Meshfree approximation

4.1 MLS/RK shape function

The MLS/RK (Lancaster and Salkauskas 1981, Belytschko et al. 1994, Liu et al. 1995, Chen et

al. 1996) approximation is briefly summarized here for later development. In meshfree

approximation, the problem domain  of the mid-surface of the cylindrical panel is partitioned into

a set of NP nodes xI = (x1, sI), . The MLS/RK approximation of a dependent field

variable u(x), say uh(x), takes the following form:

(14)

where dI is the generalized nodal coefficient and  is the so-called MLS/RK shape function given by:
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(15)

where p(x) and b(x) are the basis vector and unknown coefficient vector.  is the kernel

function centered at xI with a compact support a, which defines the smoothness and locality of the

meshfree approximation. In this work a conventional cubic B-spline function (Chen et al. 1996) is

used for the kernel function.

The unknown vector b(x) is obtained through enforcing the following n-th order reproducing

conditions

     0 ≤ i ≤ n (16)

Substituting Eq. (15) into Eq. (16) using a matrix form yields

(17)

where  is the moment matrix defined as

(18)

After solving  from Eq. (17), the MLS/RK shape function becomes

(19)

4.2 Approximation of field variables

With the meshfree discretization, the mid-surface displacements of cylindrical panel are

approximated as:

(20)

where . Introducing the meshfree approximation into the deformation

measures then gives:
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(21)

(22)

(23)

with

(24)

 (25)

 (26)

4.3 Representation of pure bending mode

To construct a locking free numerical scheme, the meshfree approximations are expected to

reproduce the Kirchhoff mode (pure bending) discussed in Eq. (11), i.e., meet the requirement of

KMRC. According to Eq. (11), a pure bending nodal coefficient vector takes the form of:

(27)

Thus the discrete counterparts of Eq. (12) are:
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 (28)

or

(29)

It is straightforward to show that the reproducing properties of Eq. (29) can be satisfied by taking

the following MLS/RK basis:

 (30)

Not that the basis vector  includes the enhanced bending terms,  and .

5. Integration constraint, smoothed curvature and SCNI formulation

5.1 Integration constraint and smoothed curvature

Satisfaction of KMRC by the MLS/RK approximation is just one requirement to yield a pure

bending solution using the Galerkin variational formulation, moreover, the integration of the

variational form also needs to fulfill the integration constraint (Chen et al. 2001, Wang and Chen

2004). The integration constraint can be obtained through imposing the pure bending mode on the

weak form, as leads to: 

 (31)
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similar argument as in Wang and Chen (2004) leads to the following integration constraint:

 (32)

where the superscripts INT and BINT denote numerical domain and boundary integrations,

respectively. GI is given by

(33)

The SCNI method has been developed to fulfill the integration constraint and thus can achieve

bending exactness under the Galerkin variational framework (Chen et al. 2001, Wang and Chen 2004).

In this approach, a smoothed nodal curvature as shown below is employed with the nodal

integration: 

                                      i, j = {x, s} (34)

where  and  are the nodal representative domain and its boundary for node  as
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Thus the smoothed nodal curvature has the form:
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where

(36)

with  being the smoothed nodal gradient of shape function given by:

                     ,                 i = {x, s) (37)

5.2 Properties of smoothed nodal gradient

Here we show that the smoothed gradient defined in Eq. (37) preserves the following desired

reproducing properties which hold for the standard shape function gradient:

                                         i = {x, s) (38)

                                       i = {x, s) (39)

where use is made of the reproducing conditions of Eq. (16). Also we use the notations x1 = x,
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Thus in summary we have
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These properties are necessary for the meshfree approximation to produce a constant strain field

and note that the first equation of (40) is widely referred as the partition of nullity. 
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5.3 SCNI discretized meshfree equations

In the SCNI approach, the assumed strain method (Simo and Hughes 1985) is employed and the

smooth nodal curvature of Eq. (35) is employed in the nodally integrated variational form of Eq.

(10), which yields . Then the standard variational arguments lead to the

following discretized equilibrium equations:

(41)

where the components of  and f are give by:

(42)

 (43)

with NB and  being the number of boundary integration points and corresponding weight of

integration.

6. Numerical examples

6.1 Scordelis-Lo roof

The Scodelis-Lo roof subjected to gravity load is one widely recognized problem to test the

effectiveness of numerical shell formulation. The geometry, material and loading information is

listed in Fig. 3, where the roof is longitudinally supported by two rigid end diaphragms and the

other two edges of the roof are free. The reference solution for the deflection at the mid-span of the

free edge (C) is 0.3024 (MacNeal and Harder1985). Taking advantage of the two directional

symmetries, only a quarter of the structure is discretized. The various meshfree discretizations

employed here are shown in Fig. 4. A normalized support size of 3.5 is taken through this analysis.

In Fig. 5, the normalized vertical displacement of point C obtained by the present method is
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compared to some well-known FEM results (9 Node SRI (Liu et al. 1986), RSDS (Liu et al. 1986),

Hetorosis (Liu et al. 1986), (Koziey and Mirza 1997), (Simo et al 1989)). The numerical results

evince that the proposed approach performs very well compared with these published finite element

solutions.

Fig. 3 Problem description of Scordelis-Lo roof

Fig. 4 Meshfree discretizations for Scordelis-Lo roof

Fig. 5 Comparison of normalized vertical displacement of node C for the problem of Scordelis-Lo roof
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6.2 Pinched cylinder with rigid end diaphragms

Another benchmark example we consider here is the classical problem of pinched cylinder with

rigid diaphragms at the two ends. The cylinder is subjected to a pair of equal and opposite point

loads at its mid-span. The problem statement is shown in Fig. 6. This problem is frequently

employed to comprehensively assess the capability of a numerical method for representing the

bending, shear, and membrane modes. The reference solution of the deflection underneath the

concentrated force is 1.82488 × 10−5 (Simo et al. 1989). Only one-eighth of the cylinder is modeled

by invoking the three-fold symmetry of this problem. Fig. 7 lists the different meshfree

discretizations employed in this study in which a normalized support size of 4.0 is used. In Fig. 8,

the comparison of normalized deflection under the point force is given between the proposed

solution and other solutions using the FEM methods by (Simo et al. 1989), (Koziey and Mirza

1977), 9 Node SRI (Simo et al. 1989), the EFG shear deformable shell formulation by (Noguchi et

al. 2000), and the constrained reproducing kernel global meshfree shell approach (CRK-Global

shell) by (Chen and Wang 2004, Chen and Wang 2006). The numerical results show that the

solution of current method compares favorably to those obtained from the finite element and

meshfree solutions we just mentioned. 

7. Conclusions

An efficient Galerkin meshfree approach was presented for the analysis of shear deformable cylindrical

panels. The present formulation is featured by an enhanced meshfree basis function for accuracy and the

accelerated stabilized conforming nodal integration for efficiency and stability. The enhanced basis

function was deduced from the Krichhoff mode reproducing condition of the pure bending mode

constructed based upon its counterpart of the curved beam. Thus the approximated meshfree solution

using the enhanced basis does not yield parasitic shear and membrane deformations in representing the

Fig. 6 Problem description of pinched cylinder with rigid end diaphragms
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pure bending mode. To fulfill the integration constraint of Galerkin weak form associated with the

bending exactness, a curvature smoothing operation at nodal points was performed. It was proved the

smoothed nodal gradient resulting from the curvature smoothing operation inherits some desired

characteristics, i.e., the partition of nullity and reproduction of a constant strain field, which hold for

the conventional differentiation based nodal gradient of meshfree shape function. Very favorable

numerical performance of the present formulation was observed from two benchmark examples, the

Scordelis-Lo Roof problem and the problem of pinched cylinder with rigid end diaphragms.

Fig. 8 Comparison of normalized deflection underneath the point load for the problem of pinched cylinder
with rigid end diaphragms

Fig. 7 Meshfree discretizations for pinched cylinder with end diaphragms 
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