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1. Introduction 
 

Structures designed for wind have an opposite design 

approach to those designed for earthquakes. Wind designs 

are stiffer whereas seismic designs are more flexible 

(Aswegan et al. 2017). Thus, the wind design structures are 

liable to earthquake damage (Chen 2012). Hence, wind 

resistance structures are designed in regions having low-

impact earthquakes or when there is no need to follow the 

seismic codes (Klingner et al. 2003). As such, structures 

designed for wind are not guaranteed to be safe during an 

earthquake event and cause severe damage (Ham et al. 

2005). A lot of studies have been done on the structural 

safety of systems designed for wind during seismic activity 

and found that the damage probability is highly sensitive 

and causes the structural members to yield (Wen et al. 

2002, Basaran et al. 2016, Turkeli et al. 2017). Apart from 

buildings, one of the important non-building structures is a 

noise barrier (NB) also known as a soundproof wall which 

is constructed along the roadsides and is used to mitigate 

noise pollution. Traditionally, the NBs have been designed 

for wind loads only, where the focus is only on the 

maximum wind design criteria (Nusairat et al. 2004, Kwon 

et al. 2011, Duru 2016, Li 2016, Kim and Jung 2017, Choi 
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and Lee 2018, Sim et al. 2018). Some studies also mention 

the maximum allowable deflection of the NB posts or 

columns due to wind as a design criteria (Niewiadomski et 

al. 2014, Li 2016). However, like buildings, the earthquakes 

can cause damage to the noise barrier which results in 

falling down, tilting and detaching of members (Kazama 

and Noda 2012, Lin et al. 2020a). The literature points the 

stochastic nature and fatigue effects of wind on NB (Sun et 

al. 2020). Height, shape, and topology optimization studies 

have also been done (Grubeša et al. 2011, Toledo et al. 

2015, Suhanek et al. 2021). Based on the aforementioned 

studies, design specifications followed by most countries 

such as AASHTO, EN 14289-2, and manuals of Japan and 

China are based on the maximum wind velocity and wind 

load at the location to be constructed (Knauer et al. 2000, 

Klingner et al. 2003, Clairbois and Garai 2015). Thus, the 

earthquake design of NBs is neglected. 

Since, its first construction in 1968 in California, United 

States (U.S.), the global noise barrier market is growing 

very fast. NB built along highways in the U.S have 

increased to over 2700 miles in 2010. As the demands on 

constructing NBs increase, the demands to innovate NB 

design for better acoustics, strength, and resilience are 

increasing. The effectiveness of NBs depends on the 

material, structural design, and mainly the height of the NB 

(Simpson 1976, Knauer et al. 2000, Klingner et al. 2003). 

Moreover, with the development of cities, the construction 

of NBs is increasing in both length and height and the 

concept of tall NBs is emerging (Bose 2010, City and 

Assessment 2010). Despite their enhanced acoustic 

capabilities, tall NBs can cause some structural instability. 

The tall NBs, over 20 m in height, may have significantly 

low resonance frequency and are liable to resonate with the 
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low-frequency vibrations arising from large vehicles, wind, 

and low-frequency earthquakes. To compensate for the 

effect of the earthquake (EQ), some design guides provide 

EQ design accounting for the equivalent lateral force 

procedure (ELFP) (Wassef et al. 2010). However, the safety 

criterion is left on the engineer’s intuition (Chen and Cai 

2004). The effects of the low-frequency feature of tall NBs 

on their dynamic responses subject to vehicle vibration and 

EQs have been explored by few researchers. Tokunaga et 

al. (2013) developed a simplified single degree of freedom 

(SDOF) model and a 2-DOF model for NBs on a railroad 

bridge to examine the effect of resonance behavior. The 

study has found that the impact of EQ cannot be neglected 

for NBs whose natural frequencies are 5Hz or less. Then the 

research group investigated the interaction dynamics 

between the NB and the bridges subject to vehicle passage 

for a railroad bridge (Tokunaga et al. 2016b, Tokunaga et 

al. 2016a). Using sophisticated finite element models, 

(Zheng et al. 2020) evaluated the acceleration response of 

the NBs on a railroad bridge subject to high-speed vehicles. 

The responses are examined to compare several design 

alternatives and distinguish a component vulnerable to EQs. 

The aforementioned studies well emphasized that the 

interaction dynamics of the tall NBs with vibration sources 

cannot be neglected. However, only a limited number of 

design EQs are selected and the engineering demand 

parameters (EDPs) that consists of acceleration, drift, and 

base shear (Kim and Roschke 2006, Xu et al. 2017) have 

not been fully investigated. Therefore, in-depth 

understanding on dynamic interaction responses of NBs 

with bridges subjected to wide range of EQs deserves to be 

made. 
The use of computer applications are on a rise in 

structural engineering, especially earthquake engineering 

(Deng et al. 2005, Falcone et al. 2020, Li et al. 2020). 

Performance-based seismic design (PBSD) has a huge 

demand of computation, thus, computer-aided design is a 

necessity in seismic and structural engineering (Pan and 

Dias 2017, Lee and Jeong 2018, Salehi and Burgueño 

2018). For example, the analysis period increases 

exponentially with the model complexity in PBSD (Salgado 

and Guner 2018). Kappos and Panagopoulos (2004) found 

significant computational time for the PBSD of a simple 3D 

building using the well-known software SAP2000. Huge 

computational demand using finite element analysis to 

solve multiple degrees of freedom systems with the increase 

in matrix’s size is pointed out by (Nguyen 2006). Among 

various Machine Learning (ML) technologies, classifier-

based learning and neural techniques regression-based 

learning are adopted in various EQ applications. A 

classifier-based learning is used to classify the buildings 

based on structural damage, failure mode and structural 

performance (Mangalathu and Jeon 2018, LEÓ N et al. 

2019). Whereas other groups of researchers used Artificial 

Neural Networks (ANN) and Support Vector Machines 

(SVM), which can dramatically reduce the computational 

cost, in predicting the seismic response of structures 

(Lagaros and Papadrakakis 2012, Farfani et al. 2015, 

Mirhosseini 2017, Moeindarbari and Taghikhany 2018, Lin 

et al. 2020b, Oh et al. 2020, Sainct et al. 2020). So far both 

approaches have been widely adopted in applications such  
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Fig. 1 Studies related to Noise Barrier Design 

 

 

as structural safety assessment, damage classification, crack 

detection, soil structure interaction (SSI), soil pile structure 

interactions (SPSI) and seismic fragility curves (Abdel-

Qader et al. 2006, Li et al. 2016, Amiri and Rajabi 2018). 

Regarding application of ML in NBs, only few researches 

have been found, especially focusing on the optimization of 

the heights and noise attenuation parameters considering the 

acoustic characteristics, environmental effects, and traffic 

flow (Zannin et al. 2018, Dhiman et al. 2021). Thus, 

assessing the design criteria of NBs based on predicted 

responses using ML needs more detailed studies.  

Consideration of seismic safety assessment of wind-

designed structures is becoming unavoidable for ensuring 

the resilience of the structures, as discussed in the above 

paragraphs. Thus, a computer-aided advanced framework is 

proposed for NBs on bridges to overcome the mentioned 

safety concerns. The proposed framework aims to solve the 

nonlinear time history analysis (NLTHA) of tall NBs and 

bridge structures considering their dynamic interaction 

(coupled behavior). It first determines whether a wind 

design is sufficient, or a seismic design is required by 

assessing the design parameters. In the categorization of the 

results, optimized Ensemble, a classification-based learning 

algorithm is utilized. Once classified as a seismic design, 

the framework further divides the structure into coupled and 

uncoupled models based on the dynamic interaction of the 

bridge and NB which will be further discussed in the 

upcoming paragraphs. The seismic responses of those 

systems are predicted from a proposed ANN model. Note 

that the Ensemble-based classification achieves about 93 % 

accuracy and ANN can predict the responses with an 

accuracy above 90 %. Thus, the presented framework can 

help the designers in choosing wind or earthquake design, 

coupled or uncoupled design and getting the seismic 

response of NBs with less computation and more accuracy. 

Therefore, the main objective of the paper is to stress the 

importance of seismic structural safety of systems designed 

for wind. The authors have contributed to the scientific 

knowledge by using machine learning to assess the design 

of NB structures classifying them into the wind and seismic 

models and pointing out the importance of dynamic 

interaction of structures with a classification of coupled and 

uncoupled models as per the seismic demands. Lastly, using 

the proposed framework, the seismic responses of the 

structures are accurately predicted. The area and 

contribution of this research are shown in Fig. 1 as a Venn 

diagram. The detailed results of the study are discussed in 

this paper. 
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Fig. 2 Wind design limit 

 
 

2. Assessment of seismic safety of structures 
designed for wind 

 

Fig. 2 shows 2000 simulation results of NLTHA to 

illustrate that the wind design of a NB is insufficient for 

some cases thus requiring a seismic design. It shows the 

upper limit of wind design criteria based on the deflection 

value of the NB discussed in detail in section 3. It is also 

worth mentioning that a coupled analysis is required for 

some earthquakes and not for others depending on the  

 

 

characteristics of the ground motion. These issues are 

validated against multiple earthquakes from China, Japan, 

and Taiwan. Fig. 3 (a), (b) and (c) show the responses 

obtained using Taiwan EQ responses in the form of a ratio 

of maximum acceleration (Kh), maximum displacement 

(Dh), and maximum base shear (Vh) of the structure (also 

discussed in section 3) emphasizing the importance of 

interaction. It can be noted that for some cases the 

uncoupled behavior is conservative while coupled behavior 

is necessary in general cases. Thus, the proposed 

methodology differentiates such cases to ease the designer 

ensuring safety and economy and fulfills these necessities 

with the help of an advanced machine learning framework. 

 
 
3. Computer-aided framework 

 

The proposed next generation computer-aided 

framework has three primary parts as shown in Fig. 4. 

These are database creation, machine learning-based design 

type selection, and artificial neural network-based seismic 

response prediction. The input parameters are related to 

earthquake, structure, and interaction between super-

structure and sub-structure (interaction between structures) 

and soil while the outputs are related to the design 

assessment like wind or seismic design, coupled or  

 

 

(a) Coupled vs. uncoupled acceleration response 

 

  

 

 (b) Coupled vs. uncoupled base shear response (c) Coupled vs. uncoupled displacement response  

Fig. 3 Comparison of coupled and uncoupled behavior of NBs during Earthquake 
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uncoupled design and response of structure (Kh), (Dh), (Vh) 

for the performance evaluation. 

 

3.1 Methodology 
 

A finite element-based software OpenSees (McKenna 

2011, OpenSees 2011) is used to create preliminary models 

and a resulting database that further be applied for AI 

techniques embedded in MATLAB R2021a (MATLAB 

2021). Firstly, the framework gives the design type i.e., 

whether a seismic design is needed, or the conventional 

wind design is sufficient. Secondly, for seismic design type, 

the framework gives the design category i.e., whether one 

should consider the dynamic interaction or not. These 

decisions are based on Ac, which is a structural design 

assessment ratio, obtained as follows 

𝐴𝑐 = 𝑊 + 𝑆 (1) 

where W is the wind design indicator and S is an interaction 

indicator, which checks the design guides. First, based on 

the response of the model, displacement ratio (Dh) is 

calculated from the ratio between the maximum 

displacement (D) subjected to EQ and the displacement 

limit (D1) from the wind design. 

𝐷ℎ  =  
𝐷

⁡𝐷1
  (2) 

 

 

 

Note that based on the construction condition of the NB, 

D1 is taken as below in this study (Li 2016, 2018) 

𝐷1 ≤
𝐻

125
 , for NBs on ground (3) 

or 

𝐷1 ≤
𝐻

300
  , for NBs on a bridge (4) 

If 𝐷ℎ < 1 then, 𝑊⁡= 0 and S (interaction indicator) = 

0. These values imply that the displacement by EQ is not 

exceeding wind design limits, assuring that the conventional 

wind design is sufficient. On the other hand, if 𝐷ℎ ≥ 1 

then, W=1 and further assessment is required to check S.  

S is also a Boolean (i.e., taken either 1 or 0), based on Sh 

(design category ratio) calculated from the equation below 

𝑆ℎ =
𝐷𝑐
𝐷𝑢𝑐

 (5) 

here, Dc and Duc are the maximum displacement from a 

Coupled model and an Uncouple model, respectively, 

obtained from NLTHA. A detailed explanation of the 

NLTHA process will be discussed in Section 3. If the 

design category ratio, 𝑆ℎ < 1 then, 𝑆=0. Section 4 a 

setting indicates that using an uncoupled EQ design, which 

is simpler than coupled design, is sufficient. On the other 

hand, if 𝑆ℎ ≥ 1 then, take S=1 which means coupled EQ  

 
Fig. 4 Flow chart of the framework 
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Table 1 Database distribution for ML and ANN training and 

testing 

 ML Classification ANN Prediction 

Total Dataset 3557 7114 

Train 3000 5714 

Validation 5 folds valid. 857 

Test 557 1400 

 

 

design is required. 

In summary, the structure design assessment ratio is as 

follows: 

If 𝐴𝑐 = 0, then go for wind design (W). 

If 𝐴𝑐 = 1, then go for earthquake uncoupled design 

(EUC). 

If 𝐴𝑐 = 2, then go for earthquake coupled design (EC). 

Lastly, the framework predicts the seismic responses 

(Kh, Dh, Vh) for performance evaluation. To get the best 

results, different ML and ANN techniques are performed by 

updating various hyper-parameters. The ANN model is 

simulated for both multi input single output and multi input 

multi output systems to select the better one based on the 

overall accuracy. 

 
3.2 Base model and database creation 
 

The dataset is created from a base model representing a 

real-life traffic noise barrier (Soundproof wall) system 

which is under construction in South Korea. This base 

model is also compared in terms of frequencies and seismic 

coefficient responses using the same earthquakes as 

mentioned in a previous real-life structure from Japan 

(Tokunaga et al. 2013, Tokunaga et al. 2016b) to avoid any 

inconsistencies before creating the database. The results 

were in the acceptable error range of 10%. Then the 

database is constructed containing input parameters such as 

the height of the structure (H), the design category of 

structure (S), based on the seismic interaction of the 

structures, the peak ground acceleration (PGA), short 

response spectrum (SRS), shear wave velocity of the 

earthquakes (Vs), and the ground type (G) as well. Output 

parameters included dimensionless EDPs: acceleration in 

terms of gravity (Kh), displacement ratio (Dh) and base shear 

from NLTHA divided by ELFPs base shear (Vh). To 

improve the AI techniques, data processing, such as 

removal of outliers and normalization of the original data 

has been performed. The following formula is used to 

normalize the data 

𝑥𝑛 =
𝑥 − 𝑥min

𝑥max − 𝑥min

 (6) 

where 𝑥n is the normalized value, 𝑥 is the input value, 

𝑥min  and 𝑥max  are the minimum and maximum values 

of⁡x. 

The two sets of the database are prepared: One for the 

ML classification and the other for ANN prediction. The 

characteristics of the database are shown in Table 1. The 

training data consists of 84% with 5 folds for cross-

validation and the test data is 16% of the total database for 

ML classification. Whereas the data is divided into 80% and  

 
Fig. 5 The Noise Barrier System 

 

Table 2 The geometrical and material properties of the 

system 

Parameter (symbol) Pier/ Column Girder/ Beam NB Post 

Elastic Modulus (E) 286 GPa 286 GPa 200 GPa 

2nd Moment 

of Area (Iz) 
2.41×1011 mm4 2.41×1011 mm4 6.54×108 mm4 

Weight (W) 230 kN/m 230 kN/m 1023 kN/m 

Height (H) 5.605 m - 18 m 

 

 

20% for ANN prediction. To avoid over-fitting, 15% of 

training data is used for validation during training. 

 
 

4. Modeling 
 

As stated earlier, OpenSees is used to simulate the 

system. In this part, two important aspects are discussed: 

The description of the FE model for the NB and the 

selection of earthquakes. 

 
4.1 Noise barrier structure 
 

Due to the increasing number of high-rise apartments 

and buildings, tall NBs along the roadside are emerging in 

South Korea. One of the newly proposed designs is selected 

for analysis in this study where the NB height reaches about 

18 m, far beyond the conventional designs. A typical NB is 

shown in Fig. 5. Two types of models are considered for 

this study, one is the simple or uncoupled NB structure and 

the other is the sophisticated or coupled NB structure 

considering the interaction with the bridge where it is 

constructed. The post of NB is made up of steel, the beam/ 

girder is constituted of plain concrete and columns/ piers of 

the bridge are made up of reinforced concrete. In OpenSees, 

the post is created using elastic BeamColumn element with 

distributed mass, the girder is also created using the same 

element with a lumped mass option, whereas the pier is 

created using nonlinear BeamColumn element with 5 

integration points for the fiber section to include the eight 

steel reinforcement bars. The materials used for concrete 

and steel are Concrete01 and Steel01 respectively. The 

compressive strength (fc’) of steel is used as 0.06 kN/mm2 

and the yield strength (Fy) of steel bars is used as 0.46 

kN/mm2. The steel damping ratio is considered 2% and the 

concrete damping ratio is taken as 5%. The material and 

geometric properties of the structure are summarized in 

Table 2. As far as the design is concerned, wind design is 

sufficient for some cases and others require seismic design. 

In the same manner, a coupled analysis is required for some 

earthquakes and not for others depending on the 

characteristics of the ground motion. These points have  
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Fig. 6 Uncoupled Noise Barrier Model 

 

 

already been stated in the introduction and are further 

illustrated in section 5. 

As shown in Fig. 6, the uncoupled model consists of the 

NB part only ignoring the bridge on which it is located. It 

consists of the pole representing the NB with the bottom 

part restrained in all degrees of freedom and free at the top. 

The fundamental frequency of the uncoupled base model is 

about 1.67 Hz. 

The coupled model as shown in Fig. 7 is more 

sophisticated and considers the bridge on which the NB is 

mounted. It also takes into account the dynamic interaction 

between these two structures as the NB and bridge are 

coupled to the same nodes. The fundamental frequency of 

the coupled base model is about 0.83 Hz. 

 
4.2 Ground motions 
 

Even though South Korea is not in a high seismic zone, 

but seismologists have warned that a bigger earthquake 

might come due to the series of recent small tremors (Ryall 

2020). This statement is also true because its neighboring 

regions like Japan, China, and Taiwan are seismically very 

active. Keeping this in mind, about 200 representative real-

life ground motions, obtained from PEER database (PEER) 

for these 3 regions have been used in this study. In other 

words, the structure is assumed to be in these three regions. 

To apply the ground motions, response spectrum (frequency 

contents) and PGA, that represent dominant non-linear 

characteristics of the earthquakes are considered (Kim et al. 

2019, Oh et al. 2020). To represent the soil type 

conveniently, the shear velocity of the ground motion  

 

 

 

Fig. 7 Coupled Noise Barrier Model 

 

 

excitations is also included. The database has a variety of 

parameters for the EQs including the PGA, magnitude 

(Mw), source-fault mechanism, site to source distance, 

shear velocity (Vs30), and lowest usable frequency. 

Representative ground motion characteristics are presented 

in Table 3 and the peak response spectra are shown in Fig. 

8. 

 

 

5. Application of artificial intelligence  
 

Two types of AI techniques are used in this study. 

Firstly, Machine Learning Classification is used to classify 

the structures into three types which are W, EUC, and EC 

as discussed earlier. Secondly, ANN is used to predict the 

seismic responses of the structures. For ANN, both Multi 

Input Single Output (MISO) and Multi Input Multi Output 

(MIMO) systems are considered. Lastly, a sensitivity 

analysis is also performed to point out important 

parameters. 

 

5.1 Machine learning classification 
 

In this section, different classification techniques are 

applied using built-in tools in MATLAB to select the most  

 

 
 

Table 3 Characteristics of some ground motions used in the study 

 
EQ Name 

(PEER Sequence #) 
PGA (g) 

Magnitude 

(Mw) 

Source to Site 

distance (km) 

Vs30 

(m/s) 

Lowest useable 

frequency (Hz) 

Source-Fault 

Mechanism 

Ground 

Motion 

samples 

Chi-Chi Taiwan 1180 0.1374 7.62 24.96 235.13 0.0375 Reverse Oblique 

Taiwan SMART1 504 0.2058 6.32 55.96 308.39 0.1250 Reverse 

Taiwan SMART1 492 0.0642 5.80 41.24 314.33 0.2875 Normal 

Chi-Chi Taiwan 1197 0.6364 7.62 3.12 542.61 0.1500 Reverse Oblique 

Kobe Japan 1100 0.2206 6.90 24.85 256 0.0250 Strike-Slip 

Kobe Japan 1107 0.2403 6.90 22.50 312 0.1250 Strike-Slip 

Tottori Japan 3873 0.0693 6.61 115.23 670.13 0.0413 Strike-Slip 

Tottori Japan 3947 0.7323 6.61 5.83 446.34 0.0625 Strike-Slip 

Kobe 1120 0.6177 6.90 1.46 256 0.1250 Strike-Slip 

Northwest China 1755 0.1350 5.80 35.60 341.56 0.3000 Normal Oblique 

Northwest China 1752 0.3001 6.10 9.98 240.09 0.4000 Normal 

Northwest China 1749 0.0354 5.90 12.62 240.09 0.4000 Strike-Slip 
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Table 4 Architecture of ML techniques 

Properties Ensemble 1 Ensemble 2 KNN 

Method RUS Boost Bag Weighted 

Splits max. 531 2999 - 

Learners/ Neighbors 276 30 10 

Learning Rate/ Type 0.01983 Decision Tree Square inverses 

 

 
Fig. 9 Overview of the classification framework 

 

 

suitable method. Around 150 different modules are made by 

updating the heuristic functions and hyperparameters of 

different techniques: SVM is a binary linear classifier 

(Cortes and Vapnik 1995), Ensemble uses an algorithm to 

learn a group of classification data at the same time and 

then evaluates them (Bramer 2013), K-nearest neighbors 

(KNNs) work on the principle of feature similarity avoiding 

assumptions, and Neural Network that simulates the human 

brain to predict the output (Kiani et al. 2019) etc. Among 

various, three models Ensemble 1 (RUS-Boost), Ensemble 

2 (Bag), and KNN (City-block) are finalized, which showed 

the highest accuracy for both training and testing. The 

processing time is about 13s, 3.15s and 2.54s respectively. 

The weights of these modules are selected such that they 

give the most conservative results thus, the design would 
always be on the safe side. The characteristics are shown in 

Table 4. The input consists of 6 features excluding the SRS 

and S while including 2 acceleration ratio terms Khc and Khuc 

representing the accelerations obtained from both coupled 

and uncoupled models. The idea is illustrated in Fig. 9. 

As discussed earlier 3 ML techniques were compared 

and Ensemble 1 (RUS-Boost) is selected for the proposed 

framework as it outperformed all other techniques in terms 

of accuracy as shown in Table 5, true positive rate (TPR) 

and false negative rate (FNR). Fig. 10 shows the TPR and 

FNR values for Ensemble 1. 

 

5.2 Artificial Neural Network (ANN) prediction 

 

Table 5 Train and test accuracy of ML models 

Accuracy Ensemble 1 Ensemble 2 KNN 

Train/ Validation 93.5 % 93.4% 92.9% 

Test 93.4% 93.2% 87.3% 

 

 

ANN is one of the powerful techniques for prediction. 

The ANNs are trained using Feed-forward backpropagation, 

a technique where the error is reversed engineered to update 

the weights and biases of the hidden layers (Rajput and 

Verma 2014), with the different number of neurons, hidden 

layers (1, 2, 3, 4), training functions like Levenberg-

Marquardt (TRAINLM) is a good technique for medium-

sized databases (Singh et al. 2005), Bayesian 

Regularization (TARINBR) algorithm is based on the 

Bayesian statistics (Gep and Tiao 1973). This method is 

introduced by MacKay and Neal, and it gives a probability 

distribution over the predicted values (Neal 1992), 

TRAINSCG: Scaled Conjugate Gradient works well for 

big-sized databases (Fletcher 2013) and transfer functions 

like Tangent Sigmoid (TANSIG), Pure Linear (PURELIN) 

and LOG-Sigmoid (LOGSIG) that uses the inputs from a 

layer to calculate the outputs (MathWorks 2005), available 

in MATLAB. The number of neurons is selected according 

to Table 6 (Sonmez et al. 2006). The judging (selection) 

criteria for the best ANN model is based on Mean squared 

error (MSE) and liner correlation (R) coefficient. The inputs 

are 11 parameters as discussed earlier whereas the outputs 

are divided into single and multiple vectors. To propose an 
efficient architecture of ANN, networks with different 

numbers of output (i.e., MISO and MIMO system) are 

compared. To evaluate the performance, the normalized 

MSE and R values are calculated as follows (Farfani et al. 

2015) 

⁡⁡⁡𝑀𝑆𝐸 = ⁡
𝐼 × 𝐽 ×

1
𝐼
[∑ ∑ (𝑡𝑖𝑗 − 𝑦𝑖𝑗

𝐽
𝑗=1

𝐼
𝑖=1 )⁡2]

∑
𝐼 ∑ 𝑡𝑖𝑗

2 − (∑ 𝑡𝑖𝑗
𝐼
𝑖=1 )2𝐼

𝑖=1

𝐼
𝐽
𝑗=1 ⁡

⁡ (7) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅 = ⁡

(∑ (𝑡𝑖 −⁡ �̂�)(𝑦𝑖 −⁡�̂�))
𝐼
𝑖=1

𝐼

√∑ (𝑡𝑖 −⁡ �̂�𝑖)
2𝐼

𝑖=1

𝐼
× √√∑ (𝑦𝑖 −⁡�̂�𝑖)

2𝐼
𝑖=1

𝐼

 
(8) 

Where I represents the number of test set, J stands for 

the number of output layer’s neuron, tij and yij are the 

predicted and actual solutions for the ith series of the data  

   
(a) China input EQs (b) Japan input EQs (c) Taiwan input EQs 

Fig. 8 Peak response spectra of ground motions from PEER database 
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given jth node of the output layer. �̂�, �̂� are the means of 

these solutions, ti and yi are the predicted and actual 

solutions for the ith series of the set.  

The ANN network is transformed into a mathematical 

formula as below (Das 2013) 

𝑌 = ⁡𝑓𝑠𝑖𝑔 {𝑏𝑜 +∑ |𝑊𝑘 × 𝑓𝑠𝑖𝑔 (𝑏ℎ𝑘 +∑ 𝑊𝑖𝑘𝑋𝑖
𝑚

𝑖=1
)|

ℎ

𝑘=1
} (9) 

where 𝑌 is the normalized output, 𝑓𝑠𝑖𝑔 ⁡is the transfer 

function, 𝑏𝑜 is the bias of the output layer, 𝑊𝑘 ⁡is the 

connection weight between the kth node of the hidden layer 

and the single output node, 𝑏ℎ𝑘 is the bias of the kth node 

 

 

 

 

of the hidden layer, h is the number of nodes in the hidden 

layer, 𝑊𝑖𝑘 is the connection weight between the ith input 

variable and the hidden layer and ⁡𝑋𝑖  is the normalized 

output. 

 

5.2.1 Multi input single output ANN model 
In MISO scheme, ANNs are tested for each output 

parameter (Dh, Kh, Vh) separately. The architecture is shown 
in Fig. 11(a). However, the same number of neurons (15 
perceptrons) presented the maximum accuracy for each of 
the response parameters. Fig. 11(b) shows the performance 
of Dh in terms of MSE which is 7.9E-6 as compared to Kh  

 

  

 

 (a) Training data (b) Test data  

Fig. 10 True positive rate and false negative rate percentage (Ensemble 1) 

 

  

 

 (a) MISO ANN architecture (b) Performance curve of Dh  

Fig. 11 ANN architecture and performance of MIMO model 

Table 6 Calculation of neurons in the hidden layer 

Serial Number # Heuristic Function Number of Neurons (Nodes) 

1 ≤ 2⁡ ×⁡Ni + 1 23 

2 3⁡ ×⁡Ni 33 

3 
2 +⁡(No × Ni) + (0.5 × No) × (No

2 +⁡Ni) − 3

Ni +⁡No
 

For No =1 (MISO), 1 

For No=3 (MIMO), 4 

4 (2⁡ ×⁡Ni) ÷ 3 7 

5 2⁡ ×⁡Ni 22 

6 (Ni +⁡No) ÷ 2 
For No =1 (MISO), 6 

For No=3 (MIMO), 7 

7 √(Ni +⁡No) 
For No =1 (MISO), 3 

For No=3 (MIMO), 4 

*Ni is the number of input neurons, No is the number of output neurons. 
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and Vh having MSE values of 0.0002 and 0.0006 

respectively. The training and validation R values are 

shown in Fig. 12. The error histograms are presented in Fig. 

13. The test on new data is shown in Fig. 14. It can be seen 

that the training accuracy of Dh is more than the other two 

parameters in terms of R, being 0.99, 0.91 and 0.95 for Dh, 

Kh and Vh respectively. Dh is the most important parameter 

in our framework as the classification is done based on it as 

 

 

 

 

discussed in section 2.1. 

 

5.2.2 Multi Input Multiple Output (MIMO) ANN model 
In MIMO scheme, the ANNs are tested for a combined 

output with the 3 parameters (Dh, Kh, Vh). In the case of the 

MIMO model 25 neurons in the hidden layer provided 

acceptable results as shown in Fig. 15. The R-value is 

shown in Fig. 16 along with the error histogram. The test on  

 

   

 

 (a) Training R for Dh (b) Training R for Kh (c) Training R for Vh  

 

   

 

 (d) Validation R for Dh (e) Validation R for Kh (f) Validation R for Vh  

Fig. 12 Training and validation linear correlation factor (R) values 

 

   

 

 (a) Dh Error Histogram (b) Kh Error Histogram (c) Vh Error Histogram  

Fig. 13 Error histograms for training, validation and test linear correlation factor (R) values 

 

   

 

 (a) Test R vlaue fo Dh (b) Test R vlaue fo Kh (c) Test R vlaue fo Vh  

Fig. 14 Multiple input single output model test linear correlation factor (R) values 
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Fig. 17 MIMO test R-value for combined (Dh, Kh, Vh) 

 

 

new data is shown in Fig. 17. The overall performance and 

accuracy of training and test for MIMO is less than the 

individual MISO models. The training MSE and R values 

for MISO is 7.9E-6 (Dh) and 0.99 (Dh), whereas those for 

MIMO model are 0.001 and 0.94 respectively. 

The results from MISO and MIMO are summarized in 

Table 7 to better compare the results. Overall test accuracy 

of MISO is showing better accuracy than MIMO model. 

The best results are obtained with feed-forward back-

propagation algorithm using TRAINLM as training function 

and TANSIG as transfer function. It can also be seen that 

Dh is predicted with the most accuracy as compared to Kh 

and Vh.  

 

 

Table 7 Comparison of MISO and MIMO Models 

Model MISO MIMO 

Parameters Dh Kh Vh (Dh, Kh, Vh) 

Test R 95% 90% 93% 89% 

MSE 7.91e-6 0.00274 0.000640 0.0010 

Training Time 

(seconds) 
0 0 0 1 

 

 
5.2.3 Sensitivity analysis 
Sensitivity analysis to figure out the most important 

inputs is performed according to Garson’s algorithm using 

the formula mentioned below (Garson 1991, Gevrey et al. 

2003). The results are shown in Table 8. Seismic responses 

are the most sensitive to SRS. Then the dynamic interaction 

(S) is effective. The height (H) has more relative 

importance (RI) as compared to ground type (G) and shear 

wave velocity (Vs). 

𝐼𝑗 =

∑ ((
|𝑊𝑗𝑚

𝑖ℎ|

∑ |𝑊𝑘𝑚
𝑖ℎ |𝑘=𝑁𝑖

𝑘=1

) × |𝑊𝑚𝑛
ℎ𝑜|)𝑚=𝑁ℎ

𝑚=1

∑ {∑ (
|𝑊𝑘𝑚

𝑖ℎ |

∑ |𝑊𝑘𝑚
𝑖ℎ |𝑁𝑖

𝑘=1

)𝑚=𝑁ℎ
𝑚=1 × |𝑊𝑚𝑛

ℎ𝑜|}𝑘=𝑁𝑖
𝑘=1

 
(10) 

Here, Ij is the relative importance of the jth input on the 

output. Subscripts k, m and n refer to input, hidden and 

output nodes, respectively. Ni and Nh are the number of 

input and hidden nodes, and W is the weight of connection 

(Elmolla et al. 2010).  

 

  

 

 (a) MIMO ANN architecture (b) MIMO performance curve  

Fig. 15 ANN architecture and performance of MIMO model 

   
(a) Training R (b) Validation R (c) Error Histogram 

Fig. 16 Training, validation R values and error histogram of multiple input multiple output model 
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Table 8 Sensitivity analysis of the inputs using Garson’s 

algorithm 

Inputs 
Dh Kh Vh 

RI % Rank RI % Rank RI % Rank 

H 12.94 3 9.43 4 6.35 4 

S 13.32 2 9.89 3 14.32 2 

Vs 6.15 5 5.54 5 1.81 6 

PGA 7.11 4 12.45 2 8.34 3 

G 4.60 6 5.19 6 3.79 5 

SRS 55.73 1 55.55 1 65.5 1 

*All six parameters of SRS are being treated as one to rank easily. 

SRS has more Relative Importance (RI) when treated individually 

as well. RI values are approximated. 

 
 
6. Conclusions 

 
The primary objective of the paper is to stress the 

importance of seismic structural safety of systems designed 

for wind. The authors applied computer-aided techniques 

such as machine learning to assess the design of NB 

structures classifying them into the wind and seismic 

models. Secondly, by analyzing the response features, the 

framework showed the importance of dynamic interaction 

of structures and model classification into coupled and 

uncoupled models as per the seismic demands. Lastly, using 

the proposed framework, the seismic responses of the 

structures are predicted. All of the objectives are 

successfully achieved in the current study with the 

development of an advanced computer-aided machine 

learning framework to classify the structures and to predict 

the seismic responses of NBs as well. The framework 

provides information about the design type (wind or 

seismic), design category (coupled or uncoupled) and 

seismic responses (Kh, Vh, Dh) of the structure. The 

framework is generalized by a significant variation in 

structure type, height, and ground motion parameters. The 

key outcomes of the study are summarized as below: 

• The structures designed for wind must also be cross 

checked for the seismic safety. 

• Analysis of different earthquakes and structures show 

that the seismic response of a system is different for the 

same EQ based on the dynamic interaction of the 

structures. 

• It is demonstrated that based on the ground motion 

type, care should be taken while selecting the design 

model as coupled or uncoupled because for some 

earthquakes the coupled design is conservative and for 

others uncoupled design has a higher value of the 

engineering demand parameters. 

• Among the ML classification techniques ENSEMBLE, 

KNN, SVM, and neural networks, the ENSEMBLE-1 

model with a few modifications in the hyper-parameters, 

categorized the system into wind design, EQ coupled 

design and EQ uncoupled design with a TPR and 

accuracy of more than 90% and above. 

• A seismic structure design assessment ratio Ac is 

introduced which can distinguish whether wind design, 

coupled EQ design, or uncoupled EQ design is required 

based on the earthquake response of the structure. 

• Results show that the framework predicts the seismic 

responses Kh, Vh, Dh with reasonable accuracy of 90% to 

96%. Among the different number of layers, neurons 

functions, algorithms, and transfer functions, 15 neurons 

and 1 hidden layer with Feed-forward back-propagation 

algorithm, TRAINLM as training function, and 

TANSIG as transfer function showed the most accurate 

results. 

• The comparison of MISO and MIMO models 

demonstrated that the MISO model has more accuracy 

with a smaller number of neurons. The optimized 

number of neurons was 15 and 25 for both models 

respectively. 

• Sensitivity analysis of the input parameters using 

Garson’s algorithm has shown that response spectrum 

and interaction parameters are the most important for 

the seismic responses followed by the height parameter. 

Whereas the ground type and shear wave velocity have 

lower relative importance. 

Although the results of this study are based on NBs, 

however, the concept can be extended to all types of 

structures in general. The database of the framework can be 

updated with several different parameters including 

different structure types and earthquakes. 
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Notations 
 
ANN : Artificial Neural Network 

D : Maximum Displacement 

D1 : Displacement Limit 

Dc : Coupled Maximum Displacement 

Dh : Maximum Displacement Ratio 

Duc : Uncoupled Maximum Displacement 

E : Elastic Modulus  

EC : Earthquake Coupled 

EDP : Engineering Demand Parameter 

ELFP : Equivalent Lateral Force Procedure  
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EQ : Earthquake 

EUC : Earthquake Uncoupled 

fc' : Concrete Compressive Strength 

FNR : False Negative Rate 

Fy : Steel Yield Strength 

G : Ground Type 

H : Height of the Structure 

Iz : 2nd Moment of Area  

Kh : Maximum Acceleration Ratio 

Khc : Coupled Model Acceleration Ratio 

Khuc : Uncoupled Model Acceleration Ratio 

KNN : K-Nearest Neighbours 

MIMO : Multi Input Multi Output  

MISO : Multi Input Single Output 

ML : Machine Learning 

MSE : Mean Squared Error 

Mw : Magnitude 

NB : Noise Barrier 

NLTHA : Non Linear Time History Analysis 

PBSD : Performance Based Seismic Design 

PGA : Peak Ground Acceleration 

R : Linear Correlation Factor 

RI : Relative Importance 

S : Interaction Indicator 

SDOF : Single Degree of Freedom 

Sh : Design Category Ratio 

SPSI : Soil Pile Strucutre Interaction 

SRS : Short Response Spectrum 

SSI : Soil Structure Interaction 

SVM : Support Vector Machine 

TARINBR : Bayesian Regularization  

TPR : True Postive Rate 

TRAINLM : Levenberg-Marquardt  

TRAINSCG : Scaled Conjugate Gradient 

Vh : Maximum Base Shear Ratio 

Vs : Shear Wave Velocity 

W : Wind 
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