
Interaction and Multiscale Mechanics, Vol. 1, No. 3 (2008) 329-337 329

Weak forms of generalized governing equations
in theory of elasticity 

G. Shi* 

Department of Mechanics, Tianjin University, Tianjin, 300072, China

L. Tang

Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China

(Received February 21, 2008, Accepted July 8, 2008)

Abstract. This paper presents the derivation of the generalized governing equations in theory of
elasticity, their weak forms and the some applications in the numerical analysis of structural mechanics.
Unlike the differential equations in classical elasticity theory, the generalized equations of the equilibrium
and compatibility equations presented here take the form of integral equations, and the generalized
equilibrium equations contain the classical differential equations and the boundary conditions in a single
equation. By using appropriate test functions, the weak forms of these generalized governing equations
can be established. It can be shown that various variational principles in structural analysis are merely the
special cases of these weak forms of generalized governing equations in elasticity. The present weak
forms of elasticity equations extend greatly the choices of the trial functions for approximate solutions in
the numerical analysis of various engineering problems. Therefore, the weak forms of generalized governing
equations in elasticity provide a powerful modeling tool in the computational structural mechanics.
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1. Introduction

The governing equations in theory of elasticity are a group of equations to be satisfied pointwise

within the domain or on the boundaries of the body in consideration. As a result, very few

engineering problems can be analytically solved by theory of elasticity directly. Instead of using

these differential equations, engineers resort to various methods to seek approximate solutions, such

as weighted residuals and various variational principles. In the computational structural mechanics,

none of the popular computer-based numerical methods, such as the finite element method, the

boundary element method and the meshless method, is directly based on the differential equations in

elasticity. But, all these numerical methods are based on various variational principles, or weighted

residuals, or other variations of the classical governing equations (Hughes 1987, Atluri 2005).
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Although these variations of the classical governing equations have some advantages compared with

the classical elasticity equations, they still possesses some unnecessary restricts on the choices of

the trail functions for the approximate solutions. For instance, in the thin plate bending analysis, the

minimum potential energy principles reduce the differential order from the forth-order in the

equilibrium equation to the second-order in the strain energy, but it still requires a C1-continuity

displacement across the element common boundaries. Such a restrict results in many difficulties in

the element formulations of plate bending analysis. On the other hand, some non-conforming plate

elements are quite reliable and accurate. This means that both the theory of elasticity and the

present variational principles should be modified to provide a more powerful theoretical foundation

for the computational structural mechanics (Tang et al 2001, Atluri 2005). 

The objective of this paper is to present the generalized governing equations in elasticity, their

weak forms as well as the some examples of applications in the numerical analysis of structural

mechanics. The study indicates that the new theory of elasticity presented here can broaden greatly

the choices of trial functions in seeking approximate solutions. Therefore, the weak forms of

generalized governing equations in theory of elasticity would provide a more powerful modeling

tool in the computational structural mechanics.

2. Governing equations in theory of elasticity

This study confines to the linear elasticity. If let xi (i = 1,2,3) denotes the rectangular Cartesian

coordinates, then the displacement, strain and stress fields as well body forces can be expressed,

respectively, as ui, εij, σij and fi with i, j = 1,2,3. For a boundary value problem, theory of elasticity

gives the governing equations of a body with domain V and boundary S depicted in Fig. 1 as

     in V  (1)

  ti   on S
σ

 (2)

     in V  (3)

ui = ui     on Su  (4)

 or      in V  (5)

Where Sσ and Su represent, respectively, the force boundary and the displacement boundary on S

respectively; ti are the given tractions on Sσ , nj ( j = 1,2,3) are the direction cosines of a point on

Sσ ;  are the given displacements on Su; U(εij) denotes the strain energy density in terms of strains

εij, and W(σij) denotes the complementary energy density in terms of stresses σij. Although the strain

energy U and complementary energy W are identical in the case of linear deformations, they have

different independent variables and the choice of the independent variables is very useful in the

multi-field finite element formulations.

It is worthwhile to point out that Eqs. (1-5) are required to be satisfied pointwise in V or on Sσ
and Su; and the equilibrium equations in the domain V and the traction conditions on the boundary
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S
σ
 have separate equations as indicated by Eq. (1) and Eq. (2). The same are true for the

displacement compatibility conditions given in Eqs. (3) and (4).

3. Generalized governing equations 

3.1 Generalized equilibrium equations

Let us consider the static equilibrium of a subdomain  with surface  taken from inside of

the domain V shown in Fig. 1. The forces associated with  are stresses σij and body force fi in

 and the tractions ti on . The tractions ti at a point on  are of the form:

                                       ti = σij nj,                           (i, j = 1,2,3)  (6)

In stead of the equilibrium equations to be satisfied pointwise given in Eq. (1), now let us

consider the equilibrium over the subdomain  as a whole, which is called as generalized

equilibrium here. For instance, the equilibrium of  in the direction-x1 is of the form

  (7)

in which the second integral is a volume integration in subdomain , and the first one is the

surface integration over , the surface of . The generalized equilibrium above is in an integral

form as opposed to the differential form of equilibrium equations in theory of elasticity defined in

Eq. (1). 

When a part of the surface  of subdomain in  belongs to the traction boundary Sσ as shown

in Fig. 1, represented by Sσ , Eq. (7) should be modified as

t1  (8)

where t1 is the given traction in the direction-x1 on Sσ. Eq. (7) and Eq. (8) can be written into a

unified equation as

∂V ∂S
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Fig. 1 A typical continuum
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(t1 − t1)ds +  (9)

Eq (9) is valid for the whole domain of V. Using Green theorem, then Eq. (9) can be recast as 

(t1 − t1)ds = 0  (10)

By considering the equilibrium in the direction-x2 and direction-x3 in a similar way, we will have

two more equations similar to Eq. (10). These three equilibrium equations over the whole domain of

V can be written as 

                            (t1 − t1)ds = 0,          (i, j = 1,2,3)  (11)

As a special case, the quantities in each integral above are zero at every point, then the first term

of Eq. (11) leads to the classical equilibrium equations defined by Eq. (1) and the second part of

Eq. (11) gives

                                          ti = t1     on S
σ
                            (i = 1,2,3)  (12)

Obviously, Eq. (12) is the boundary conditions on tractions defined by Eq. (2). Therefore, the

present generalized equilibriums are not only the integral form of the classical equilibrium

equations, but also capable of combining the equilibriums and the traction boundary conditions in a

unified equation. As a result, the surface integration in Eq. (12) would results in the so-called

natural boundary automatically for all loading cases. 

3.2 Generalized deformation and compatibility equations

Eq. (3) is the strain and displacement relations that are required to be satisfied pointwise in V.

However in the case of one-dimensional structures, the integration of the axial strain along the axis

of a segment gives the axial deformation of the segment. As a result, the strain and displacement

relation in one-dimensional problem can be enforced for a segment as a whole rather than at every

point along the segment as presented by Shi and Atluri (1988). By a similar way, the strain and

displacement relations in Eq. (3) can be enforced over a domain for the three-dimensional

deformation. For example, along the direction-x1 of a subdomain  not containing any part of the

displacement boundary Su, we have

 (13)

The Green theorem is used in the equation above. The surface integration over  in Eq. (13)

gives the generalized deformation in the direction-x1 in . When a part of  belongs to Su with

, denoted by Su, Eq. (13) takes the form 

 (14)

Utilizing the Green theorem for the first term at the right-hand side of Eq. (14) and rearranging

the results, we have 

 (15)
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Eq. (15) is valid for any subdomain  of a continuum V. Considering the generalized

displacements associated with other strain components over the whole domain V, we have

 

 

                                                         (i, j=1,2,3 and no summation) (16)

Eq 16 contains the pointwise strain-displacement relations and boundary conditions as a special

case when the quantities in each integral in Eq. (16) are zero at every point, in which the first term

of Eq. (16) gives the strain-displacement relation defined in Eq. (3), and the second term leads to

the displacement boundary conditions in Eq. (4). Hence, the generalized compatibility equation

defined in Eq. (16) combines the strain-displacement relations and the displacement boundary

conditions in a unified equation.

4. Weak form of generalized governing equations

The generalized equilibrium equations in Eq. (11) change the equilibrium from pointwise to over

a domain as a whole. But it still requires the stresses to be differentiable, which results in stronger

restricts on the choices of trial functions for approximate solutions. Therefore, the continuity

requirements on the trial functions should be reduced by using test functions to the generalized

governing equations. Let qi (i = 1,2,3) be the test functions, Eq. (11) becomes 

(t1 − t1)qids = 0     (i, j = 1,2,3 & no summation on i)  (17)

Utilizing the Green Theorem, the equation above can be rewritten as

 

(t1 − t1)qids +

                                              (i = 1,2,3 & no summation)  (18)

The equation above is called as the weak form of the generalized equilibrium equations. The

wording of weak form here has two meanings, one is that the generalized equilibrium equations are

satisfied under a weighting function, the other is that the continuity requirement on the trial function

 are reduced by using the Green theorem. 

Using test functions  (i,j = 1,2,3), Eq. (16) yields

                                                      (i, j = 1,2,3, & no summation) (19)

Integrating by parts, Eq. (19) leads to

                                                 (i = 1,2,3 & no summation)  (20)
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                                                                       (i, j = 1,2,3, i ≠ j & no summation)  (21)

Eq. (17), (19) or Eqs. (18), (20) and (21) are the weak forms of the generalized governing

equations. These equations together with Eq. (5) would lead to more choices for the trial functions

of the approximate solutions in computational structural mechanics, and their features and some

applications will be discussed in the sections follows. 

5. Variational principles and the weak forms of generalized governing equations

The generalized equilibrium equations in Eq. (18) have three components in the direction-x1 with

i = 1,2,3 respectively. If choosing the variations of displacements, δui, as the test functions, i.e.

qi = δui     (i = 1,2,3)  (22)

then the three generalized equilibrium equations have the form of energy, and is able to be added

into a single equation as

t1      (i, j = 1,2,3)  (23)

in which δui = 0 on  is used. Utilizing the following relationship

then Eq. (23) gives

    t1        (i, j = 1,2,3)  (24)

Eq. (24) has the same statement as the virtual work principle. Therefore, the generalized

equilibrium equations given by Eq. (18) include the virtual work principle as a special case when

the test functions defined in Eq. (22) are used.

Similarly, the test functions pij for the generalized compatibility conditions can be chosen as 

pij = δσij  (25)

Then, the quantities in Eq. (20) and (21) are also of the energy form. Adding together these

quantities gives 

                                           (i, j = 1,2,3)  (26)

which is the virtual complementary principle. Hence, the generalized compatibility equations given

by Eqs. (20) (21) contain the virtual complementary principle as a special case when the test

functions in Eq. (25) are used.

Any approximate solutions have to satisfy the weak forms of the generalized governing equations

uinj ujni+( )pij sd
S

 

∫∫° uipij j, ujpij i,+( ) 2εi jpi j+[ ] vd
V

 

∫∫∫ ui ui–( )nj uj uj–( )ni+[ ]pij sd
S
u

 

∫∫+– 0=

σij δui( )
 j, vd

V

 

∫∫∫  fiδui vd
V

 

∫∫∫–
S
σ

 

∫∫– δui sd 0=

Su

∂ δui( )
∂xj

---------------
∂ δuj( )
∂xi

---------------+ δ 
∂ui

∂xj

-------
∂uj

∂xi

-------+⎝ ⎠
⎛ ⎞ 2δ

 
εij= =

σijδ
 
εij vd

V

 

∫∫∫  fiδui Vd
V

 

∫∫∫–
S
σ

 

∫∫– δui sd 0=

εijδ
 
σij vd

V

 

∫∫∫ uiδti sd
S
u

 

∫∫– 0=



Weak forms of generalized governing equations in theory of elasticity 335

given by Eqs. (18), (20) and (21). But if one of these equations is satisfied a priori, then only one

condition needs to be enforced. The displacement field satisfying the strain-displacement relation in

Eq. (3) is called as the admissible displacements. Taking the admissible displacements ui as the

independent variables for the trial function, and letting the constitutive equation in Eq. (5) be

satisfied a priori, then Eq. (24) gives

 

t1 t1  

                                                                                              (i, j = 1,2,3)  (27)

Since the strain-displacement relation in Eq. (3) is satisfied exactly, the strain energy density U in

the equation above can be written in terms of displacements ui. As a result, Eq. (24) finally leads to 

            t1            (i = 1,2,3)  (28)

The quantity  in Eq. (28) is the potential energy of a system. Then Eq. (27) means that the

generalized equilibrium equations given by Eq. (18) include the minimum potential energy principle

as a special case when the test functions defined in Eq. (22) are used.

Taking the stress field  as the independent trial function and making use of Eq. (5), then Eq.

(26) yields

 

 

                                                                                           (i, j = 1,2,3)  (29)

where  is the complementary energy. Therefore, Eq. (26) is the same as the minimum

complementary principle. 

6. Some examples of applications in the finite element method

In both the minimum potential energy principle and the minimum complementary principles, the

trial functions have to be so-called admissible in order that only one of the weak forms of the

generalized governing equations needs to be enforced. The admissible trial displacement filed in the

case of the minimum potential principle is the one satisfying the strain-displacement relation in Eq.

(3) exactly. The admissible trial stress field in the minimum complementary principle is the one

satisfying the equilibrium equation in Eq. (1) exactly. Such a requirement makes the computation

simplified, but it restricts the choices of the trial functions. 

The finite element method is a powerful numerical method seeking approximate solutions in

engineering. In the finite element analysis, one way to expand the admissible trial functions is using

the multi-field formulation (Tang et al. 1980, 1983). If choosing both the displacements  ui and

independent strains  as the trial functions, the strain-displacement relation in Eq. (3) is not

satisfied a priori. Then the weak forms of both the generalized equilibrium and the generalized

compatibility have to be enforced. If using the test functions given in Eqs. (22) and (25), we have 
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 t1   (30)

  (31)

It should be noticed that the strain energy density U in Eq. (30) is in terms of independent trial

strains . The concept shown above leads to the assumed strain elements and also called as the

quasi-conforming element technique (Tang et al. 1980), and they are the same as the Hu-Washizu

variational principle (Tang et al. 1980). A number of assumed strain elements based on this

formulation have been developed (e.g. Tang et al. (1980), (1983), Shi and Voyiadjis 1991); the

numerical examples shows that these assumed strain elements could not only solve the conforming

difficulties in plate elements, but also very accurate and efficient. 

If choosing the stress field  as the independent variable, but the equilibrium is not satisfied a

priori, the generalized governing equations should be

  (32)

 (33)

The two equations above lead to the assumed stress elements. Some examples of the assumed

stress elements based on these two generalized governing equations can be found from the papers

given by Shi and Atluri (1988) as well by Shi and Tong (1996). 

7. Conclusions

The generalized governing equations in theory of elasticity and their weak forms are presented in

this paper. These equations have the following features. 

(1) The present generalized equilibrium equations not only take the equilibrium in an integral

form over a domain, but also contain the force boundary conditions in a unified equation. The same

is true for the generalized compatibility equations. 

(2) The weak forms of the generalized governing equations are more general than all the current

variations of the governing equations in theory of elasticity, as they include the minimum potential energy

principle, the minimum complementary principle and the Hu-Washizu variational principle as special cases.

(3) By using Green theorem, the differential order in the weak forms of the generalized governing

equations can be reduced further, and the continuity requirement for the trial functions is reduced

accordingly. Hence the weak forms of generalized governing equations lead to more choices of the

trial functions for approximate solutions than those in the classical theories of elasticity and

variational principles. 

(4) Some of the previously developed assumed strain elements and assumed stress elements are

the direct solutions of the generalized governing equations in elasticity, and more solutions can be

expected to be obtained by the new theory. 

Therefore, the present weak forms of generalized governing equations in theory of elasticity can

provide a more powerful modeling tool in the numerical analysis of structural mechanics. 
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