Rapid retrofit of substandard short RC columns with buckled longitudinal bars using CFRP jacketing

Marina L. Moretti

1School of Architecture, National Technical University of Athens, GR-106-82 Athens, Greece

(Received November 19, 2022, Revised December 18, 2022, Accepted December 18, 2022)

Abstract. This experimental study investigates the effectiveness of applying carbon fiber reinforced polymer (CFRP) jackets for the retrofit of short reinforced concrete (RC) columns with inadequate transverse reinforcement and stirrup spacing to longitudinal rebar diameter equal to 1/3. RC columns scaled at 1/3, with round and square section, were subjected to axial compression up to failure. A damage scale is introduced for the assessment of the damage severity, which focusses on the extent of buckling of the longitudinal rebars. The damaged specimens were subsequently repaired with unidirectional CFRP jackets without any treatment of the buckled reinforcing bars and were finally re-tested to failure. Test results indicate that CFRP jackets may be effectively applied to rehabilitate RC columns (a) with inadequate transverse reinforcement constructed according to older practices so as to meet modern code requirements, and (b) with moderately buckled bars without the need of previously repairing the reinforcement bars, an application technique which may considerably facilitate the retrofit of earthquake damaged RC columns. Factors for the estimation of the reduced mechanical properties of the repaired specimens compared to the respective values for intact CFRP-jacketed specimens, in relation to the level of damage prior to retrofit, are proposed both for the compressive strength and the average modulus of elasticity. It was determined that the compressive strength of the retrofitted CFRP-jacketed columns is reduced by 90% to 65%, while the average modulus of elasticity is lower by 60% to 25% in respect to similar undamaged columns jacketed with the same layers of CFRP.

Keywords: axial compressive strength; buckling of longitudinal bars; damage level; retrofit with CFRP jacket; short reinforced concrete column; stiffness and ductility

1. Introduction

Reinforced concrete (RC) buildings in seismic regions constructed before 1980’s were typically non-ductile frame structural systems designed for gravity loads with inadequate reinforcement detailing, factors that render those buildings vulnerable to future earthquakes. Insufficient transverse reinforcement and confinement of old-type RC columns are typical reinforcement inadequacies liable to result in shear failure and buckling of the longitudinal reinforcement in the event of a major earthquake (Tena-Colugna et al. 2022).

Furthermore, FRP jacketing is effective for the retrofit of RC columns which have suffered damage, both in the presence of small to medium level of pre-existing damage (e.g., Wang et al. 2012, Faustino and Chastre 2016, Karayannis and Golias, 2018), but also in heavily damaged columns (e.g., Saadatmanesh et al. 1997, Cheng et al. 2003, Sami et al. 2022). In case of buckled longitudinal reinforcement, the rebars are usually straightened prior to retrofitting (e.g., Saiidi and Cheng, 2004, He et al. 2013). The advantage of applying continuous CFRP jackets instead of alternative retrofit techniques in considerably speeding up the rehabilitation of damaged RC columns has been underlined also by Vosogghi and Saiidi (2012 and 2013).

The present paper deals with short RC columns with insufficient transverse reinforcement which have often been reported to trigger collapse of older RC buildings worldwide (see Fig. 1) (Moretti 2008, Kam et al. 2011, Ricci et al. 2011, Vicente et al. 2012). CFRP jacketing has been effectively applied as a retrofit technique of short RC columns with inadequate transverse reinforcement (Jin et al. 2020, Dirikgil 2021, Bedirhanoglu et al. 2022) and may shift the mode of failure from shear to flexural (Kargaran and Kheyroddin 2020). It is noted that for lower aspect ratios, L/h (see Fig. 2), the governing shear transfer mechanism in RC columns is the strut, which results in column expansion at mid-height and subsequent explosive shear failure along the main diagonals (Yamada and Furui...
2. Experimental program

2.1 Overview

Twelve 1/3-scale physical short column models, with inadequate transverse reinforcement and reinforcement properties typical of RC buildings constructed in Greece prior to 1990s, were subjected to monotonic compression up to failure. Furthermore, six control CFRP-jacketed specimens, three with and three without steel reinforcement, were also tested. A scale of damage ranging from I to V is proposed, focusing on the extent of rebar buckling, according to which the damage level of the tested specimens was assessed. Subsequently to the first testing, 10 specimens with variable degree of damage were selected, retrofitted using cementitious mortar and CFRP jacketing, and were re-tested in compression. The number of CFRP layers in the jacket was estimated from the level of damage allocated after the first test, and was kept to the minimum required to guarantee a damage level in the second test similar to that initially observed. A length scale factor of $S_l = 3$ was generally followed (dimensions and material characteristics, i.e., longitudinal rebars, stirrups, and concrete mix) which renders more reliable the extrapolation of results to 1/1 scale.

2.2 Specimens’ characteristics

RC columns with height 300 mm and three different sections, i.e., round with 150 mm diameter, and square with side of 100 mm and 150 mm and corners chamfered with a radius $R_c = 25$ mm, were constructed and tested under concentric compression. The reinforcement cage was detailed so as to represent the detailing practices in older Greek buildings. The transverse ties are closed at 135 degrees, contrary to the older practice of 90-deg, with the intention to avoid opening of the stirrups and early buckling of the longitudinal rebars. Clear concrete cover was generally $c = 7$ mm. The longitudinal reinforcement consists of 6-mm rebars, with reinforcement ratio slightly over 1%, while the transverse reinforcement consists of a 3-mm closed stirrup at the outer perimeter of the longitudinal bars.

The specimen geometry and reinforcement layout are displayed in Figs. 3-4. Scaling 1/3 has been generally observed, i.e., in geometry, reinforcement and concrete mix. In general specimens have center-to-center distance, s, between consecutive stirrups equal to 70 mm ($\Theta 3@70$), conforming to the practice in Greece until 1985.

For each cross section one specimen was manufactured with stirrups spaced at 45.5 mm ($\Theta 3@45.5$) which results to a ratio of stirrup spacing, s, to longitudinal bar diameter, d_o, $s/d_o = 7.6$.

Among other codes, Eurocode 8 (2004) reports that, for moderate level of ductility, for ratios $s/d_o \leq 8$ there is no risk of buckling of the longitudinal reinforcement. For the columns with stirrups $\Theta 3@70$ the respective ratio is $s/d_o = 11.7$, which renders them vulnerable to buckling.

The testing program was performed (a) to specimens without previous damage (henceforth called “intact” or “undamaged”) and (b) to specimens previously damaged.
and subsequently retrofitted by the application of one to three layers of CFRP jacket (hereafter referred to as “retrofitted” or “repaired”).

Specimen names feature their particular characteristics, as follows: First letter O- or M- corresponds, respectively, to stirrups Ø3@70, encountered in older (O) structures and to stirrups Ø3@45.5, in line with modern (M) code provisions. Consecutively, R150 indicates a round (R) section with 150 mm diameter, while S100 and S150 refer to square (S) section with side 100, 150 mm, respectively. Following symbols (C) or -1C equally indicate the presence of 1-layer CFRP jacket. Suffix “str” indicates the presence of 70-mm CFRP strips at both ends of a column aiming at preventing concrete failure due to local anchorage stresses. Illustratively, O-S150str refers to a column with stirrups Ø3@70, square cross section with side 150 mm, and reinforced at the ends by strips of 70-mm height.

Repaired specimens are designated by prefix “r-” and a suffix that indicates the number of CFRP layers used for retrofit, e.g., specimen r-O-R150(C)-2C is a 150 mm-diameter column, with stirrups Ø3@70, with 1-layer initial CFRP-jacket that was repaired by 2 layers of CFRP jacket.

Three control cylindrical columns without steel reinforcement (UR150-) wrapped with 1, 2, and 3 CFRP layers were also tested.

2.3 Materials

Concrete mix was manufactured in the laboratory with 1/3 scaled-down aggregates. Proportioning of aggregates by weight was 20.8% (4–8-mm), 19.1% (2–4-mm), 14.4% (1–2-mm), 13.6% (0.5–1-mm) and 12% (<0.5-mm).

Columns with square sections were cast horizontally in wooden molds, while cast-iron molds were used for the circular columns. All specimens were cast on the same day, but were tested in two different time periods. Unconfined concrete compressive strength, f_{c0}, was determined on plain concrete cylinders at the period of testing, as 22.98 MPa and 27.30 MPa for the two respective groups of specimens.

Longitudinal rebars consist of smooth mild steel which was typically used in older structures in Greece, with yield strength 350 MPa and yield strain 0.00175. Transverse reinforcement consists of smooth wire with yield strength 560 MPa. It is noted that the high yield strength of the wire does not affect the results, given that the objective was to observe the rebar scaling 1/3 and to study rebar buckling.

FRP jackets are unidirectional carbon fiber tow sheets with thickness $t_f=0.129$ mm/ply, tensile strength 4300 MPa, elastic modulus 230 GPa and 1.7% ultimate tensile strain.

2.4 Application process of CFRP jackets

CFRP jackets were applied (a) on intact columns through dry lay-up process and (b) on the repaired pre-damaged columns through wet lay-up process for better bonding at the overlap length.

In damaged specimens crushed concrete and lose particles were removed, an epoxy bonding agent was applied on the concrete substrate, the damaged concrete was replaced by fiber reinforced cement-based repair mortar (with compressive strength 45 MPa and minimum tensile strength 8 MPa) and the CFRP jacket was applied. Material technical properties are available in Moretti et al. (2021a).
specimens with round section strains were also measured by the
manufacturer was performed at corners (e.g. Arvanitopoulos 2018).
In the square cross-section, both ends, externally to the jacket, to constrain the location of FRP rupture to the middle section (Lam and Teng 2004, Lim and Ozbbakaloglu 2015).

The overlap length in the CFRP jackets was 150 mm, increased by 30% to avoid debonding (Moretti and Arvanitopoulos 2018). In the square cross-sections overlap was performed at corners (e.g., Moretti 2019). Multilayered jackets were applied as a continuous sheet. FRP jackets were cured for at least seven days according to manufacturer’s guidelines.

2.5 Instrumentation

Lateral and axial strains of the CFRP jackets were recorded through 20-mm unidirectional strain gages. In specimens with round section strains were also measured by linear variable displacement transducers (LVDTs), which were attached on a Humboldt metallic testing frame. LVDTs record the average axial strain over 203-mm length at mid-height, and the lateral strains along the diameter at the middle of each column.

3. Test results and discussion

The specimens were tested under monotonic axial compression. Unidirectional strain gages located outside the overlap length of the FRP jacket were used to record the axial and lateral strains at mid-height. Additionally, in the circular columns lateral and axial deformations were measured by linear variable displacement transducers (LVDTs). Table 1 summarizes the characteristic experimental values, including the maximum compressive
load, P_{max}, the axial strain $\varepsilon_{\text{cu},\text{max}}$ and the lateral strain $\varepsilon_{\text{lu},\text{max}}$ at load P_{max} and the unconfined compressive cylinder concrete strength f_{co}.

3.1 Mode of failure

Square RC columns failed prematurely at the ends, owing to stress concentration (Fig. 5(g)), which was prevented by adding 70-mm CFRP strips at column ends (which is indicated by suffix “str” in the specimens’ name). In circular columns such failure did not occur, and loading continued after peak axial load so as to obtain different levels of damage to use in the retrofit scheme (e.g., Fig.5(a)).

The CFRP jacket ruptured outside the overlap length. More particularly, in columns with square section the jacket typically ruptures in the region of the corners where higher stress concentrations are expected as shown in Fig. 5(f).

It was generally observed that buckled bars along which the crushed concrete was replaced by repair mortar were less liable to buckling than the bars which remained encased in the original concrete at the end of the first test. It is noted that in most cases the repair mortar did not even spall (Figs. 5(d) and (f)). Hence, it appears that the presence of repair mortar with higher strength than the original concrete may result in improved restraint against lateral dilation of the concrete core, as established also by Tastani et al. (2006).

Based on visual observations, buckled reinforcement does not seem to have significantly precipitated the rupture of the CFRP jacket in contrast to what has been claimed by Tastani et al. (2006) and Bournas and Triantafillou (2011) among others. It rather appears that buckling of longitudinal bars followed the rupture of FRP jacket, as Deamers and Neale (1999) concluded from full-scale tests.

3.2 Damage assessment

Classification of structural damage is typically adopted in codes for seismic assessment and retrofit design (C.E.B 1983, KAN.EPE 2012, ATC-32 1996, JBDPA 1991), and in

Table 2 Description of damage levels (D.L.)

<table>
<thead>
<tr>
<th>D.L.</th>
<th>Damage observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Insignificant spalling of concrete. Limited exposure of reinforcement</td>
</tr>
<tr>
<td>II</td>
<td>$1 \text{ mm} < d \leq 3 \text{ mm}$ Concrete spalling. Revelation of longitudinal bars</td>
</tr>
<tr>
<td>III</td>
<td>$3 \text{ mm} < d \leq 5 \text{ mm}$ Concrete crushing. Extensive exposure of longitudinal bars</td>
</tr>
<tr>
<td>IV</td>
<td>$5 \text{ mm} < d \leq 10 \text{ mm}$ Widespread concrete crushing. None or slight tilting/ distortion</td>
</tr>
<tr>
<td>V</td>
<td>$5 \text{ mm} < d \leq 15 \text{ mm}$ Widespread concrete crushing. Substantial tilting/ distortion</td>
</tr>
</tbody>
</table>

Notation: d: Maximum Deflection from verticality of longitudinal bars because of buckling.
post-earthquake damage assessment (ATC-20 1991, Anagnostopoulos and Moretti 2008). However, damage criteria vary considerably between different code provisions and individual studies (e.g., Mesbah and Benzaid 2017, Wang et al. 2022).

Based on the experimental observations, a damage scale of increasing damage severity ranging from I to V, is proposed as shown in Table 2. The classification of damage focuses on the extent of buckling of longitudinal bars and includes damage in concrete and distortion of specimen.

After the first test, the damage of the RC columns that would be repaired was meticulously recorded and a damage level (D.L) was allocated according to Table 2.

The number of CFRP plies for retrofit was estimated so that each repaired specimen at re-testing would exhibit similar level of damage and no further buckling of the longitudinal bars in respect to the original specimen. Table 3 displays, in one row for each specimen, the values D.L for the intact and for the respective retrofitted specimen. With the exception of specimen O-R150str, the repaired specimens had the same damage level as the initial ones, hence the retrofit may be considered as sufficient. It is noted that 1 layer of CFRP jacket corresponds to volumetric FRP ratio, ρ_f, equal to 0.34% for columns R150 and S150, and to 0.52% for columns S100.

3.3 Stress-strain experimental behavior

RC columns with closer spaced ties ($\varnothing3@45.5$, M-specimens) had 4-8% higher peak compressive strength and increased deformation at maximum load, compared to O-specimens ($\varnothing3@70$), as shown in Fig. 6(a) for columns with circular section. The presence of 7-cm-wide CFRP strips, at both ends of O-specimens resulted in a slightly improved axial behavior for specimen O-R150str compared to specimen O-R150 (Fig. 6(a)).

One layer of CFRP jacketing in O-specimens results in 70-80% increase in axial strength and more than 500% increase in respective lateral and axial deformation. Hence, CFRP jacketing is effective in upgrading the seismic performance of short columns with insufficient transverse reinforcement. Plain concrete specimen UR150-1C with 1 CFRP layer displayed similar maximum strains but reduced axial strength compared to the respective reinforced specimens (Fig. 6(b)).

Fig. 7 to 9 display the axial stress, σ, against axial ($\varepsilon_{\text{axial}}$) and lateral ($\varepsilon_{\text{lat}}$) strain diagrams for repaired specimens with the three section types. Strains from LVDTs are typically higher than respective local strains measured from strain gages (s.g.) in case of specimens with round sections for which both measurements are available as depicted in Fig. 7 (see also Moretti et al. 2021a). It is interesting to note that in specimen r-O-R150(C)-2C (Fig. 7), in which s.g. 4 was located in the region where a longitudinal rebar suffered

<table>
<thead>
<tr>
<th>Intact Specimens</th>
<th>$f_{cc,exp}/f_{cc}$</th>
<th>D.L.</th>
<th>Retrofitted Specimens</th>
<th>$f_{cc,exp}/f_{cc}$</th>
<th>D.L.</th>
<th>$f_{cc,exp}$ (MPa)</th>
<th>$f_{cc,anal}$ (MPa)</th>
<th>$f_{cc,exp}/R_{dc}/f_{cc,anal}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-S100(C)</td>
<td>2.07</td>
<td>I</td>
<td>O-R-S100(C)-1C</td>
<td>1.91</td>
<td>I</td>
<td>52.3</td>
<td>43.86</td>
<td>1.25</td>
</tr>
<tr>
<td>O-S100</td>
<td>1.32</td>
<td>I</td>
<td>r-O-S100-1C</td>
<td>1.58</td>
<td>I</td>
<td>43.2</td>
<td>43.86</td>
<td>1.04</td>
</tr>
<tr>
<td>O-S150(C)</td>
<td>1.53</td>
<td>II</td>
<td>r-O-S150(C)-2C</td>
<td>1.61</td>
<td>II</td>
<td>43.2</td>
<td>42.92</td>
<td>1.22</td>
</tr>
<tr>
<td>O-S150</td>
<td>1.13</td>
<td>II</td>
<td>r-O-S150-1C</td>
<td>1.22</td>
<td>II</td>
<td>32.4</td>
<td>36.74</td>
<td>1.06</td>
</tr>
<tr>
<td>O-R150(C)</td>
<td>1.90</td>
<td>II</td>
<td>r-O-R150(C)-2C</td>
<td>2.05</td>
<td>II</td>
<td>55.9</td>
<td>65.46</td>
<td>1.00</td>
</tr>
<tr>
<td>O-R150</td>
<td>1.02</td>
<td>IV</td>
<td>r-O-R150-3C</td>
<td>2.75</td>
<td>IV</td>
<td>75</td>
<td>82.26</td>
<td>1.22</td>
</tr>
<tr>
<td>M-R150</td>
<td>1.09</td>
<td>V</td>
<td>r-M-R150-3C</td>
<td>2.41</td>
<td>V</td>
<td>65.7</td>
<td>83.36</td>
<td>1.33</td>
</tr>
<tr>
<td>O-S100str</td>
<td>1.29</td>
<td>II</td>
<td>r-O-S100str-1C</td>
<td>1.97</td>
<td>II</td>
<td>53.9</td>
<td>43.86</td>
<td>1.45</td>
</tr>
<tr>
<td>O-S150str</td>
<td>1.16</td>
<td>II</td>
<td>r-O-S150str-2C</td>
<td>1.62</td>
<td>II</td>
<td>44.3</td>
<td>42.29</td>
<td>1.23</td>
</tr>
<tr>
<td>O-R150str</td>
<td>1.07</td>
<td>III</td>
<td>r-O-R150str-2C</td>
<td>2.52</td>
<td>IV</td>
<td>68.8</td>
<td>65.46</td>
<td>1.31</td>
</tr>
</tbody>
</table>

$\bar{f}_{cc,exp}$: Maximum Experimental Axial Strength, \bar{f}_{cc}: Compressive cylinder Concrete Strength, $\bar{f}_{cc,anal}$: Predicted Axial Strengths from Eqs. (1)-(3), R_{dc}: Reduction Factors for the pre-damaged specimens (Table 4)
Rapid retrofit of substandard short RC columns with buckled longitudinal bars using CFRP jacketing

(b) Location of strain gages

Fig. 7 Specimen r-O-R150(C)-2C

(b) Location of strain gages

Fig. 8 Specimen r-O-S150(C)-2C

buckling, axial strains from the LVDT were similar to those measured from s.g. 4, which indicates that the global axial deformation corresponded to local buckling. The magnitude of local lateral strains \(\varepsilon_{\text{lat}} \) does not seem to depend on whether they are measured on a longitudinal rebar or away from the rebar (Figs. 7, 8), but is rather influenced by whether the strain gage is located in a region of stress localization which gives rise to rupture of the FRP jacket.

In Fig. 9 (specimen r-O-S100-1C) it may be observed that strains measured in locations in which the FRP jacket did not rupture, i.e., s.g. 4 and s.g. 7, were typically lower than respective strains in parts where the jacket ruptured, i.e., s.g. 8 and s.g. 5. The difference in respective axial and lateral strains was observed for stresses immediately above the unconfined concrete strength, \(f_{\text{co}} \), which may imply that local deformations and stress concentration which finally led to rupture of the jacket were already present in that part of the specimen at the beginning of activation of the FRP jacket.

Figs. 10 and 11 depict the axial stress, \(\sigma \), normalized...
with the compressive cylindrical concrete strength, \(f_{cc} \), versus axial and lateral strain, \(\varepsilon \), diagrams. Intact specimens jacketed or not, show similar initial stiffness for axial stresses lower than the unconfined concrete strength, \(f_{co} \) i.e., before the activation of the FRP jacket. Repaired specimens with pre-existing damage have reduced initial stiffness compared to the respective intact ones (e.g., Fig. 10(b): O-R150 and M-R150, vs. the respective retrofitted specimens r-O-R150-3C and r-M-R150-3C). However, the stiffness of the retrofitted columns after the activation of the FRP jacket does not seem to be significantly affected by the extent of pre-existing damage, as may be observed by comparison, e.g., between O-R150(C) and r-O-R150(C)-2C in Fig. 10(a). The modulus of elasticity before and after the activation of the FRP jacket of the columns is calculated according to experimental measurements in section 4.2.

The longitudinal reinforcement bars increase the axial compressive strength of the intact RC columns, as shown in Fig. 6(b) by comparing specimens UR150-1C (unreinforced) and O-R150-1C. However, the contribution of the longitudinal reinforcement decreases in the retrofitted specimens in which the longitudinal rebars were buckled prior to retrofitting, as may be observed in Figs 10(a) and 10b, by comparing the unreinforced specimens UR150-2C and -3C with other specimens retrofitted by the same number of CFRP layers.

4. Mechanical properties of retrofitted specimens

Higher damage level (D.L.) of pre-existing damage results, in general, in lower peak axial stress and increased deformations of the retrofitted specimens compared to the intact, if the same layers of CFRP jacket are used, e.g., in Fig. 10(b): columns r-O-R150-3C (initial D.L. IV) and r-M-R150-3C (initial D.L. V).

For the seismic capacity assessment of a repaired damaged structural element, a safe estimation of its mechanical characteristics is required. To this purpose, a methodology will be adopted which is often applied for the estimation of the residual mechanical properties of earthquake damaged RC structural elements: Reduction factors, \(R \), are introduced by which the mechanical properties of the intact structural element are multiplied in order to obtain the respective properties of the damaged specimen, e.g., Maeda et al. (2014), Kono et al. (2011). Based on the experimental results, reduction factors, \(R \), for the estimation of the axial strength and average modulus of elasticity of the repaired columns in relation to the respective properties of the intact columns, for D.L. I to V, are proposed.

4.1 Estimation of axial strength

Peak axial confined compressive strength, \(f_{cc} \), is typically related to lateral confinement pressure. In this study, the confined axial strength, \(f_{cc} \), is calculated according to Eqs. (1)-(3). Details of the design model, which is based on the Eurocodes (Eurocode 2 2004, Eurocode 8 2004, and Eurocode 8 2005) is available in Moretti et al. (2021b).

\[
\sigma_2 = f_{lt} + f_{lt,t} = \frac{2 \cdot \varepsilon_{fu} \cdot E_f + f_p}{D} \tag{3}
\]

where \(f_p \) is the cylinder compressive strength of the unconfined concrete, \(\varepsilon_2 \) is the total lateral stress from Eq. (2), \(f_{lt,t} \) is the lateral pressure from the FRP jacket according to Eq. (3), \(f_{lt} \) is the lateral stress from stirrups calculated according to Eurocode 8 (2004), \(\varepsilon_{fu} \) is the FRP strain at failure provided by the manufacturer, \(E_f \) is the FRP elastic modulus, \(t_f \) is the total thickness of the FRP jacket, and \(D \) is the diameter in case of a circular cross-section, or the larger cross-section width in case of rectangular cross-sections.

The use of tensile strain, \(\varepsilon_{fu} \), of the FRP fabric in Eq. (3) -and not of a reduced FRP ultimate strain as proposed in other design models, e.g., in Eurocode (2005), is aimed at overcoming the uncertainty involved in the estimation of the FRP lateral strain at failure (Moretti et al. 2021b).

Effectiveness factors, in the plane of the section and along the height, are used for the calculation of lateral pressures both for FRP and stirrups.

The longitudinal reinforcement is not included in the calculation of the axial strength. This assumption is in accordance to the observation made in the present study that...
with increasing amount of rebar buckling (which is reflected by higher damage levels; D.L.>1) the contribution of longitudinal rebars to axial strength reduces, as discussed in section 3.3.

Table 3 displays the peak experimental compressive strength of the specimens \(f_{cc,exp} \) (=\(P_{max}/\text{area of section} \)), divided by the respective compressive strength of plain concrete, \(f_{cc,exp} \), both for the intact and for the retrofitted columns. Table 3 displays also the predicted axial strengths from Eqs. (1)-(3), \(f_{cc,anat} \), for the retrofitted columns. Table 3 includes also the values of damage level (D.L.) estimated according to Table 2, at the end of test both for the intact and for the retrofitted specimens.

It may be observed that for the retrofitted specimens the analytically calculated compressive strength overestimates the respective experimental strength (\(f_{cc,anat} > f_{cc,exp} \)), with the overestimation increasing for increased damage level D.L. prior to the retrofit. This could be expected, because Equs. (1) to (3) are intended for intact specimens.

It is proposed to estimate the confined axial strength of the retrofitted pre-damaged specimens, \(f_{cc,retrofitted} \), using Equ. (4), by multiplying \(f_{cc,anat} \) with a reduction factor \(R_{fc} \) which considers the existing level of damage (D.L.). The proposed values of \(R_{fc} \) are displayed in Table 4, and were calibrated against the test results so as to entail that the estimated axial strengths for the retrofitted specimens are safe. The ratio of experimental-to-predicted, according to Eq. (4), axial strength of the retrofitted specimens \(f_{cc,retrofitted}/f_{cc,anat} \) is displayed in the last column of Table 3.

\[
f_{cc,retrofitted} = R_{fc} \times f_{cc,anat} \quad (4)
\]

Fig. 12 depicts for the circular columns, the average confinement pressure \(f_{l,aver} \) calculated from Eq. (3) at maximum axial load, using the average strain of all lateral strain gages, and the corresponding confined axial strength normalized by the cylinder concrete strength, \(f_{cc,exp}/f_{cc} \). It is observed that for the undamaged specimens UR150 both \(f_{l,aver} \) and \(f_{cc,exp}/f_{cc} \) increase with increasing number of FRP layers. However, this relation is not so direct for the repaired specimens, because it depends also on the amount of pre-existing damage.

4.2 Initial elastic stiffness and dissipated energy

From the axial stress-axial strain diagrams the following
values are calculated for the tested columns, as shown in Fig. 14: (a) the average modulus of elasticity, E_{cm}, from the tangent at a value of 0.40f_{cm}, where f_{cm}=unconfined concrete cylinder compressive strength (Eurocode 2004) as an indicator of the initial stiffness prior to the activation of the FRP jacket, (b) the effective modulus of elasticity $E_{C,eff}$ at the activation of the CFRP jacket, and (c) the area in the $[\sigma-\varepsilon]$ diagram up to failure, as an indicator of the energy dissipated and therefore, of ductility. Table 1 includes those three calculated values, when applicable (e.g., $E_{C,eff}$ is irrelevant for the unjacketed columns), for all specimens. Axial strains, ε_{axial}, are taken from LVDTs for round sections, and from maximum strain gage measurements for the square sections. It is noted that locally measured strains from strain gages are not so reliable, especially regarding the estimation of the area $[\sigma-\varepsilon]$. Fig. 15 depicts the specimens’ average modulus of elasticity, E_{cm} (left axis), and the area calculated from the $[\sigma-\varepsilon]$ diagram (shown on the right axis). Both properties have an increased level of uncertainty and tend to decrease with increasing D.L. For the retrofitted specimens the value of E_{cm} does not seem to depend on the thickness of the FRP jacket, contrary to the area included in $[\sigma-\varepsilon]$ diagram. Higher level of damage results in less $E_{C,eff}$ and more in the area in the $[\sigma-\varepsilon]$ diagram for the same number of CFRP layers (e.g., O-S100(C) compared to r-O-S100(C)-1C, and O-S150(C) compared to r-O-S150-1C).

Table 4 displays the proposed reduction factors, R, of the repaired RC columns for the axial strength, f_{cc}, and the average E_{cm} compared to intact columns, related to the damage level (D.L.) prior to retrofit. The minimum volumetric ratio, $\rho_{frp,min}$, of CFRP jacket that proved to be apposite for the retrofit in relation to the initial value of D.L. so as to prevent further buckling is also included in Table 4. The findings of this work agree with Carillo et al. (2020) who concluded that CFRP jackets with $\rho_{frp}<0.5\%$ reduce the risk of rebar buckling in substandard square RC columns, irrespective of the spacing of transverse steel.

5. Conclusions

A methodology for the rapid retrofit of short RC columns with sparsely spaced stirrups, including columns with moderately buckled longitudinal bars, using CFRP jacketing was explored. Although the tests were performed on columns subjected to axial loading, the derived results may be applied also to short RC columns with shear ratio $a_s<1.0-1.5$ subjected to lateral loading, because of the similarity of deformation at mid-height. Round and square sections, which benefit more from the CFRP lateral confinement, have been studied. Within the limitations of the test program the following conclusions were drawn:

- CFRP jacketing may be effectively used to upgrade the seismic performance of short columns with insufficient transverse reinforcement. In the present study one layer of CFRP jacket (i.e., volumetric FRP ratio equal to 0.34% for R150- and S150-, and 0.52% for S100-specimens) on intact RC columns with stirrup spacing over rebar diameter $s/d_0=12$ results in more than 50% increase of axial strength and 100% increase of maximum strains, as compared to similar RC columns with stirrup spacing $s/d_0=8$ which corresponds to modern tie spacing requirements.
- Reinforced concrete columns with moderately buckled longitudinal bars, amounting to maximum deflection of rebars from verticality up to 15 mm for the 1/3-scaled specimens, can be effectively repaired by substituting the crushed concrete by fiber-reinforced repair mortar and continuous CFRP jacket without intervening in the buckled bars.
- A damage scale with increasing severity from I to V is introduced, according to which the damage of the specimens was assessed. Volumetric ratios of CFRP ranging from 0.3 to 1% for damage levels from I to V proved to be effective in preventing further buckling of the repaired specimens. It was observed that increased pre-existing damage level prior to retrofit affects adversely the mechanical properties of the retrofitted specimens.
- The axial stiffness of the retrofitted columns after the activation of the CFRP jacket is not apparently affected by the extent of prior damage. However, the initial stiffness before the activation of the CFRP jacket was shown to decrease as per 60% to 25% for damage levels from I to V, compared to similar columns with no
previous damage.

- The axial compressive strength of the retrofitted columns may be determined from design models which are intended for intact specimens by applying appropriate reduction factors. In this study, the axial strength of the retrofitted columns was observed to drop by 90% to 65% for damage levels from I to V, in respect to intact columns, according to a proposed design model.

- The contribution of longitudinal reinforcement to the axial strength of a FRP-jacketed column reduces considerably when buckling of the rebars occurs. For this reason it is recommended that the longitudinal reinforcement should not be taken into account at the estimation of axial strength of FRP-confined RC columns with sparsely spaced stirrups.

- The proposed rapid repair method proved to be effective in upgrading seismically deficient short RC columns, both intact and moderately damaged, and could considerably facilitate retrofit works if appositely designed and implemented. It is also highly efficient in upgrading seismically deficient short RC columns, according to a proposed design model.

- The proposed rapid repair method could considerably facilitate retrofit works if appositely designed and implemented. It is also highly efficient in upgrading seismically deficient short RC columns, according to a proposed design model.

- The proposed rapid repair method proved to be effective in upgrading seismically deficient short RC columns, both intact and moderately damaged, and could considerably facilitate retrofit works if appositely incorporated in design codes for earthquake retrofitting. Testing of larger scale specimens is deemed necessary to validate the results.

Acknowledgments

The tests were performed in the Laboratory of RC Technology and Structures at the University of Thessaly, Greece. The author would like to thank Mr. E. Miliokas and Mr. I. Paparizos who have undertaken the tests as part of their undergraduate thesis in the School of Engineering, University of Thessaly, Volos, Greece, under the supervision of the author who served as Assistant Professor. The contribution of Mr. A. Koutselinis and Mr. T. Papatheocharis in manufacturing the specimens and technical advice at testing, respectively, as well as Sika Hellas SA for supplying the composite materials, are also gratefully acknowledged.

References

Fardis, M.N. (2009), Seismic Design, Assessment and Retrofitting of Concrete Buildings Based on EN-Eurocode 8, Springer Dordrecht, Germany.

Tastani, S.P., Pantazopoulou, S.J., Zdouma, D., Plakantas, V.
Rapid retrofit of substandard short RC columns with buckled longitudinal bars using CFRP jacketing

AG