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1. Introduction 
 

Recent research in wave motion is mainly focused on 

transient phenomena occurring in wave loadings as well as 

earthquakes. In particular, free field one-dimensional shear 

wave propagation to earthquakes is a subject of intense 

concern to many civil engineers (Liu et al. 2017, Watanabe 

et al. 2017). 

This study mainly focused on the formulations of 

dynamic equilibrium equations that apply to finite element 

procedures under the following simplified ideal conditions: 

• Soil deposit consists of homogeneous and isotropic 

viscoelastic infinite horizontal layers. 

• Bedrock is overlying an elastic half-space absorbing 

downward reflected shear waves. 

• Earthquake load is applied at the bedrock surface as an 

incident shear wave propagating vertically. 

For such a one-dimensional wave propagation problem, 

there are currently two different formulations used by finite 

element analysis (Tran et al. 2021, Volpini et al. 2021). 

The first one is the conventional method where 

earthquake outcrop acceleration is directly applied at the 

bottom of the soil deposit as an external load and the 

bottom boundary may be assumed to be rigid or energy 

absorbing to represent elastic half-space. The dynamic 

equilibrium equation is expressed in terms of relative  
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motions concerning base outcrop motions. This method, 

here named BAC (Base Acceleration Conventional), has 

been used for many decades in the finite element analysis 

community. 

The other one is a relatively new method where the base 

shear force, associated with the base outcrop velocity, is 

applied at the bottom of the soil deposit as an external load 

along with energy absorbing viscous damper representing 

the elastic half-space. The dynamic equilibrium equation in 

this unconstrained system is expressed in terms of total 

particle motions. This method, here named BST (Base 

Shear Total), was first proposed by Tsai (1969) and then by 

Joyner and Chen (1975). The equilibrium equation is 

derived based on the principles of shear waves propagating 

through the soil deposit from the elastic bedrock. 

Now, questions arise over these two different methods. 

The first question is “Can these two methods be correlated 

to each other?”. The second question is “Can other forms of 

equilibrium equations be derived based on the second 

method BST?”. To answer such questions, we reformulated 

the BST method under two separate conditions; the first 

case is where the damping matrix is defined in the total 

displacement fields and the other case is where the damping 

matrix is defined in the relative displacement fields 

concerning interface displacements at bedrock. 

The main outcomes of this study include the following. 

There are four different exact formulations derived from the 

definition of damping matrix and the selection of motion 

variables. Such a new formulation (BAT) identifies what is 

missing in the conventional formulation (BAC) to represent 

earthquake load more accurately. The other outcome shows 

why the BST model is a simpler and computationally 

favorable formulation compared to the other models. 

 
 
 

Finite element formulations for free field one-dimensional 
shear wave propagation 

 

Sun-Hoon Kim1 and Kwang-Jin Kim2b 
 

1Department of Civil and Environmental Engineering, U1 University, Yeoungdong-kun, Chungbuk 29131, Republic of Korea 
2Comtec Research, Seocho-ku, Seoul 06650, Republic of Korea 

 
(Received August 28, 2023, Revised September 25, 2023, Accepted January 10, 2024) 

 
Abstract.  Dynamic equilibrium equations for finite element analysis were derived for the free field one-dimensional shear 

wave propagation through the horizontally layered soil deposits with the elastic half-space. We expressed Rayleigh’s viscous 

damping consisting of mass and stiffness proportional terms. We considered two cases where damping matrices are defined in 

the total and relative displacement fields. Two forms of equilibrium equations are presented; one in terms of total motions and 

the other in terms of relative motions. To evaluate the performance of new equilibrium equations, we conducted two sets of site 

response analyses and directly compared them with the exact closed-form frequency domain solution. Results show that the base 

shear force as earthquake load represents the simpler form of equilibrium equation to be used for the finite element method. 

Conventional finite element procedure using base acceleration as earthquake load predicts exact solution reasonably well even in 

soil deposits with unrealistically high damping. 
 

Keywords:  base acceleration; base shear force; dynamic equilibrium equation; elastic half-space; free field analysis; 

shear wave propagation 

 



 

Sun-Hoon Kim and Kwang-Jin Kim 

 

Fig. 1 One-dimensional system over a uniform half-space 

 

 

To evaluate the performance of new equilibrium 

equations, we conducted two sets of site response analyses 

for the 1989 Diamond Heights earthquake (Germoso et al. 

2020) and the 1995 Kobe earthquake (Xu et al. 2023) and 

directly compared them with SHAKE91 (Idriss and Sun 

1992, Astroza et al. 2017) which represents exact, under the 

above-mentioned simplified conditions, closed-form 

solution performed in the frequency domain. 

 

 

2. Frequency domain analysis 
 

Understanding basic principles in frequency domain 

analysis is probably the most valuable benefit in deriving 

the formulations for finite element analysis which is 

performed in the time domain. 

Frequency domain analysis has been used for the 

solution of site responses subjected to vertically 

propagating shear waves as schematically shown in Fig. 1. 

For such analysis, SHAKE (Schnabel et al. 1972, Ameri et 

al. 2023) has been the most popular computer program 

because of its simplicity and practicality in using the 

program. Since SHAKE, more recent versions have been 

written to improve the user interface and to show graphical 

outputs such as SHAKE91 and SHAKE2000 (Ordonez 

2012, Chatterjee et al. 2015, Ghaemmaghami et al. 2017). 

The main characteristics of the wave motions in the 

horizontally layered system may be described such as in the 

following statements. In each layer, the horizontal particle 

motion consists of the upward incident wave and the 

downward reflected wave. On the interface between the 

adjacent layers, displacements and stresses are continuous. 

On the top surface, the amplitude of an incident wave is the 

same as that of the reflected wave since the shear stresses 

should be zero on such a free ground surface. Thus, the 

amplitude on the top surface is equal to twice the magnitude 

of the incident wave. On the bottom surface, the downward 

reflected wave is absorbed into the elastic half-space so that 

the upward incident wave will not be interrupted by the 

overlying soil deposit. It should be noted that such an 

upward incident wave is half the magnitude of “outcrop 

bedrock motion” for the same reason as explained for the 

top-ground surface. 

The main algorithms of the frequency domain analysis 

may be described in the following way.  For each 

harmonic motion, set up transfer functions for the incident 

and reflected waves in each layer, refer to SHAKE for the 

detailed derivation. These transfer functions represent the 

ratio of amplitudes in a layer to those at the top surface. The 

input object accelerations in the time domain are converted 

to Fourier series form in the frequency domain using the 

Fast Fourier Transform (FFT) method. Amplitudes at any 

location in the layer can be found by using Fourier series 

and transfer functions in the frequency domain and then 

responses in the time domain can be determined by 

inversing FFT. 

 

 

3. Shear stress on the surface of elastic half-space 
 

As illustrated in Fig. 1, the horizontal particle velocity 

(u̇) on the bottom surface consists of two components; 

incident velocity (u̇I) and reflected velocity (u̇R) which 

are associated with upward propagating incident and 

downward propagating reflected waves, respectively. 

u̇ = u̇I + u̇R  (1) 

Consequently, shear stress (τ) on the bottom surface 

can be thought of as having two components; (τI) and 

(τR)  which are associated with incident and reflected 

waves, respectively. 

τ = τI + τR (2) 

Considering radiation boundary conditions on the 

surface of half-space, we can obtain the following two 

equations related to the upward incident and downward 

reflected waves. 

τI = ρr · csr · u̇I (3) 

τR = −ρr · csr · u̇R (4) 

where ρr is rock mass density and csr is rock shear wave 

velocity. 

Noting that the incident wave is half the magnitude of 

“outcrop bedrock motion” as explained in the previous 

section, the incident particle velocity (u̇I) can be related to 

the input outcrop earthquake velocity (u̇g) as 

u̇I =
1

2
u̇g  (5) 

Substituting Eq. (5) into Eq. (3) 

τI = ρr · csr · (
1

2
u̇g) (6) 

From Eqs. (1) and (5), reflected particle velocity (u̇R) 

can be expressed in terms of total particle velocity and 

earthquake outcrop velocity on the surface of elastic half-

space. 

u̇R = u̇ −
1

2
u̇g  (7) 
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Fig. 2 One-dimensional shear wave propagation including 

elastic half-space 

 

 

Substituting Eq. (7) into Eq. (4) 

τR = −ρr · csr · (u̇ −
1

2
u̇g)  (8) 

Now, substituting Eqs. (6) and (8) into Eq. (2), the shear 

stress on the surface of elastic half-space can be expressed 

in terms of total particle velocity and earthquake outcrop 

velocity. 

τ = ρr · csr · u̇g − ρr · csr · u̇  (9) 

In Eq. (9), the first term represents the shear stress 

driven by the input earthquake. The second term represents 

the shear stress associated with the transmitted energy 

absorbed into the elastic half-space (Tsai 1969, Desai and 

Christian 1977). 

Such shear stress (τ) can be converted to shear force 

(F) considering tributary area (As) 

F = Fs − C · u̇  (10) 

Where the base shear force (Fs) and damping constant 

(C) are given by 

Fs = C · u̇g  (11) 

C = ρr · csr · As  (12) 

Eq. (10) will be incorporated into the finite element 

formulations in the next sections. 

 

 

4. When the damping matrix is defined in total 
displacement 
 

4.1 Exact formulation (BAT model) 
 

In the previous section, shear force on the surface of 

elastic half-space was interpreted as the contribution of both 

base shear force (Fs) driven by input earthquake load and 

transmitted force (C · u̇n+1)  through viscous damper as 

schematically illustrated with the analogy of shear-beam in 

Fig. 2. 

In this section, we assume that damping and stiffness 

matrices are defined in total displacement. Then the 

dynamic equilibrium equation for the one-dimensional 

shear wave propagation through soil deposit with elastic 

half-space is given in the following matrix form. 

Named BST (Base Shear Total) 

𝐌𝐮̈ + 𝐃𝐮̇ + 𝐊𝐮 + 𝐉 · C · u̇n+1 = 𝐉 · Fs  (13) 

where M, D and K represent mass, damping, and stiffness 

matrices, respectively. 

And 𝐮 , 𝐮̇  and 𝐮̈  represent total displacement, 

velocity, and acceleration vectors, respectively. 

(u̇n+1) is the interface total velocity and the vector with 

the unit at only the last row 𝐉 is given by 

𝐉𝐓 =< 0, 0, ··· 0, 0, 1 >  (14) 

Defining the total displacement u as the sum of relative 

displacement 𝐮𝐫  and outcrop base displacement ug  and 

rewriting Eq. (13) in terms of the relative motions, 

𝐌(𝐮̈𝐫 + 𝐈 · üg) + 𝐃(𝐮̇𝐫 + 𝐈 · u̇g) + 𝐊(𝐮𝐫 + 𝐈 · ug)  

+𝐉 · C · (u̇r n+1 + u̇g) = 𝐉 · Fs  
(15) 

𝐮𝐫 , 𝐮̇𝐫  and 𝐮̈𝐫  represent relative displacement, 

velocity, and acceleration vectors, respectively. ug, u̇g and 

üg also represent rock outcrop displacement, velocity, and 

acceleration, respectively. 

(u̇rn+1) is the interface relative velocity and the vector 

with unit at all rows 𝐈 is given by 

𝐈𝐓 =< 1, 1, ··· 1, 1, 1 >  (16) 

The lumped mass system in Fig. 2 is statically 

unconstrained so the following term in Eq. (15) will have 

vanished since it represents the rigid body movement. 

𝐊 · 𝐈 = 𝟎  (17) 

It is a quite common practice to express the viscous 

damping by Rayleigh et al. (1945) which consists of mass 

and stiffness proportional terms (a and b) in the element 

level. 

𝐃 = a · 𝐌 + b · 𝐊  (18) 

Now, substituting Eqs. (17) and (18) into Eq. (15) and 

rearranging, 

𝐌𝐮̈𝐫 + 𝐃𝐮̇𝐫 + 𝐊𝐮𝐫 + 𝐉 · C · u̇rn+1  

= −𝐌 · 𝐈 · üg − a · 𝐌 · 𝐈 · u̇g + 𝐉 · (Fs − C · u̇g)  
(19) 

The last term in Eq. (19) will have vanished since Fs =
C · u̇g.  Thus the final equilibrium equation in terms of 

relative motions can be expressed in the following matrix 

form: Named BAT (Base Acceleration Total) 

𝐌𝐮̈𝐫 + 𝐃𝐮̇𝐫 + 𝐊𝐮𝐫 + 𝐉 · C · u̇rn+1 

= −𝐌 · 𝐈 · üg − a · 𝐌 · 𝐈 · u̇g  
(20) 

It should be noted that BAT in Eq. (20) in relative 

motions is simply the alternate form of BST in Eq. (13) in 

total motions. Both BST and BAT models will give the 

same analysis results as demonstrated in the example 
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problems included in this study. 

 

4.2 Conventional formulation (BAC model) 
 

Conventional finite element formulations (Desai and 

Christian 1977, Dikmen and Ghaboussi 1984, Hudson et al. 

1994) for the seismic response of ground motion are 

expressed in the following matrix form simply by adding 

damping forces to the left side of dynamic equilibrium 

equation without considering the consistent definition of 

damping matrix in the total displacement fields. 

𝐌𝐮̈𝐫 + 𝐃𝐮̇𝐫 + 𝐊𝐮𝐫 + 𝐉 · C · u̇rn+1 = −𝐌 · 𝐈 · üg  (21) 

When there is no mass proportional damping term 

(a=0), the BAT model in Eq. (20) represents the 

conventional finite element procedure where only base 

outcrop acceleration is applied for earthquake load: Named 

BAC (Base Acceleration Conventional) 

However, when there is mass proportional damping 

(a≠0), the BAT model in Eq. (20) includes the outcrop 

velocity term in addition to the acceleration term to 

represent earthquake load more accurately. The effect of 

such additional earthquake velocity term may be 

insignificant for most practical problems based on our 

studies presented in the following example problems. It is 

worth noting that the BAC model in Eq. (21) has been used 

for many decades in the finite element analysis 

communities for structural and geotechnical engineering 

problems. 

 

 

5. When the damping matrix is defined in relative 

displacement 
 

In this section, we assume that damping and stiffness 

matrices are defined in relative displacement. Then the 

dynamic equilibrium equation for the one-dimensional 

shear wave propagation through soil deposit with elastic 

half-space is given in the following matrix form. 

𝐌𝐮̈ + 𝐃(𝐮̇ − 𝐈 · u̇n+1) + 𝐊(𝐮 − 𝐈 · un+1)  

+𝐉 · C · u̇n+1 = 𝐉 · Fs  
(22) 

Substituting Eq. (18) into Eq. (22), we obtain the 

following equation. 

𝐌𝐮̈ + 𝐃𝐮̇ − (a · 𝐌 + b · 𝐊) · 𝐈 · u̇n+1  

+𝐊(𝐮 − 𝐈 · un+1) + 𝐉 · C · u̇n+1 = 𝐉 · Fs  
(23) 

Substituting Eq. (17) into Eq. (23), we obtain the 

equation in terms of total displacement. 

Named BSR (Base Shear Relative) 

𝐌𝐮̈ + 𝐃𝐮̇ + 𝐊𝐮 + (C · 𝐉 − a · 𝐌 · 𝐈) · u̇n+1 = 𝐉 · Fs  (24) 

Note that both BST in Eq. (13) and BSR in Eq. (24) are 

expressed in terms of total displacements. However, when 

the damping matrix is defined in the relative displacement, 

an additional term that is related to Rayleigh mass 

proportional constant (a) is enclosed in the equilibrium 

equation. 

Now, we want to define the total displacement u in Eq. 

(24) as the sum of relative displacement 𝐮𝐫 and outcrop 

base displacement ug as we have done for Eq. (15). 

𝐌(𝐮̈𝐫 + 𝐈 · üg) + 𝐃(𝐮̇𝐫 + 𝐈 · u̇g) + 𝐊(𝐮𝐫 + 𝐈 · ug)  

+(C · 𝐉 − a · 𝐌 · 𝐈) · (u̇rn+1 + u̇g) = 𝐉 · Fs  
(25) 

Substituting Eqs. (17) and (18) into Eq. (25), we obtain 

the following equation. 

𝐌(𝐮̈𝐫 + 𝐈 · üg) + 𝐃𝐮̇𝐫 + a · 𝐌 · 𝐈 · u̇g + 𝐊𝐮𝐫  

+(C · 𝐉 − a · 𝐌 · 𝐈) · (u̇rn+1 + u̇g) = 𝐉 · Fs  
(26) 

Eq. (26) can be rearranged in the following form. 

𝐌𝐮̈𝐫 + 𝐃𝐮̇𝐫 + 𝐊𝐮𝐫 + (C · 𝐉 − a · 𝐌 · 𝐈) · u̇rn+1  

= −𝐌 · 𝐈 · üg + 𝐉 · (Fs − C · u̇g)  
(27) 

The last term in Eq. (27) will have vanished since Fs =
C · u̇g.  Thus the final equilibrium equation in terms of 

relative motions can be expressed in the following matrix 

form. 

Named BAR (Base Acceleration Relative) 

𝐌𝐮̈𝐫 + 𝐃𝐮̇𝐫 + 𝐊𝐮𝐫 + (C · 𝐉 − a · 𝐌 · 𝐈) · u̇rn+1  

= −𝐌 · 𝐈 · üg  
(28) 

Comparing BAR in Eq. (28) to BSR in Eq. (24), both 

models show similar forms on the left side of the equal sign 

while on the right side of the equal sign, one is driven by 

base shear force in BSR and the other by base acceleration 

in BAR. Both models contain a term with the product of 

(a · 𝐌 · 𝐈) and the interface velocity (u̇n+1 , u̇rn+1). The 

inclusion of such a term can lead to a non-symmetric full 

matrix for the solution. To take advantage of the banded 

symmetric matrix form, we can move this term to the right-

hand side of the equal sign and then perform iterations or 

use smaller time increments. 

 

 

6. Step-by-step solution 
 

6.1 Linear elastic formulation 
 

To complete finite element formulation for one-

dimensional shear wave propagation, we include a direct 

integration procedure for the case when the damping matrix 

is defined in the total displacement field. 

Eqs. (13) and (20) may be expressed in the following 

matrix form at time step i. 

𝐌𝐮̈𝐢 + 𝐃𝐮̇𝐢 + 𝐊𝐮𝐢 = 𝐑𝐢  (29) 

𝐑i = −𝐌 ∙ 𝐈 ∙ (ügni + a ∙ u̇gni) 

when 𝐮i represents relative displacement 

𝐑i = 𝐉 · ρr · csr · As · u̇gni 

when 𝐮i represent total displacement 

It should be noted that the damping matrix in Eq. (29) 

incorporated implicitly shear forces related to radiation 

boundary conditions representing the elastic half-space. 

For the direct time integration of Eq. (29), Newmark 

constant average acceleration method (Newmark 1959), 

which is unconditionally stable, may be used. For constant 

time increment Δt, 

𝐮̇i = 𝐮̇i−1 + (𝐮̈i−1 + 𝐮̈i) · (Δt/2)  (30) 
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𝐮i = 𝐮i−1 + 𝐮̇i−1 · Δt + (𝐮̈i−1 + 𝐮̈i) · (Δt2/4)  (31) 

From Eqs. (30) and (31), we can obtain the following 

equations. 

𝐮̈i = (4/Δt2) · 𝐮i − 𝐀i−1  (32) 

𝐮̇i = (2/Δt) · 𝐮i − 𝐁i−1  (33) 

where 

𝐀i−1 = 4 · (𝐮i−1/Δt2 + 𝐮̇i−1/Δt + 𝐮̈i−1/4)  (34) 

𝐁i−1 = 2 · (𝐮i−1/Δt) + 𝐮̇i−1  (35) 

Substituting Eqs. (32) and (33) into Eq. (29), we obtain 

the following equation. 

𝐊̅ · 𝐮i = 𝐑̅i  (36) 

𝐊̅ = (4/Δt2) · 𝐌 + (2/Δt) · 𝐃 + 𝐊  (37) 

𝐑̅i = 𝐑i + 𝐌 · 𝐀i−1 + 𝐃 · 𝐁i−1  (38) 

The energy loss associated with viscous damping in Eq. 

(18) is proportional to the velocity, which also depends on 

the frequency of the motion. The energy dissipation in soils, 

however, is independent of frequency even at very small 

strain levels based on experimental test data (Lai and Rix 

1988). Based on recent studies (Payan et al. 2016b, 

Senetakis and Payan 2018), small strain dampings in sand 

and silty sand are most influenced by confining pressure, 

gradation, and particle shape among others. To mitigate 

such a frequency dependency in Rayleigh damping, the 

values of (a) and (b) in Eq. (18) are expressed in terms of 

two target frequencies (ω1 and ωi)
 (Hudson 1994). 

a = 2 · β · ω1 · ωi/(ω1 + ωi)  (39) 

b = 2 · β/(ω1 + ωi)  (40) 

where ω1  represents the fundamental natural circular 

frequency of the system, ωi  represents the predominant 

circular frequency of the input earthquake motion and β 

represents the critical damping ratio in an element. 

Five different modeling options are implemented in the 

general-purpose finite element computer program SMAP-

3D (Comtec Research 2022) using the following 

abbreviations to represent each model: 

• BST- Base Shear where Total displacement in 

defining damping matrix, Eq. (13) 

• BAT- Base Acceleration where Total displacement in 

defining damping matrix, Eq. (20) 

• BAC- Base Acceleration where Conventional finite 

element procedure is used, Eq. (21) 

• BSR- Base Shear where Relative displacement in 

defining damping matrix, Eq. (24) 

• BAR- Base Acceleration where Relative displacement 

in defining damping matrix, Eq. (28) 

 

6.2 Nonlinear elasto-plastic formulation 
 

For the nonlinear elasto-plastic soils, Eq. (29) can be 

rewritten in the following form. 

 

Fig. 3 Finite element meshes and material properties for 

Problem 1 

 

 

𝐌𝐮̈𝐢 + 𝐃𝐮̇𝐢 + 𝐊𝐭Δ𝐮𝐢 = 𝐑𝐢 − 𝐑𝐢−𝟏  (41) 

where 𝐊𝐭  Tangent stiffness matrix, Δ𝐮𝐢  Total 

displacement increment vector, and 𝐑𝐢−𝟏 Internal resisting 

force vector computed from stresses at the previous step. 

Eq. (41) can be expressed as a set of linear equations in a 

similar way as Eq. (36) is derived. 

 

 

7. Numerical examples 
 

7.1 Problem 1: Site response analysis to Diamond 

Heights earthquake 
 

The first example problem is the site response analysis 

to the Diamond Heights earthquake. The main purpose of 

this site response analysis is to verify that the base 

acceleration BAT model in terms of relative motions will 

produce the same results as the base shear BST model in 

terms of total motions. The second purpose is to assess the 

accuracy of the conventional finite element base 

acceleration BAC model where the equilibrium equation 

does not include the last term in the BAT model. 

This example problem is the same as the sample 

problem in SHAKE91. A 45.72 m (150 ft) soil profile was 

subjected to the Diamond Heights earthquake in 1989 as an 

outcrop to the elastic half-space. The earthquake is scaled to 

a peak acceleration of 0.1g. Finite element meshes and 

material properties are shown in Fig. 3. The scaled 

earthquake time history and its spectral acceleration are 

shown in Figs. 4 and 5, respectively. The predominant 

period of the earthquake is about 0.4 seconds as shown in 

the response spectrum. 
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Fig. 4 Diamond Heights acceleration time history 

 

 

Fig. 5 Spectral acceleration for scaled Diamond Heights 

earthquake 

 

 

Fig. 6 Ground surface accelerations with 5% soil damping 

 

 

The shear moduli in Fig. 3 represent the maximum 

values taken from the reference (Idrisis and Sun 1992). 

These maximum shear moduli are often expressed as a 

function of void ratio, overconsolidation ratio, and effective 

mean principal stress (Hardin and Drnevich 1972a, b). 

Based on recent studies (Payan 2017, Payan et al. 2016a), 

the maximum shear modulus of sands can be more 

accurately computed by considering grain size distribution 

and particle shape in addition to the void ratio and confining 

pressure. 

As the first set of analyses, we considered 5% soil 

 

Fig. 7 Accelerations from 10 to 12 seconds for BST and 

BAT with 5% soil damping 

 

 

Fig. 8 Accelerations from 10 to 12 seconds for BAC with 

5% soil damping 

 

 
damping which represents an approximately average 

damping ratio at about 0.01% of shear strain level (Seed et 

al. 1970, Seed et al. 1986). Note that dampings below shear 

strain level of 0.001% in sand and silty sand are generally 

under 2% (Payan et al. 2016b, Senetakis and Payan 2018). 

Three finite element solutions with BST, BAT, and 

BAC are compared with the closed-form solution of 

SHAKE91 in the frequency domain. 

Fig. 6 shows ground surface accelerations for the whole 

period. Fig. 7 shows ground surface accelerations between 

10 and 12 seconds where solutions from BST and BAT are 

directly compared with closed form solution of SHAKE91. 

Fig. 8 shows ground surface accelerations between 10 and 

12 seconds where conventional BAC solution is directly 

compared with SHAKE91. 

The results of both BST and BAT solutions are identical 

and are very close to SHAKE91 results. And results of 

conventional BAC solution are very close to SHAKE91 

results. That is, the last term in the BAT model contributes 

very little influence on this site response with 5% soil 

damping. 

Fig. 9 shows spectral accelerations on the ground 

surface and Fig. 10 shows a close-up view of spectral 

accelerations between 0.1 and 1 seconds. Results of all 

three models of BST, BAT, and BAC predicted very well 

the closed-form solution of SHAKE91. 
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Fig. 9 Spectral accelerations on the ground surface with 5% 

soil damping 

 

 

Fig. 10 Spectral accelerations from 0.1 to 1 second with 5% 

soil damping 

 

 

Fig. 11 Ground surface accelerations with 20% soil 

damping 

 

 

As the second set of analyses, we considered 20% soil 

damping which represents unrealistically high damping at 

extreme shear strain. Five finite element models with BST, 

BAT, BAC, BSR, and BAR are compared with the closed-

form solution of SHAKE91 in the frequency domain. 

Fig. 11 shows ground surface accelerations for the 

whole period for analyses of BST, BAT, and BAC. Fig. 12 

shows ground surface accelerations between 10 and 12 

seconds where solutions from BST and BAT are directly 

 

Fig. 12 Accelerations from 10 to 12 seconds for BST and 

BAT with 20% soil damping 

 

 

Fig. 13 Accelerations from 10 to 12 seconds for BAC with 

20% soil damping 

 

 

Fig. 14 Accelerations from 10 to 12 seconds for BSR and 

BAR with 20% soil damping 

 

 

compared with closed form solution of SHAKE91. Fig. 13 

also shows ground surface accelerations between 10 and 12 

seconds where conventional BAC solution is directly 

compared with SHAKE91. Fig. 14 shows the same close-up 

of accelerations of BSR and BAR solutions compared with 

SHAKE91. 

The results of both BST and BAT solutions are identical 

and are very close to SHAKE91 results. However, the 

results of the conventional BAC solution show a shifting of 
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Fig. 15 Spectral accelerations on the ground surface with 

20% soil damping 

 

 

Fig. 16 Spectral accelerations from 0.1 to 1 second with 

20% soil damping 

 

 

the acceleration time history graph slightly to the left and 

show a somewhat higher acceleration response spectrum. 

The results of both BSR and BAR are almost identical and 

close to the SHAKE91 solution. Note that both BSR and 

BAR analyses used smaller time step-increment (Δt=0.002 

sec) to get more accurate solutions. 
Fig. 15 shows spectral accelerations on the ground 

surface and Fig. 16 shows a close-up view of spectral 

accelerations between 0.1 and 1 seconds. Compared with 

SHAKE91, both BST and BAT predicted very well while 

BAC predicted somewhat higher peak spectral acceleration. 

 

7.2 Problem 2: Site response analysis to the Kobe 

earthquake 
 

The second example problem is the site response 

analysis to the Kobe earthquake. The main purpose of this 

additional site response analysis is to verify that the base 

acceleration BAT model in terms of relative motions will 

produce the same results as the base shear BST model in 

terms of total motions. The second purpose is to assess the 

accuracy of the conventional finite element base 

acceleration BAC model where the equilibrium equation 

does not include the last term in the BAT model. 

This problem is the same as the example problem 

enclosed in QUAD-4M User’s Manual (Hudson et al. 

 

Fig. 17 Finite element meshes and material properties for 

Problem 2 

 

 

Fig. 18 Kobe earthquake acceleration time history 

 

 

1994). A 100 m soil profile is subjected to the Kobe 

earthquake in 1995 as an outcrop to the elastic half-space. 

The earthquake is scaled to a peak acceleration of 0.942 g. 

Finite element meshes and material properties are shown in 

Fig. 17. The scaled earthquake time history and its spectral 

acceleration are shown in Figs. 18 and 19, respectively. The 

predominant period of the earthquake is about 0.25 seconds 

as shown in the response spectrum. 

As the first set of analyses, we considered 5% soil 

damping used in Section 7.1. Three finite element solutions 

with BST, BAT, and BAC are compared with the closed-

form solution of SHAKE91 in the frequency domain. 

Fig. 20 shows ground surface accelerations for the 

whole period. Fig. 21 shows ground surface accelerations 

between 3 and 8 seconds where solutions from BST and 

BAT are directly compared with closed form solution of 

SHAKE91. Fig. 22 also shows ground surface accelerations 
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Fig. 19 Spectral acceleration for scaled Kobe earthquake 

 

 

Fig. 20 Ground surface accelerations with 5% soil damping 

 

 

Fig. 21 Accelerations from 3 to 8 seconds for BST and BAT 

with 5% soil damping 

 

 

between 3 and 8 seconds where conventional BAC solution 

is directly compared with SHAKE91. 

The results of both BST and BAT solutions are identical 

and are very close to SHAKE91 results. And results of 

conventional BAC solution are close to SHAKE91 results. 

That is, the last term in the BAT model contributes very 

little influence on this site response with 5% soil damping. 

Fig. 23 shows spectral accelerations on the ground 

surface and Fig. 24 shows a close-up view of spectral 

accelerations between 0.1 and 1 seconds. Results of all 

three models of BST, BAT, and BAC show slightly higher 

 

Fig. 22 Accelerations from 3 to 8 seconds for BAC with 5% 

soil damping 

 

 

Fig. 23 Spectral accelerations on the ground surface with 

5% soil damping 

 

 

Fig. 24 Spectral accelerations from 0.1 to 1 second with 5% 

soil damping 

 

 

peak spectral accelerations than that of SHAKE91. 
As the second set of analyses, we considered 20% soil 

damping which represents unrealistically high damping at 
extreme shear strain. Five finite element solutions with 
BST, BAT, BAC, BSR, and BAR are compared with the 
closed-form solution of SHAKE91 in the frequency 
domain. 

Fig. 25 shows ground surface accelerations for the 
whole period for analyses of BST, BAT, and BAC. Fig. 26 
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Fig. 25 Ground surface accelerations with 20% soil 

damping 
 

 

Fig. 26 Accelerations from 3 to 8 seconds for BST and BAT 

with 20% soil damping 
 

 

Fig. 27 Accelerations from 3 to 8 seconds for BAC with 

20% soil damping 
 
 

shows ground surface accelerations between 3 and 8 

seconds where solutions from BST and BAT are directly 

compared with closed form solution of SHAKE91. Fig. 27 

shows ground surface accelerations between 3 and 8 

seconds where conventional BAC solution is directly 

compared with SHAKE91. Fig. 28 shows the same close-up 

of accelerations of BSR and BAR solutions compared with 

SHAKE91. 

The results of both BST and BAT solutions are identical 

 

Fig. 28 Accelerations from 3 to 8 seconds for BSR and 

BAR with 20% soil damping 

 

 

Fig. 29 Spectral accelerations on the ground surface with 

20% soil damping 

 

 

Fig. 30 Spectral accelerations from 0.1 to 1 second with 

20% soil damping 

 

 
and are close to SHAKE91 results. However, the results of 
the conventional BAC solution show a shifting of the 
acceleration time history graph slightly to the left as in the 
case of the Diamond Heights earthquake with 20% soil 
damping in Example Problem I. The results of both BSR 
and BAR are almost identical and close to the SHAKE91 
solution. It seems that the conventional base acceleration 
BAC procedure predicts reasonably well the site response 
in the soil profile with such high soil damping. 
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Table 1 Summary of dynamic equilibrium equations for 

earthquake load 

Model Dynamic Equilibrium Equation 

BST 𝐌𝐮̈ + 𝐃𝐮̇ + 𝐊𝐮 + 𝐉 · C · u̇n+1 = 𝐉 · Fs  

BAT 
𝐌𝐮̈𝐫 + 𝐃𝐮̇𝐫 + 𝐊𝐮𝐫 + 𝐉 · C · u̇rn+1  

= −𝐌 · 𝐈 · üg − a · 𝐌 · 𝐈 · u̇g  

BAC 𝐌𝐮̈𝐫 + 𝐃𝐮̇𝐫 + 𝐊𝐮𝐫 + 𝐉 · C · u̇rn+1 = −𝐌 · 𝐈 · üg  

BSR 𝐌𝐮̈ + 𝐃𝐮̇ + 𝐊𝐮 + (C · 𝐉 − a · 𝐌 · 𝐈) · u̇n+1 = 𝐉 · Fs  

BAR 
𝐌𝐮̈𝐫 + 𝐃𝐮̇𝐫 + 𝐊𝐮𝐫 + (C · 𝐉 − a · 𝐌 · 𝐈) · u̇rn+1  

= −𝐌 · 𝐈 · üg  

 
 

Fig. 29 shows spectral accelerations on the ground 
surface and Fig. 30 shows a close-up view of spectral 
accelerations between 0.1 and 1 seconds. Compared with 
SHAKE91, the results of all three models of BST, BAT, 
and BAC predicted somewhat higher peak spectral 
accelerations. 

 

 

8. Conclusions 
 

Dynamic equilibrium equations, as summarized in Table 

1, were derived for the free field one-dimensional shear 

wave propagation through the horizontally layered soil 

deposits with the elastic half-space. We expressed 

Rayleigh’s viscous damping consisting of mass and 

stiffness proportional terms. 

We considered two cases where damping matrices are 

defined in the total and relative displacement fields. Two 

forms of equilibrium equations are presented; one in terms 

of total motions and the other in terms of relative motions. 

When the damping matrix is defined in the total 

displacement field, both BST in total motions and BAT in 

relative motions are obtained. It was noted that the 

conventional finite element procedure BAC is missing the 

term −a · 𝐌 · 𝐈 · u̇g as included in the BAT model. 

When the damping matrix is defined in the relative 

displacement field, both BSR in total motions and BAR in 

relative motions are obtained. Both BSR and BAR contain 

a term with the product of (a · 𝐌 · 𝐈) and the interface 

velocity (u̇n+1, u̇ n+1). The inclusion of such a term can 

lead to a non-symmetric full matrix for the solution. To take 

advantage of the banded symmetric matrix form, we can 

move this term to the right-hand side of the equal sign and 

then perform iterations or use smaller time increments. 

Two example problems were presented. The main 

purpose of these site response analyses is to verify that the 

base acceleration BAT model in terms of relative motions 

will produce the same results as the base shear BST model 

in terms of total motions. The second purpose is to assess 

the accuracy of the conventional finite element base 

acceleration BAC model where the equilibrium equation 

does not include the last term in the BAT model. 

Based on our study, the BST model is the simpler form 

of equilibrium equation to be used for finite element 

formulation and the conventional finite element procedure 

BAC model predicts the exact solution reasonably well 

even in soil deposits with unrealistically high damping. 

Acknowledgments 
 

This work was partially supported by the “Radioactive 

Waste Management Program” of the Korea Institute of 

Energy Technology Evaluation and Planning (KETEP) 

granted financial resources from the Ministry of Trade, 

Industry and Energy, Republic of Korea (Project No. 

20193210100040). 

 

 

References 
 
Ameri, G., Baumont, D., Shible, H., Ego, F. and Contrucci, I. 

(2023), “Characterizing site-specific ground motion at great 

depth in a low seismicity region: Challenges and perspectives 

for a nuclear waste repository project”, Bull. Earthq. Eng., 21, 

4755-4787. https://doi.org/10.1007/s10518-023-01720-z. 

Astroza, R., Pasten, C. and Ochoa-Cornejo, F. (2017), “Site 

response analysis using one-dimensional equivalent-linear 

method and Bayesian filtering”, Comput. Geotech., 89, 43-54. 

https://doi.org/10.1016/j.compgeo.2017.04.004. 

Chatterjee, K., Choudhury, D. and Poulos, H.G. (2015), “Seismic 

analysis of laterally pile under influence of vertical loading 

using finite element method”, Comput. Geotech., 67, 172-186. 

https://doi.org/10.1016/j.compgeo.2015.03.004. 

Comtec Research (2022), SMAP-3D; Structure Medium Analysis 

Program, User’s Manual Version 7.05, Comtec Research, Seoul, 

Korea. 

Desai, C.S. and Christian J.T. (1977), Numerical Methods in 

Geotechnical Engineering. Chapter 19: Soil Amplification of 

Earthquakes and Chapter 20: Two- and Three-Dimensional 

Dynamic Analyses, McGraw Hill Company, New York, NY, 

USA. 

Dikmen, S.U. and Ghaboussi, J. (1984), “Effective stress analysis 

of seismic response and liquation: Theory”, J. Geotech. Eng. 

ASCE, 110(5), 628-644. https//doi.org/10.1061/(ASCE)0733-

9410(1984)110:5(628). 

Germoso C., Duval J.L. and Chinesta, F. (2020), “Harmonic-

modal hybrid reduced order model for the efficient integration 

of non-linear soil dynamics”, Appl. Sci., 10(19), 6778. 

https://doi.org/10.3390/app10196778. 
Ghaemmaghami, A.R., Mercan, O. and Kianoush, R. (2017), 

“Seismic soil-structure analysis of wind turbines in frequency 
domain”, Wind Energy, 20, 125-142. 
https://doi.org/10.1002/we.1995. 

Hardin, B.O. and Drnevich, V.P. (1972a), “Shear modulus and 
damping in soils: measurement and parameter effects (Terzaghi 
lecture)”, J. Soil Mech. Found. Div. ASCE, 98(6), 603-624. 
https://doi.org/10.1061/JSFEAQ.0001756. 

Hardin, B.O. and Drnevich, V.P. (1972b), “Shear modulus and 
damping in soils: design equations and curves”, J. Soil Mech. 
Found. Div. ASCE, 98(7), 667-692. 
https://doi.org/10.1061/JSFEAQ.0001760. 

Hudson, M. (1994), “Behavior of slopes and earth dams during 
earthquakes”, Doctoral Thesis, University of California, Davis, 
California, USA. 

Hudson, M., Idriss, I.M. and Beikae, M. (1994), “User’s manual 
for QUAD4M: A computer program to evaluate the seismic 
response of soil structures using finite element procedures and 
incorporating a compliant base”, University of California, 
Davis, CA, USA. 

Idriss, I.M. and Sun, J.I. (1992), “User’s manual for SHAKE91: A 

computer program for conducting equivalent linear seismic 

response analyses of horizontally layered soil deposits”, Center 

for Geotechnical Modeling, Department of Civil & 

Environmental Engineering, University of California, Davis, 

173



 

Sun-Hoon Kim and Kwang-Jin Kim 

CA, USA. 

Joyner, W.B. and Chen, A.T.F. (1975), “Calculation of nonlinear 

ground response in earthquakes”, Bull. Seismol. Soc. Am., 

565(5), 1315-1336. https://doi.org/10.1785/BSSA0650051315. 

Lai, C.G. and Rix, G.J. (1988), “Simultaneous inversion of 

Rayleigh phase velocity and attenuation for near-surface site 

characterization”, Report No. GIT-CEE/GEO-98-2; School of 

Civil and Environmental Engineering, Georgia Institute of 

Technology, Atlanta, GA, USA. 

Liu, G., Lian, J. and Zhao, M. (2017), “An effective approach for 

simulating multi-support earthquake underground motions”, 

Bull. Earthq. Eng., 15, 4635-4659. 

https://doi.org/10.1007/s10518-017-0153-3. 

Newmark, N.M. (1959), “A method of computation for structural 

dynamics”, J. Eng. Mech. Div. ASCE, 85(3), 67-94. 

https://doi.org/10.1061/JMCEA3.0000098. 

Ordonez, G.A. (2012), “SHAKE2000: A computer program for 

the 1-D analysis of geotechnical earthquake engineering 

problems”, Geomotions, LLC, Lacey, WA, USA. 

Payan, M. (2017), “Study of small strain dynamic properties of 

sands and silty sands”, Doctoral Dissertation, The University of 

New South Wales, Sydney, Australia. 

Payan, M., Khoshghalb, A., Senetakis, K. and Khalili, N. (2016a), 

“Small-strain stiffness of sand subjected to stress anisotropy”, 

Soil Dyn. Earthq, Eng., 88, 143-151. 

https://doi.org/10.1016/j.soildyn.2016.06.004. 

Payan, M., Senetakis, K., Khoshghalib, A. and Khalili, N. (2016b), 

“Influence of particle shape on small-strain damping ratio of dry 

sands”, Geotech., 66(7), 610-616. 

https://doi.org/10.1680/jgeot.15.T.035. 

Rayleigh, J. and Lindsay, R. (1945), The Theory of Sound, Dover 

Publications Inc., Garden City, NY, USA. 

Schnabel, P.B., Lysmer, J. and Seed, H.B. (1972), “SHAKE: A 

computer program for earthquake response analysis of 

horizontally layered sites”, Report No. UCB/EERC-72/12; 

Earthquake Engineering Research Center, University of 

California, Berkeley, CA, USA. 

Seed, H.B. and Idriss, I.M. (1970), “Soil moduli and damping 

factors for dynamic response analysis”, Report No. EERC 75-

29; Earthquake Engineering Research Center, University of 

California, Berkeley, CA, USA. 

Seed, H.B., Wong, R.T., Idriss, I.M. and Tokimatsu, K. (1986), 

“Moduli and damping factors for dynamic analyses of cohesive 

soils”, J. Geotech. Eng. ASCE, 112(11), 1016-1032. 

https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016). 

Senetakis, K. and Payan, M. (2018), “Small strain damping ratio 

of sands and silty sands subjected to flexural and torsional 

resonant column excitation”, Soil Dyn. Earthq. Eng., 114, 448-

459. https://doi.org/10.1016/j.soildyn.2018.06.010. 

Tran, N.L., Aaqib, M., Nguyen, B.P., Nguyen, D.D., Tran, V.L. 

and Nguyen, V.Q. (2021), “Evaluation of seismic site 

amplification using 1D site response analyses at Ba Dinh 

Square Area, Vietnam”, Adv. Civil Eng., 2021, 3919281. 

https://doi.org/10.1155/2021/3919281. 

Tsai, N.C. (1969), “Influence of local geology on earthquake 

ground motions”, Ph.D. Thesis, California Institute of 

Technology, Pasadena, CA, USA. 

Volpini, C., Douglas, J. and Nielsen, A.H. (2021), “Guidance on 

conducting 2D linear viscoelastic site response analysis using a 

finite element code”, J. Earthq. Eng., 25(6), 1153-1170. 

https://doi.org/10.1080/13632469.2019.1568931. 

Watanabe, K., Pisano, F. and Jeremic, B. (2017), “Discretization 

effects in the finite element simulation of seismic waves in 

elastic and elastic-plastic media”, Eng. Comput., 33, 519-545. 

https://doi.org/10.1007/s00366-016-0488-4. 

Xu, C., Liu, Q., Tang, X., Sun, L., Deng, P. and Liu, H. (2023), 

“Dynamic stability analysis of jointed rock slopes using the 

combined finite discrete element method (FDEM)”, Comput. 

Geotech., 160, 105556. 

https://doi.org/10.1016/j.compgeo.2023.105556. 
 

 

CC 

 

 

Notations 
 

ug 
Input earthquake outcrop displacement on the 

surface of elastic half-space 

u̇g 
Input earthquake outcrop velocity on the surface of 

elastic half-space 

üg 
Input earthquake outcrop acceleration on the 

surface of elastic half-space 

un+1 
Total displacement on the surface of elastic half-

space 

u̇n+1 Total velocity on the surface of elastic half-space 

ün+1 
Total acceleration on the surface of elastic half-

space 

urn+1 
Relative displacement on the surface of elastic 

half-space, urn+1 = un+1 − ug 

u̇rn+1 
Relative velocity on the surface of elastic half-

space, u̇rn+1 = u̇n+1 − u̇g 

ürn+1 
Relative acceleration on the surface of elastic half-

space, ürn+1 = ün+1 − üg 

𝐮 Total displacement vector 

𝐮̇ Total velocity vector 

𝐮̈ Total acceleration vector 

I Unit vector at all rows, 𝐈𝐓 =< 1, 1, ··· 1, 1 > 

J Unit vector at last row, 𝐉𝐓 =< 0, 0, ··· 0, 1 > 

𝟎 Zero vector at all rows, 𝟎𝐓 =< 0, 0, ··· 0, 0 > 

𝐮𝐫 Relative displacement vector, 𝐮𝐫 = 𝐮 − 𝐈 · ug 

𝐮̇𝐫 Relative velocity vector, 𝐮̇𝐫 = 𝐮̇ − 𝐈 · u̇g 

𝐮̈𝐫 Relative acceleration vector, 𝐮̈𝐫 = 𝐮̈ − 𝐈 · üg 

𝐌 Mass matrix 

𝐃 Damping matrix 

𝐊 Stiffness matrix 

ρr Rock mass density of elastic half-space 

csr Rock shear wave velocity of elastic half-space 

As a Tributary area on the surface of elastic half-space 

C Damping constant, C = ρr · csr · As 

Fs Base shear force, Fs = C · u̇g 

a Rayleigh mass proportional damping constant 

b Rayleigh stiffness proportional damping constant 

β Critical damping ratio in an element 

ω1 
Fundamental natural circular frequency of the 

system 

ωI 
Predominant circular frequency of the input 

earthquake motion 

Δt Time step increment for a step-by-step solution 
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