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1. Introduction 
 

For the reliable and economical design of infrastructure 

and evaluation of the geotechnical aspects of geohazards 

(e.g., landslides, subsidence, and earthquakes), the three-

dimensional (3D) modeling of subsurface profiles and their 

geomaterial properties is essential. Such 3D modeling and 

visualization support 3D interactive visualization, provide 

useful interfaces, and aid spatial analyses of the subsurface 

(De-fu et al. 2008). Geotechnical spatial models have been 

developed using geostatistics and geometry, and the 

optimization of the workflow model in 3D modeling is 

crucial for the reliability and accuracy of geotechnical 

design and complex numerical modeling (Osterholt and 

Dimitrakopoulos 2007, De Rienzo et al. 2008, Chen et al. 

2018). Spatial informatization is mainly dependent on two-

dimensional (2D) or 2.5D (alternatively, pseudo-3D)  
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interpolation techniques in the horizontal direction of the 

geotechnical characteristic value of the engineering geo-

layer, the standard penetration test (SPT), and the cone 

penetration test—particularly for predicting the regional 

cementation variability of soil deposits (De Rienzo et al. 

2008; Kim et al. 2020). 

For geotechnical 3D modeling, it is important to utilize 

all available geotechnical information. Each geotechnical 

investigation method has strengths and weaknesses in 

application. Although boreholes can provide accurate and 

deterministic geotechnical characteristic values, they cannot 

be used to obtain continuous subsurface information for a 

large construction area. Additionally, in-hole geotechnical 

tests (e.g., suspension P–S logging and downhole seismic 

testing) are relatively expensive and difficult to perform on 

a slope without site clearance; thus, it is difficult to 

establish a high-resolution geometry using only boring logs. 

In contrast, geophysical surveys (e.g., multichannel analysis 

of surface waves and electrical resistivity surveys) provide a 

2D version of a 3D geophysical image or a computed-

tomography scan of the entire construction site. However, 

geophysical surveys cannot be used for developing good 

stratigraphic profiling if the general stratigraphy consists of 

hard material over soft material, and they are only useful if 

the engineer or geologist is experienced with the testing 

method employed (Kim et al. 2020). Seismic exploration is 
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Abstract.  The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic 

values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-

dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and 

applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, 

reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D 

modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the 

borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential 

Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization 

technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the 

reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and 

the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information 

more effectively than the conventional geostatistical approach. 
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primarily used to determine the subsurface stratification of 

engineering geo-layers to estimate the amount of soil used 

at construction sites and investigate rock discontinuity. 

Typically, seismic refraction tests involve exploration 

methods wherein artificial seismic waves are generated at 

the surface, and the refracting waves are observed. The 

waves returned at different geo-layer boundaries are 

analyzed to determine the thickness of the geo-layer or the 

velocity structure of the subsurface (Boschetti et al. 1996, 

Haeni 1986, Zelt and Barton 1998). 

The geospatial characterization of geotechnical 

investigation results and parameters allows engineers to 

tackle the inherent complexity of the subsurface and 

perform regional geohazard assessments by using 

geostatistical interpolation to account for missing data 

(Sotiropoulos et al. 2016, Kim et al. 2016, Wang et al. 

2021). Geostatistical methods have been widely used in 

geotechnical engineering to evaluate the spatial variability 

of the subsurface with limited measurements (Murakami et 

al. 2006, Zhang et al. 2013, Li et al. 2016). The accuracy of 

geostatistical methods depends on the stochastic/spatial 

distribution of the measured values even if the number of 

measurements is sufficient. In cases where the identification 

of stochastic/spatial correlations is difficult, the spatial 

interpolation and map production performance may be poor 

(McBratney et al. 2003, Grave et al. 2012). The most 

important precursor for reliable 3D geotechnical modeling 

of the entire construction site is optimization of the 

workflow of geostatistical estimations with consideration of 

the site-specific correlation of the geotechnical and 

geophysical properties. Techniques have been proposed that 

combine several geophysical survey results and one-

dimensional data with engineering geo-layers obtained from 

multidimensional geometric constructions and/or 

geostatistical methods (Gómez-Hernández and Srivastava 

1990, Oh et al. 2004, Gallerini and De Donatis 2009, Kim 

et al. 2012, Pinheiro et al. 2016). 

A multivariate probability distribution is necessary to 

constantly couple design parameters and field/laboratory 

measurements for using the conditioning technique (Ching 

and Phoon 2014). The vertical and horizontal scales of the 

fluctuation for geo-layers and geotechnical index properties 

are affected by the inherent soil variability (Phoon and 

Kulhawy 1999); thus, the soil variability should be 

evaluated using statistical and geostatistical functions. 

Accordingly, trend removal methods, which are biased in 

estimating the variogram of a spatial variable exhibiting a 

trend, were proposed (Kim et al. 2016, Xu et al. 2021) for 

comparative testing using the conventional kriging method. 

Among the conventional spatial interpolation techniques, 

geostatistical techniques, such as kriging and simulation, 

have been widely used and have proven to be applicable to 

the spatial interpolation of various geotechnical properties. 

Recently, the standard guide for geostatistcal site 

investigation reports and selection of kriging/simulation 

approaches was published in ASTM D5549 (ASTM 2019) 

and primarily intended to report the environmental and 

geotechnical applications. Kim et al. (2016) proposed 

geostatistical 3D integration procedures for building a 

geotechnical spatial grid by combining the geophysical 

tomography and boring log via indicator kriging (IK). To 

build a 3D structure with geo-layers assigned, the stiffness 

and bearing capacity of the geomaterial, along with the IK, 

which characterizes spatial variability using a nonlinear 

transform and indicator threshold, must be considered. 

Nevertheless, prediction residuals obtained via trial-and-

error approaches for determining the optimum geo-layer 

criteria result in an unreliable structure of the 3D geo-

layers. 

However, kriging techniques are focused on smoothing 

the original dataset’s intrinsic distribution owing to a 

measurement procedure that reduces the variance of error; 

thus, they overestimate small values and underestimate 

large values. A conditional simulation (e.g., sequential 

Gaussian simulation (SGS)) is an effective method of 

solving ordinary kriging (OK) deficiencies by transforming 

the actual data into Gaussian data. This is a stochastic 

method for estimating the forecast by generating a random 

field, preserving the known values at the sampling points, 

and providing constraints for reducing the uncertainty in 

subsurface stratification (Huang et al. 2019). The 

conditional simulation results vary according to the 

generation of random numbers and the simulation time.  

There is no quantitative measure of the reliability of 

each simulation result. Therefore, a new optimization 

approach is needed to realize the geostatistical integration 

of site survey data, and a geographic information system-

based integration system should be developed to automate 

this optimization procedure. The conditional simulation 

technique has the disadvantage of reproducing multiple 

stochastic realizations. This is because the realization of the 

conditional simulation depends on the random path and the 

generated random number. As there have been few attempts 

to evaluate the reliability of multiple realization results in 

the past, the final prediction was determined by averaging 

all the realization results, i.e., as the simulation mean (e-

type estimate). 

In this study, a 3D geostatistical modeling procedure for 

borehole and seismic refraction tests that involves 

comparing the cross-validation-based prediction residuals 

was developed and applied to a dam emergency spillway 

site in South Korea. By applying a 3D geospatial database 

and optimization of geostatistical interpolation techniques, 

the site-specific 3D geometric information of the subsurface 

stratification and SPT-N value were predicted. First, site-

specific P-wave velocity (VP) values were derived locally 

for each geo-layer boundary by supplementing and 

modifying the integration method developed by Kim et al. 

(2016). In contrast to the conventional integration method, 

an optimization procedure involving OK and SGS was 

applied. Second, SGS-based optimization of the SPT-N 

value via 3D modeling was implemented. The proposed 

methods are aimed at realizing the 3D mapping of the 

geotechnical engineering properties at the dam site, while 

considering the spatial uncertainty and locality of the 

geotechnical testing results on a steep slope. Test boring 

logs guaranteeing the actual geo-layer and SPT-N value 

were compared with the 3D modeled geometry to verify its 

accuracy   
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2. 3D geospatial database 

 
2.1 Study area 

 

3D geotechnical spatial modeling of the dam-

emergency-spillway construction site located in 

Gyeongsangbuk-do, South Korea was performed. The dam, 

which was completed in 1976, is a multipurpose dam 

located upstream of the Nakdong River. Owing to the 

impact of heavy rainfall due to climate change, wall-

mounted open-type emergency spillway construction was 

initiated to increase the storage capacity and ensure the 

safety of the dam. It was completed in 2014, after 7 years of 

construction. Slope failure occurred several times during the 

construction owing to the joint of the rock mass. The 

proposed 3D modeling was used to simulate the initial 

ground condition using the geotechnical investigation 

information in the design phase, and the obtained results 

were used as supplementary data for a careful review of the 

geotechnical and geological safety. 

The design of geotechnical engineering in sensitive land 

formations with little knowledge of subsurface profiles is a 

common reason for failure. The engineering geological 

properties of the subsurface comprising the dam basement 

should be investigated to identify probable problems and 

appropriate precautionary measures (Kocbay and Kilic 

2006). Neglecting the subsurface profile can cause stability 

issues during construction management (Kim et al. 2016). 

With regard to economic and performance-based design, 

understanding the site-specific subsurface stratification and 

related geotechnical parameters is essential for estimating 

the excavation depth and bearing capacity of the spillway. 

Fig. 1 shows the locations of the boreholes and seismic 

refraction tests performed at the construction site. The 

number of boreholes in the target area was 41, and the 

number of seismic refraction test lines was 12. For the 

validation of the 3D modeled profiles in certain regions 

through comparison with actual measurements, two and  

 

 

three boreholes were randomly selected and omitted from 

the 3D geostatistical interpolation of the subsurface 

stratification and SPT-N value, respectively. In Fig. 1, the 

line A-A’ is the centerline of the dam-emergency-spillway 

site corresponding to the cross-sectional view (Fig. 11) of 

the 3D geometry of subsurface stratification. 

 

2.2 Borehole information without outliers 
 

The engineering geo-layer strata are categorized into 

seven groups: landfill, alluvium, weathered residual soil, 

weathered rock, soft rock (denoted as engineering bedrock), 

moderate rock, and hard rock (Kim et al. 2016). Because 

the soil deposit in the target area was not sufficiently thick 

to distinguish the soil layer boundary, detailed classification 

of the soil deposit, such as the boundary of the landfill and 

alluvium, was not performed. The site-specific criteria of VP 

corresponding to the engineering geo-layer strata were 

defined to distinguish the rock boundaries: (1) the depth to 

weathered rock refers to the boundary layer between the 

soil layer and weathered rock; (2) the depth to soft rock 

refers to the boundary layer between the weathered rock 

and soft rock. At the target boundary of the engineering 

geo-layer with the boreholes, the depths to the weathered 

rock and soft rock are distributed in 3D space (Fig. 2(a)). 

The SPT detailed in ASTM D 1586 (ASTM 2002) 

provides the penetration resistance related to the blow count 

(N-value), which is widely used to determine engineering 

properties and soil design parameters. The sampler is first 

driven to a depth of 15 cm below the bottom of the pre-

bored hole, and then the N-value is adjusted to drive the 

sampler another 30 cm into the soil. After the N-value was 

extrapolated linearly according to 50 blow counts, 102 

points (i.e., extrapolated N-value depended on penetration 

depth) with an N-value of ≥150 were excluded from the 

spatial interpolation. This is because the reliability of the 

correction formula for the energy-corrected N value (i.e., 

N60) and the normal score transformation for OK and SGS  

 
Fig. 1 Plan view of the borehole location and seismic refraction test lines at a dam-emergency-spillway construction site 

in Gyeongsangbuk-do, South Korea 
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Fig. 2 2D sectional distribution of the borehole-based 

profile with (a) the engineering geo-layer and (b) SPT-N 

along the line A-A’ in Fig. 1 

 

 

cannot be guaranteed when N ≥ 150 (Kim et al. 2020). 

Through the linear extrapolation, the notation was unified 

when the N-value was ≤50 and when it was ≥50, and the 

geostatistical interpolation technique for continuous 

variables could be applied. N-values from 239 points along 

the test depth of the 37 boreholes were used for the spatial 

interpolation (Fig. 2(b)). As the SPT results differ with 

regard to the energy efficiency delivered depending on the 

equipment, the N-values can obtained differently even 

under the same geotechnical and geological conditions. To 

correct the results of the field N-value with 60% of the 

energy efficiency (EE), the correction formula N60 = 

(EE/60) × N was applied. Cases where the bearing capacity 

was under- or overestimated were eliminated, and the N60 

value used in the empirical formula was calculated for 

deriving other geotechnical parameters. The N-value refers 

to the linearly extrapolated N60 value (Kim et al. 2020).  

The depth to the target rock boundaries with boreholes 

and the SPT-N value at this depth are presented in the 

histogram of Fig. 3. The depth to the weathered rock was 

mainly distributed at 3, 5, and 7 m, and the depth to the soft 

rock was relatively biased toward a larger depth of >7 m. 

The extrapolated N-values at the depth of weathered rock 

were concentrated at 150. The extrapolated N-values at the 

depth to the soft rock were concentrated at 400. 

 

 
Fig. 3 Histogram of the (a) depth and (b) SPT-N value at 

the boundaries between weathered residual soil and 

weathered rock and between weathered rock and soft 

rock 

 

 

The borehole dataset may include outliers owing to the 

spatial uncertainty of the underlying geological formation, 

inconsistent testing equipment and methods, and human 

errors. For stochastic and geospatial characterization based 

on interpolation of the borehole datasets, a borehole dataset 

with outliers can be excluded from the 3D geospatial 

assessment. Among the various outlier detection and 

analysis methods, the outlier analysis method based on 

cross-validation (Kim et al. 2012, 2016) was applied in this 

study. This method involves the comparison of the 

experimental value with the value obtained using the 

kriging method for all the boreholes. Cross-validation is a 

test for determining the consistency of variogram or kriging 

models (e.g., simple kriging (SK)) (Delfiner 1976, 

Guarascio et al. 1976, Isaaks and Srivastava 1989). The 

calculated properties were tailored for the measurement of 

local reliability using a sequential blind test. Accordingly, 

the outlying borehole datasets were detected, and the 

measured and estimated values were compared via cross-

validation. 

Fig. 4 shows the correlations between the observed and 

predicted geo-layer depths based on cross-validation for 

each borehole location. The depth to weathered rock and the 

depth to bedrock were selected as the attributes to be  
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Fig. 4 Outlier analysis results for the (a) depth to the 

weathered rock layer and (b) depth to the soft rock layer; 

the red circle indicates the outliers for the depth to each 

geo-layer 

 

 

compared. SK was used to predict the geo-layer elevation of 

each excluded borehole point using the following equations 

(Wackernagel 2003): 

𝛾̂(ℎ) =
1

2ℎ
∑(𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ))2

𝑛

𝑖=1

 (1a) 

𝑍̂(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

+ [1 − ∑ 𝜆𝑖

𝑛

𝑖=1

] 𝜇 (1b) 

where 𝛾̂(ℎ) denotes the semi-variogram, 𝑍̂(𝑥0) represents 

the estimated value of an attribute at the point of interest 𝑥0, 

𝑍(𝑥𝑖) represents the observed value at the sampled point 𝑥𝑖, 

𝜆𝑖 is the weight assigned to the sampled point, n represents 

the number of sampled points used for the estimation, and 𝜇 

is a known stationary mean, which was set as the average 

data constant for the entire domain (Webster and Oliver  

 
Fig. 5 3D distribution of the seismic refraction test: (a) 

digitized P-wave velocity (VP); (b) 3D geometry of VP 

interpolated using OK 

 

 

2007). The 𝑍̂(𝑥0)  values are each considered to be a 

realization of Z at position i. There is a probability 

distribution for each random variable 𝑍̂(𝑥0). In this study, 

second-order stationarity was assumed in the variogram and 

kriging, according to the following rules: (1) the estimation 

and variation of 𝑍̂(𝑥0)  are constant; (2) the covariance 

between 𝑍(𝑥𝑖) and 𝑍(𝑥𝑖 + ℎ) only relies on the distance h 

between the observations and not on the spatial location 𝑥𝑖. 

On comparing the cross-validation errors at each point, four 

boreholes, corresponding to the least reliable 10% (Kim et 

al. 2012) of the total 41-borehole dataset, were assumed to 

contain outliers and were excluded from the 3D modeling 

procedure. The boreholes at the same points were classified 

as outliers of the depth to weathered rock and depth to 

bedrock (i.e., soft rock). 

 

2.3 Digitized VP profile 
 

Because the digital data of the travel-time curves were 

not included in the site survey reports, the digitization of the 

tomography images was performed in three steps (Kim et 

al. 2020) 

1. Determining the grid cell size (e.g., 1 m or 5 m) and  

gridding; 

2. Overlapping the grid onto the tomography image of  

VP; 

3. Digitizing the VP contour and assigning the velocity  

value at each grid cell. 

The seismic velocities designated as the tomography 

contours were 0, 1000, 1500, 2000, and 2500 m/s. The 

digitized results, which were the (x, y) coordinates and the  
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Fig. 6 P-wave velocity (VP) at (a) the boundary between 

the weathered residual soil and weathered rock and (b) 

the boundary between the weathered rock and soft rock, 

at the seismic refraction test lines that coincided spatially 

(within 5-m spacing) with the boreholes 

 

 

elevation corresponding to each VP, were stored in the 

geospatial database. Fig. 5 presents the 3D distribution of 

the VP value, which was digitized and spatially interpolated 

via OK. The VP value was higher toward the northeast (up 

to 2000 m/s), where outcrops existed locally (Fig. 3(a)), and 

lower toward the southwest (up to 800 m/s). The soil layers 

in the southwest area, which primarily comprised silty clay, 

were accumulated through fluvial sedimentation and formed 

by unconfined geomaterials with low SPT-N (<15) and VP  

(<1000 m/s). 

VP was extracted at the target rock boundaries with 

boreholes, spatially coincident (within 5-m spacing) with 

the seismic refraction test lines. As shown in Fig. 6, for 

determining the site-specific VP criteria, the following 

domestic criteria of the geomaterial classification based on 

the P-wave velocity were compared: A (Korea Highway 

Corporation 2009), B (Seoul Metropolis 2006), C (Korea 

Train Express Corporation 1995), and D (Korea Land  

 
Fig. 7 Procedure for obtaining the DEM-based 

unstructured 3D grid: (a) location of the elevation survey 

and contour data, (b) generated DEM and vector polygon 

layer of the target area, (c) 3D unstructured grid volume 

(without shading effect) generated from clipped DEM: 

the southwestern direction (i) and southern direction (ii) 

 

 

Corporation 2002). The yellow boxes are within 1 standard 

deviation of the mean of VP with the target boundary. The 

VP values at the depths to weathered rock and soft rock 

were distributed within 1200−1800 m/s (mean: 1520 m/s) 

and 1500−2500 m/s (mean: 2082 m/s), respectively, which 

were found to most closely resemble the VP criteria (1500 

and 2000 m/s for the target rock boundaries) in the 

geotechnical investigation handbook of Seoul Metropolis (B 

in Fig. 6) among the domestic criteria for geomaterial 

classification based on VP. As a result, the best-fitted VP 

criteria (B in Fig. 6) were used to initially assume the 

reference correlation of VP and target rock boundary as the 

first step in Fig. 8. 

 
2.4 Digital elevation model-based unstructured 3D 

grid 
 

The unstructured grid is the most general form of a 

dataset defining a subsurface volume and has been used to 

solve problems involving complex geometries. In this study, 

a digital elevation model (DEM) representing the terrain 

topology was generated using global positioning system-

based elevation survey data and the contour lines of a 

digital map (Fig. 7(a)). A spatial grid with a resolution of 2 

m was formed with a matrix of cells arranged in rows and 

columns. The value of each cell was spatially assigned 

using the interpolated subsurface stratification and SPT-N 

value. The rasterize function from QGIS was used to 

convert vector data into raster data. Subsequently, a vector 

polygon that covered the seismic refraction test lines was 

constructed (Fig. 7(b)). Only the overlapping region of the 

DEM and the polygon was clipped. According to the 

clipped DEM, vertical cells were generated from the ground 

level to a depth of −50.0 m. An unstructured grid volume 

was constructed for the model to include 100 cells of 0.5 m 

for each point on the floor plan. Fig. 7(c) presents the 3D 

target grid volume for the modeling generated from the 

clipped DEM. The unit size of the grid volume was 2 m in 

the horizontal direction and 0.5 m in the vertical direction. 
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3. 3D geospatial interpolation of subsurface 
stratification 

 

3.1 Framework for optimized 3D integration 
 

Trials have been conducted to evaluate the correlation 

between the 2D subsurface VP profiles and the borehole-

based characteristic value. However, it was difficult to 

establish and apply the correlation at the steep construction 

site owing to its large subsurface variability arising from the 

separation distance between the borehole locations and the 

seismic refraction test lines. Kim et al. (2016) proposed a 

geospatial data integration method comprising the use of IK 

and cross-validation with the aim of determining the local 

optimal VP for the classification of geomaterials. Herein, we 

propose a method for improving the reliability of the 

integration results by applying SGS with the following two 

modifications. First, a 3D geostatistical interpolation 

method was adopted to calculate the 3D volume of the VP. 

In the previous integration method (Kim et al. 2016), the 

2D elevation maps of each VP were stacked. This is a type 

of 2.5D interpolation method and has a limitation in 

capturing the trend of 3D spatial variability—particularly in 

the vertical direction. The second modification was the 

implementation of a SGS as a geostatistical method. 

Kriging derives one optimized linear estimation result, but 

it is difficult to estimate the extreme values, owing to the 

smoothing effect. Moreover, the interpolation result is 

significantly affected by the spatial bias of the dataset 

(Delfiner 1976). 

We used two geostatistical methods—OK and SGS—as 

representative conditional simulation techniques. A 

subsurface stratification method was developed in this study 

to determine the method with higher reliability between OK 

and SGS. For OK, a stationary assumption (Li et al. 2000) 

or underlying assumption, that is, a constant expectation, 

should be fulfilled in the entire field or at least a sampling 

field. OK presumes that the error between predicted and 

observed values should be minimized when determining the 

kriging weight (𝜆𝑖 in Eq. (1b)) and that the estimated value 

is unbiased. The distribution of a simulated point or grid is 

assumed to be normal in an SGS. Its mean and variance are 

the prediction value and error variance calculated via SK. It 

can predict the given dataset using a normal distribution. 

Preprocessing, e.g., using a normal score or a lognormal 

transform, is required if the distribution of the experimental 

data is not normal (Kim et al. 2020). SGS sequentially 

generates N data and thus reproduces the distribution and 

covariance of the original data collection. The variable 𝑧1 is 

generated using the random variable z given by n. In the 

next step, another variable 𝑧2 is generated by assuming that 

𝑧1  is included in the original dataset. This procedure is 

repeated until N data are produced for the sequential 

simulation. The procedure can be represented as an 

equation with a repeated conditional probability, as follows 

𝑓(𝑛) = 𝑓((𝑁 − 1) ∪ 𝑛) ⋯ 𝑓(𝑛); 

(𝑛 − 1) ∪ 𝑛 = {(𝑁 − 𝑖): 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑑𝑎𝑡𝑎}
∪ {𝑛: 𝑔𝑖𝑣𝑒𝑛 𝑑𝑎𝑡𝑎}, 

(2) 

 
Fig. 8 Schematic of the subsurface stratification method 

involving optimized 3D integration of the borehole-based 

depth to geo-layers and seismic refraction test-based VP 

 

 

where (𝑁 − 1) ∪ 𝑛 denotes the union of (𝑁 − 𝑖) generated 

data, and n denotes the given data. This implies that the 

(𝑁 − 𝑖 + 1)th datum is generated while assuming that the 

data already generated are known for the next calculation. 

Fig. 8 presents the procedure of the subsurface 

stratification method for the integration of the borehole-

based strata and tomography-based VP. For this analysis, the 

following workflow was used for stepwise optimization: (1) 

a correlation VP was assumed with a target rock boundary 

based on the reference correlation; (2) 3D spatial 

interpolation was performed with OK and an SGS for the 

assumed boundary; (3) cross-validation of the interpolated 

3D geometry with the measured rock boundary in the 

borehole datasets was performed; (4) steps 2 and 3 were 

repeated until the cross-validation-based root-mean-square 

error (RMSE) was minimized to build a 3D geometry of the 

target rock boundary using the best-fitting geostatistical 

methods. The optimization phase involves a process of 

iteration for defining the site-specific optimum VP-based 

rock boundary and the application of geostatistical methods. 

A QGIS plugin was designed and used to automate the 

optimum VP calculation method. 

 
3.2 Site-specific classification criteria within VP 
 
The reference values of VP recommended in the 

geotechnical investigation handbook of Seoul Metropolis 

are 1500 m/s for the depth to weathered rock and 2000 m/s 

for the depth to bedrock for the closest agreement with the 

actual VP at the target rock boundaries (Fig. 6). However, 

the VP value is generally different from the actual field 

velocity, because it is significantly affected by the density 

and Young’s modulus of the subsurface. Therefore, it is 

necessary to use an optimized VP for the field conditions 

based on the data-driven method, which can be calculated 

via a comparison with the interpolated depth to geo-layers. 

An initial value was assumed for calculating the 
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optimum VP at the depth of weathered rock. The initial 

reference value was set as 1500 m/s, and the depths to the 

weathered rock were obtained along the test lines from the 

digitized VP profile (Fig. 5(a)) of the 3D geospatial 

database. Then, among the 37 boreholes (after removal of 4 

outliers from 41 boreholes), the interpolation of the 

assumed depth to weathered rock along with the VP test 

lines and the experimental depth for 36 of the boreholes 

yielded the predicted value of the depth to weathered rock 

of the excluded borehole. The procedure was repeated for 

36 boreholes, and the error between the predicted and 

measured values was determined as the RMSE. The RMSE 

values were obtained by assuming the VP at the depth of the 

bedrock to be 3/5, 3/4, 7/8, 6/5, 5/4, and 9/8 of the initial 

value of VP. OK and SGS were applied for the 3D 

geospatial interpolation of the assumed depth to weathered 

rock along the VP test lines and the measured value of the 

borehole dataset. 

Among the predicted depths to the two rock layers for 

the assumed VP criteria of OK and SGS, the VP with the 

smallest RMSE was determined as the optimum VP. Fig. 9 

shows the RMSE according to the VP and the polynomial 

regression line (using quadratic equations), which was 

obtained to calculate the optimum VP with the minimum 

RMSE. According to the seven assumed VP values, the 

RMSE were obtained by integrating with borehole data 

through cross-validation. The optimization method based on 

OK exhibited better prediction performance and smaller 

RMSE values than that based on SGS for the subsurface 

stratification of the depth to weathered rock (i.e., the 

boundary layer between the soil deposit and weathered 

rock). The minimum RMSE was 2.78 m when the VP value 

was 1346.91 m/s. The minimum value of the obtained 

quadratic equation was 2.8 m when the VP value was 

1369.29 m/s. These values are smaller than the reference 

value of 1500 m/s. The use of the proposed method is 

expected to reduce the prediction error for the boundary 

layer between the soil deposit and weathered rock by 

approximately 0.21 m. 

The proposed method with SGS exhibited better 

prediction performance, with a smaller RMSE, than that  

 

 

 
Fig. 9 Locally specified VP classification criteria at the 

depth to weathered rock and depth to soft rock for the 

methods based on OK and SGS 

 
Fig. 10 3D geometric information with the subsurface 

stratification in the target area; the line A–A’ was 

distributed for the cross-sectional view (Fig. 11) of the 

stratification with the verification borehole points (Fig. 

1) 

 

 

with OK for the subsurface stratification of the depth to 

bedrock (i.e., the boundary layer between the weathered 

rock and soft rock). The minimum RMSE was 1.69 m when 

the VP value was 2001.49 m/s. The minimum value of the 

determined quadratic equation was 1.79 m when the VP 

value was 1868.62 m/s. There was no significant difference 

between the results of the proposed optimization method 

and the reference values in this case. Thus, the 3D 

subsurface information of stratification was constructed and 

visualized according to the best-fitted local correlations of 

VP and the target rock boundaries (Fig. 10). In general, the 

depths to weathered rock and soft rock were more deeply 

dispersed to the northwest and shallower to the east, where 

there were local outcrop rocks. Owing to the thin soil layer 

and weathered rock layer, despite the high spatial 

variability, it was difficult to distinguish the boundary when 

only the reference VP of the rock boundary was used. The 

best-fitted VP correlations were useful for examining the 

small variation of the rock boundary in the high-resolution 

3D geometry, which comprised a 3D square grid (x-y-z 

plane) with a unit grid size of 2 m × 2 m × 0.5 m. 

 
3.3 Verification of 3D geometric information of 

subsurface stratification 
 

After calculating the optimum VP of the boundary of 

geo-layers, we defined three borehole datasets as test 

datasets for the cross-validation to verify the accuracy of 

the proposed method. Among the 37 boreholes that were 

found to have no outliers, 3 were selected as the test 

boreholes. They were selected from the dataset used by Kim 

et al. (2016) to compare the reliability of the original 

method and the proposed method. The VP criterion adopted 

for the determination of the depth to weathered rock was 

1346.91 m/s, and that of the bedrock was 2001.49 m/s, both 

of which had the smallest RMSE (Fig. 9). For the 

stratification of the depth to weathered rock, the elevation 

obtained from the VP and that of the borehole dataset were 

interpolated via SGS. Correspondingly, the transformed 

elevation obtained from the VP and that of the borehole 

dataset were interpolated using OK. 
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A cross-sectional view of the interpolated geo-layer was 

extracted along the centerline of the vector polygon layer in 

the target area by applying the proposed subsurface 

stratification method (Fig. 11). The experimental boundary 

from the borehole dataset was compared with the prediction 

results of the three methods. The first method employed the 

geo-layer profile obtained for the three validation boreholes 

(Fig. 1). In the second method, the geo-layers were 

predicted by applying SK for only borehole-based geo-

layers. In the third method, the geo-layers were predicted 

using the IK-based geospatial integration method presented 

by Kim et al. (2016). In the fourth method, the geo-layers 

were predicted using the proposed approach. 

For all the test boreholes, the prediction performance of 

the second and third methods was better than that of the 

first method, according to a comparison of the results with 

the geo-layer boundary of the three-borehole dataset. For 

boreholes (1) and (2), the predicted geo-layers of the second 

and third methods were similar. For borehole (3), i.e., the 

second method, the integration method of Kim et al. (2016) 

exhibited better prediction performance than the proposed 

integration method. This is because the overall RMSE 

values were smaller than or similar to those of the 

integration method (Kim et al. 2016). When IK was 

employed as a spatial interpolation method, the overall 

RMSE was >4.0 m for the depth to weathered rock (2.78 m 

of RMSE in this study). Thus, it was confirmed that the 

application of the proposed method using OK and SGS 

simultaneously provided higher reliability for predicting 

subsurface stratification in the entire construction area 

rather than SK and IK. 

 

 

4. 3D geospatial interpolation of SPT-N value 
 
4.1 Framework for optimization of SGS 
 
The SGS procedure was optimized for the geostatistical 

interpolation of the SPT-N value (Fig. 12). The proposed  

 

 
Fig. 12 Schematic of the optimized 3D 

geospatialinterpolation method with the application of 

SGS 
 

 

SGS optimization method aims to determine the reliability 

of multiple realizations of the SGS quantitatively with the 

use of only results with realizations having a high reliability 

and constant spatial tendency. Engineers have endeavored 

to choose the best method from various spatial interpolation 

methods and to calculate and reduce the prediction error 

that occurs with the application of that method. However, 

the proposed optimization method allows geotechnical 

engineers to select and use the prediction result with the 

desired prediction performance. The reliabilities of multiple 

realizations of the SGS are calculated using a cross-

validation approach. The first step is to exclude a certain 

number of boreholes. The second step is to perform the 3D 

geostatistical interpolation of the SPT-N values that have 

not been excluded by SGS (or sequential indicator 

simulation (SIS) (Kim et al. 2020)) and to obtain one 

embodiment. Third, the SPT-N profiles of the excluded 

boreholes are compared with those estimated from the 

realization result of the corresponding locations and depths, 

and the deviation is calculated. Fourth, the RMSE is 

compared with the permissible error set by the engineer. If 

the RMSE exceeds the permissible error, the realization 

result is retained; otherwise, it is discarded. Finally, the 

retained realization results with high prediction accuracies 

are averaged, yielding the final spatial interpolation result. 

 
Fig. 11 Comparison of the experimental values and prediction results for the test boreholes (1)–(3) and cross-sectional 

view along the line A–A’ (Fig. 1) based on the proposed 3D integration method; method 1 involved the geo-layer profile 

from the validation boreholes, method 2 involved the use of SK only with the geo-layer in the borehole datasets, method 

3 involved the 2.5D integration results (Kim et al. 2016), and method 4 involved the proposed 3D integration 
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Fig. 13 Histogram and summary statistics of the (a) 

extrapolated SPT-N value and (b) normal score 

transformed SPT-N value 

 

 

The dependent variables of the optimization method 

include the number of excluded boreholes, user-defined 

permissible error, and number of realizations for the e-type 

estimate. The expected values of the normalized SPT-N 

value were obtained via stochastic and iterative simulations 

and transformed into the experimental N values. The e-type 

approach, which is the most commonly used post-

processing method, obtains the final prediction result by 

averaging the simulation results using the grid location 

(Kim et al. 2020). The independent variables of the 

optimization method include the number of realizations 

discarded during the iterative process and the computation 

time for the entire process. It is essential to automate the 

optimization procedure because the procedure must be 

iterated until the desired result is obtained. Among the 

various conditional simulation methods, SGS is adopted to 

simplify the iterative automation. In contrast to SIS, which 

requires nuerous user-setting values, such as indicator 

thresholds, SGS requires only the minimal settings, similar 

to variogram modeling. Accordingly, the optimization 

procedure was automated using R—a programming 

language specialized for statistical operations—and “gstat,” 

which is a geostatistics package of R. This module was 

produced in the form of a QGIS plugin. 

 

4.2 3D geometric information of SPT-N value 
 

A normal score transform was applied because the  

 

 
Fig. 14 (a) Number of abandoned simulations and (b) 

computing time with respect to the permissible errors and 

the number of selected boreholes in the geostatistical 

optimization procedure 

 

Table 1 Application cases of the optimization method for 

3D spatial interpolation of SPT-N 

Case 
Number of excluded 

boreholes 
Permissible error 

1 

1 

0.5 

2 1 

3 2 

4 3 

5 5 

6 10 

7 20 

8 

3 

0.5 

9 1 

10 2 

11 3 

12 5 

13 10 

14 20 

 

 

histogram distribution of the extrapolated N-value did not 

follow the normal distribution (Fig. 13(a)). The transformed 

N-values were interpolated using the optimized SGS 

procedure, and the back normal score transform was applied 

to the final prediction result for the independent variables in  
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Fig. 15 3D geometric information assigned with SPT-N 

values according to the optimization method of SGS 

when the number of excluded boreholes is 3 and the 

permissible error is 0.5 

 

 

14 cases (Table 1). The number of realizations for the e-type 

was fixed at 100 to examine the sample statistics 

reproduction for all generated realizations (Leuangthong et 

al. 2004). 

Fig. 14(a) presents the number of abandoned 

simulations with respect to the permissible error and the 

number of selected boreholes during the iterative process. 

As the user-defined permissible error increased, the number 

of abandoned simulations increased. As the permissible 

error decreased, the number of abandoned simulations 

increased. When the optimization was performed under the 

condition that the number of excluded boreholes was 3 and 

the permissible error was 0.5, more than 300000 

realizations from the SGS were discarded to obtain 100 

optimized realizations. This indicates that the conventional 

SGS uses only the 1st to the 100th realizations, whereas the 

optimization technique requires many more simulation 

results. Fig. 14(b) presents the correlation between the 

computing time for the iterative process and the number of 

excluded boreholes and permissible error. As the number of 

excluded boreholes increased, the computing time 

increased. As the permissible error decreased, the 

computing time for the analysis increased. When the 

optimization was performed under the condition that the 

number of excluded boreholes was 3 and the permissible 

error was 0.5 using a desktop computer with a 3.8-GHz 

Intel Core i5 CPU and 24 GB of random-access memory, 

the geospatial interpolation required >25 h. The 3D 

geometric information of the SPT-N (Fig. 15) value was 

generated via the optimization of SGS (i.e., e-type of 100th 

realization) under the condition that the number of excluded 

boreholes was 3 and the permissible error was 0.5. 

 

4.3 Verification of 3D geometric information of SPT-N 
value 
 

Two test boreholes (a) and (b) (Fig. 1) were used to 

confirm the reliability of the optimized SGS-based 3D 

geometric information of the SPT-N value. The SPT-N 

profiles at location of the test boreholes were predicted via 

the proposed method and OK, and the results were 

compared with the actual SPT-N values. The geostatistical 

optimization was performed under the condition that the  

 

 
Fig. 16 Reliability test results obtained with two test 

boreholes: 3D spatial interpolation results obtained using 

the proposed optimization method, OK, and SGS 

 

 

number of excluded boreholes was 3 and the permissible 

error was 0.5. For both test boreholes, the SPT-N profiles 

predicted via the proposed optimization procedure were the 

most likely to resemble experimental N value; thus, they 

were more accurate than those of OK and SGS. The spatial 

tendency of the SPT-N value with respect to the depth was 

accurately reproduced using the proposed method (Fig. 16). 

 

 

5. Conclusions 
 
We performed 3D modeling of the geotechnical 

information in a dam-emergency-spillway construction site, 
where slope failure occurred several times during the 
construction. The 3D subsurface geo-layer strata and spatial 
distribution of the SPT-N value were predicted using 
borehole-based profiles and tomography-based VP. 
Geostatistical techniques were modified and applied in 
terms of geotechnical and geological engineering for the 
geospatial interpolation of the site investigation 
information. The modified method can provide site-specific 
interpolation results for overcoming the spatial uncertainty 
of biased and sparse geotechnical information. VP profile 
information was stored in the database by digitizing the 
tomography of the refraction seismic test lines. An outlier 
analysis technique based on cross-validation was adopted to 
detect the outliers, i.e., spatially unbiased and extreme 
values, in the borehole information, and 10% of the 
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boreholes were excluded from the spatial interpolation. The 
target of the spatial interpolation, i.e., the 3D volume of the 
original ground in the construction, was defined as an 
unstructured grid and produced using a DEM. 

An integration analysis method for the borehole and 

geophysical test data was developed for the geostatistical 

interpolation of the subsurface geo-layer. A site-specific VP 

was derived locally for each geo-layer by supplementing 

and renewing the integration method developed by Kim et 

al. (2016). In contrast to the original integration method 

involving the use of IK, which is complex, OK and SGS 

were applied in this study. The analysis results obtained via 

an interpolation method with good prediction performance 

can be selectively employed to formulate a site-specific 

correlation between the geo-layer strata and VP with 

consideration of the separation distance. On attempting to 

confirm the reliability by introducing three test boreholes, 

the prediction result of the original method was found to be 

more accurate than that of the proposed method in the case 

of one test borehole. However, the reliability of the 

proposed integration method was improved according to a 

comparison of the overall RMSE. In particular, the 

proposed method’s prediction of the depth to the weathered 

rock layer at the construction site was accurate to 

approximately over 1 m. 

A geostatistical optimization method was developed and 

applied to the 3D modeling of the SPT-N value. 

Geostatistical optimization involves the quantitative 

evaluation of the reliability of multiple realizations, as the 

result of a conditional simulation, using cross-validation 

and the selection of only the realizations having a high 

accuracy. We obtained the 3D SPT-N value that satisfied the 

user-defined prediction performance with an error of <0.5. 

Reliability tests of the geostatistical optimization with two 

random boreholes indicated that the optimized SGS-based 

method reproduced the SPT-N value of the original 

subsurface better than conventional geostatistical methods. 

In future research, the prediction reliability should be 

evaluated according to the resolution of the unstructured 

grid target volume, and a parametric study of the 

geostatistical optimization variables should be conducted. 
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