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Abstract.  The effect of porosity on the thermo-mechanical behavior of simply supported functionally graded plate 
reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper using new refined 
hyperbolic shear deformation plate theory. Both even and uneven distribution of porosity are taken into account and 
the effective properties of FG plates with porosity are defined by theoretical formula with an additional term of porosity. 
The present formulation is based on a refined higher order shear deformation theory, which is based on four variables 
and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the 
FG plate and takes into account the various distribution shape of porosity. The elastic foundation is described by the 
Winkler-Pasternak model. A new modified power-law formulation is used to describe the material properties of FGM 
plates in the thickness direction. The closed form solutions are obtained by using Navier technique. The present results 
are verified in comparison with the published ones in the literature. The results show that the dimensionless and stresses 
are affected by the porosity volume fraction, constituent volume fraction, and thermal load. 
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1. Introduction 
 

Currently, functionally graded materials (FGMs) are alternative materials commonly used in 

many kinds of engineering structures: aerospace, nuclear, civil, automotive, biomechanical, 

electronic, chemical, and mechanical industries. In fact, FGMs have been developed and 

successfully used in industrial applications since 1980’s (Koizumi 1993). The most well-known 

FGM is compositionally graded from a ceramic to metal to incorporate such diverse properties as 

heat, wear, and oxidation resistance of ceramics with the toughness, strength, machinability, and 

bending capability of metals. 

The plates under different mechanical applications may be subjected to different loads. 

Therefore, the knowledge of the characteristics of FGM plates is of much practical importance for 

the design of plates. From the literature, it should be noted that the behavior of plates resting on the 

Winkler-Pasternak foundation subjected to a thermo-mechanical loading drew the intention of many 

researchers (Adim 2016b, Benferhat 2018, Rabia 2016a, Hassaine Daouadji 2012a). The plates 

supported by an elastic foundation are very common in structural engineering. To describe the 

 

Corresponding author, Professor, E-mail: daouadjitahar@gmail.com 



 

 

 

 

 

 

Benferhat Rabia, Hassaine Daouadji Tahar and Rabahi Abderezak 

interaction between the plate and foundation, several foundation models have been proposed. The 

simplest one is the Winkler or one-parameter model (Winkler 1867). In this model, it is assumed 

that there is a proportional interaction between pressure and deflection of the applied point in the 

foundation. This model was improved by Pasternak (1954) by adding a shear spring to simulate the 

interactions between the separated springs in the Winkler model. The Pasternak or two-parameter 

model is widely used to describe the mechanical behavior of structure foundation interactions and 

will be used here to simulate the interactions between the plate and foundation (Belkacem 2016b, 

Benferhat 2019a, Hassaine Daouadji 2016c, Hadji 2015, Mohamed Amine 2019 and Bekki 2019). 

Many studies have been conducted on the mechanical and thermo-mechanical behavior of FGM 

structures. Zenkour (2010) performed A hygrothermal bending analysis is presented for a 

functionally graded material (FGM) plate resting on elastic foundations. The elastic coefficients, 

thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the 

thickness direction. Tinh (2016) presented the new numerical results of high temperature mechanical 

behaviors of heated FG plates, emphasizing the high temperature effects on static and dynamic 

response. Yaghoobi (2014) studied the nonlinear vibration and post-buckling analysis of beams 

made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to 

thermo-mechanical loading. Shuohui (2016) developed a novel and effective approach based on 

isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for the Numerical 

results of buckling and free vibration of functionally graded plates considering in-plane material 

inhomogeneity. Bouderba (2013) presented an analytical solution to the thermo-mechanical bending 

response of FG plates resting on Winkler-Pasternak elastic foundations using a refined trigonometric 

shear deformation theory (RTSDT). Pakar (2018) studied the nonlinear vibrations of the 

unsymmetrical laminated composite beam (LCB) on a nonlinear elastic foundation where the 

governing equation of the problem is derived by using Galerkin method. Thom (2017) proposed a 

new third-order shear deformation plate theory (TSDT) for numerical analysis of buckling and 

bending behaviors of 2D-FGM plates without the need for special treatment of shear-locking effect 

and shear correction factors. Thanh Banh (2018) contributes to evaluate multiphase topology 

optimization design of plate-like structures on elastic foundations by using classic plate theory. 

Multi-material optimal topology and shape are produced as an alternative to provide reasonable 

material assignments based on stress distributions. Reddy (2001) investigated thermo-mechanical 

deformations of simply supported, functionally graded rectangular plates by using an asymptotic 

method (Belkacem 2016a, Benferhat 2019b, Hassaine Daouadji 2013). The temperature, 

displacements and stresses of the plate are computed for different volume fractions of the ceramic 

and metallic constituents. Bouderba (2018) analyzed bending analysis of FGM rectangular plates 

resting on non- uniform elastic foundations in thermal environment. Tan-Van (2018) integrated a 

novel numerical method based on the Moving Kriging (MK) interpolation meshfree method with a 

simple higher-order shear deformation plate theory to studied the static bending, free vibration and 

buckling of functionally graded (FG) plates. Isavand (2015) investigated the dynamic response of 

functionally gradient steel (FGS) composite cylindrical panels in steady-state thermal environments 

subjected to impulsive loads. Yadwinder (2018) developed non-polynomial shear deformation 

theories are assessed for thermo-mechanical response characteristics of laminated composite plates. 

Esfahani (2013) examined a thermal buckling and post-buckling analysis of functionally graded 

material (FGM) Timoshenko beams resting on a non-linear elastic foundation. Thermal and 

mechanical properties of the FGM media are considered to be functions of both temperature and 

position. Pandey (2017) presented a finite element formulation for thermal stress analysis of 

functionally graded material (FGM) sandwich beam subjected to thermal shock. A layerwise higher- 
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Fig. 1 Functionally graded porous plate resting on elastic foundation 

 

 

order theory is used to obtain the stress-strain relationship for three layered functionally graded 

material sandwich beam. Babaei (2018) analyzed the nonlinear bending response of the functionally 

graded material curved tube subjected to the uniform lateral pressure. The effect of the thermal 

environment is also included (Abdelhak 2016, Adim 2016a, Rabia 2016b, Benhenni 2019, Hadji 

2014, Benachour 2011, Tlidji 2014, Benferhat 2016b, Hassaine Daouadji 2017).  

Recent investigations have been presented for the analysis of cracked FGM plates using advanced 

numerical methods. Liu (2015) developed an accurate extended 3-node triangular plate element in 

the context of the extended finite element method to study the buckling failure of cracked composite 

functionally graded plates subjected to uniaxial and biaxial compression loads. Shuohui (2015) 

extracted the critical buckling parameters and natural frequencies of defective FG plates with 

internal cracks using an effective numerical approach. Tiantang (2017) study the thermal-mechanical 

buckling of functionally graded rectangular and skew plates under combined thermal and 

mechanical loads. 

Moreover, the effect of porosity on the behavior of FGMs has been the aim of just a few 

researchers. Benferhat (2016a) and Hassaine Daouadji (2016d), studied the static and free vibration 

analysis of FGM plates with porosities resting on elastic foundations. Heshmati (2018) presented 

the effect of different profile variations on vibrational properties of non-uniform beams made of 

graded porous materials. Wang (2018) studied the effect of porosities on free thermal vibration of 

functionally graded material (FGM) cylindrical shells by using the Loves shell theory to formulate 

the strain displacement equations, and the Rayleigh-Ritz method to calculate the natural frequencies 

of the system. To the authors’ knowledge, no researchers have given much attention to thermo-

mechanical loading of FGM plates containing porosities resting on elastic foundations. These 

porosities can occur within the FGM plates during the process of sintering. This is because of the 

large difference in solidification temperatures between material constituents (Zhu 2001).  

This investigation aims to present the effect of the distribution shape of porosity on thermo-

mechanical loading of FGM plates resting on Winkler-Pasternak foundations by using an improved 

version of hyperbolic shear deformation theory (Benferhat 2015, Hassaine Daouadji 2012b, Zohra 

2016, Adim 2018, Benhenni 2018). Both even and uneven distribution shape of porosity are taken 

into account in this study by using a modified law of mixture. This theory is rather simple to use and 

accounts for a parabolic transverse shear deformation shape function and satisfies shear stress free 

boundary conditions of top and bottom surfaces of the plate without using shear correction factors. 
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Navier solution is used to obtain the closed-form solutions for simply supported functionally graded 

plates. Comparison studies are performed to verify the validity of the present results. The influences 

of several parameters are also discussed. 

 

 
2. Theoretical formulation  
 

The volumetric gradation of FGM plate containing porosities is shown in Fig. 1. In this figure, 

the top layer is made up of 100% ceramic and graded to 100% metal at the bottom. The porosities 

inside the shell disperse evenly or unevenly along the thickness direction. A simply supported square 

FGM plate with side length a in the x-direction, b in the y-direction and total thickness h is 

considered in this study. 

For even and uneven types of effective properties are defined as (Benferhat 2016a, Rezaei 2017, 

Hassaine Daouadji 2016b and Pinar 2019) 

Even distribution 

𝑷 = (𝑷𝒄 − 𝑷𝒎)(
𝟏

𝟐
+

𝒛

𝒉
)𝒌 + 𝑷𝒎 − (𝑷𝒄 +𝑷𝒎)

𝜷

𝟐
                     (1) 

Uneven distribution 

𝑷 = (𝑷𝒄 − 𝑷𝒎)(
𝟏

𝟐
+

𝒛

𝒉
)𝒌 + 𝑷𝒎 −

𝜷

𝟐
(𝑷𝒄 + 𝑷𝒎)(𝟏 −

𝟐|𝒛|

𝒉
)                  (2) 

where P is the effective material properties, k is the power law index and β is the porosity parameter. 

Subscript c and m denotes ceramic and metal, respectively. 

Based on the higher order shear deformation plate theory, the displacement components are 

assumed to be: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤𝑠

𝜕𝑥

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏

𝜕𝑦
− 𝑓(𝑧)

𝜕𝑤𝑠

𝜕𝑦

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦)

                        (3) 

where u0 and v0 are the in-plane displacements of the neutral plane in the x and y directions 

respectively. The transverse displacement through thickness direction is separated into bending (wb) 

and shear (ws) components. f(z) is the shape function. In this paper hyperbolic shape function is used 

(Hassaine Daouadji 2016a) 

𝑓(𝑧) = 𝑧 [1 +
3𝜋

2
𝑠𝑒𝑐 ℎ

2
(
1

2
)] −

3𝜋

2
ℎ 𝑡𝑎𝑛ℎ(

𝑧

ℎ
)                       (4) 

The origin of the material coordinates is at the middle surface of the plate. The linear strain can 

be obtained from kinematic relations as 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧 𝑘𝑥

𝑏 + (𝑧 [1 +
3𝜋

2
𝑠𝑒𝑐 ℎ

2
(
1

2
)] −

3𝜋

2
ℎ 𝑡𝑎𝑛ℎ(

𝑧

ℎ
)) 𝑘𝑥

𝑠

𝜀𝑦 = 𝜀𝑦
0 + 𝑧 𝑘𝑦

𝑏 + (𝑧 [1 +
3𝜋

2
𝑠𝑒𝑐 ℎ

2
(
1

2
)] −

3𝜋

2
ℎ 𝑡𝑎𝑛ℎ(

𝑧

ℎ
)) 𝑘𝑦

𝑠

𝛾𝑥𝑦 = 𝛾𝑥𝑦
0 + 𝑧 𝑘𝑥𝑦

𝑏 + (𝑧 [1 +
3𝜋

2
𝑠𝑒𝑐 ℎ

2
(
1

2
)] −

3𝜋

2
ℎ 𝑡𝑎𝑛ℎ(

𝑧

ℎ
)) 𝑘𝑥𝑦

𝑠

  

𝛾𝑦𝑧 = 𝑔(𝑧)𝛾𝑦𝑧
𝑠  

502



 

 

 

 

 

 

Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation 

𝛾𝑥𝑧 = 𝑔(𝑧)𝛾𝑥𝑧
𝑠  

𝜀𝑧 = 0                                  (5) 

Where 

𝜀𝑥
0 =

𝜕𝑢0

𝜕𝑥
, 𝑘𝑥

𝑏 = −
𝜕2𝑤𝑏

𝜕𝑥2
, 𝑘𝑥

𝑠 = −
𝜕2𝑤𝑠

𝜕𝑥2
 

𝜀𝑦
0 =

𝜕𝑣0

𝜕𝑦
, 𝑘𝑦

𝑏 = −
𝜕2𝑤𝑏

𝜕𝑦2
, 𝑘𝑦

𝑠 = −
𝜕2𝑤𝑠

𝜕𝑦2
 

𝛾𝑥𝑦
0 =

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
, 𝑘𝑥𝑦

𝑏 = −2
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑦
, 𝑘𝑥𝑦

𝑠 = −2
𝜕2𝑤𝑠

𝜕𝑥𝜕𝑦
 

𝛾𝑦𝑧
𝑠 =

𝜕𝑤𝑠

𝜕𝑦
, 𝛾𝑥𝑧

𝑠 =
𝜕𝑤𝑠

𝜕𝑥
, 

𝑓′(𝑧) =
𝑑(𝑧 [1 +

3𝜋

2
𝑠𝑒𝑐 ℎ

2
(
1

2
)] −

3𝜋

2
ℎ 𝑡𝑎𝑛ℎ(

𝑧

ℎ
))

𝑑𝑧  

𝑔(𝑧) = 1 − 𝑓′(𝑧) = 1 −
𝑑(𝑧[1+

3𝜋

2
𝑠𝑒𝑐 ℎ

2
(
1

2
)]−

3𝜋

2
ℎ 𝑡𝑎𝑛ℎ(

𝑧

ℎ
))

𝑑𝑧
,            (6)

 
Constitutive relations for linear elastic functionally graded plate can be given: 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
 
 
 
𝐸(𝑧)

1−𝜈2
𝜈𝐸(𝑧)

1−𝜈2
0 0 0

𝜈𝐸(𝑧)

1−𝜈2
𝐸(𝑧)

1−𝜈2
0 0 0

0 0
𝐸(𝑧)

2(1+𝜈)
0 0

0 0 0
𝐸(𝑧)

2(1+𝜈)
0

0 0 0 0
𝐸(𝑧)

2(1+𝜈)]
 
 
 
 
 
 
 
 

{
 
 

 
 
𝜀𝑥 − 𝛼𝛥𝑇
𝜀𝑦 − 𝛼𝛥𝑇
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦 }

 
 

 
 

            (7) 

where ΔT=T–T0 is the temperature rise from the reference temperature T0. 

where the temperature distribution T(x, y, z) through the thickness is assumed to be 

𝑇(𝑥, 𝑦, 𝑧) = 𝑇1(𝑥, 𝑦) +
𝑧

ℎ
𝑇2(𝑥, 𝑦) + 𝑓(𝑧)𝑇3(𝑥, 𝑦)                 (8) 

For porous FG plate the equilibrium equations are derived by using the virtual work principle, 

which can be written as 

∫ ∫ [𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑦𝛿𝜀𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧 + 𝜏𝑧𝑥𝛿𝛾𝑧𝑥]𝛺

ℎ/2

−ℎ/2
𝑑𝛺𝑑𝑧 − ∫ (𝑞 − 𝑓𝑒)𝛿𝑤𝑑𝛺 = 0𝛺

 (9) 

Where Ω is the top surface, q is the distributed transverse load and fe is the density of reaction 

force of foundation. For the Pasternak foundation model 

𝒇𝒆 = 𝑲𝑾𝒘− 𝑱𝟏
𝝏𝟐𝒘

𝝏𝒙𝟐
− 𝑱𝟐

𝝏𝟐𝒘

𝝏𝒚𝟐
                         (10) 

where KW is the modulus of subgrade reaction (elastic coefficient of the foundation) and J1 and J2 

are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is homogeneous 

and isotropic, we will get J1=J2=J0. If the shear layer foundation stiffness is neglected, Pasternak 

foundation becomes a Winkler foundation. 

Substituting Eqs. (7) and (10) into Eq.(13) and integrating through the thickness of the plate, Eq. 

(13) can be rewritten as 
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∫[𝑵𝒙𝜹𝜺𝒙
𝟎 +𝑵𝒚𝜹𝜺𝒚

𝟎 +𝑵𝒙𝒚𝜹𝜺𝒙𝒚
𝟎 +𝑴𝒙

𝒃𝜹𝒌𝒙
𝒃 +𝑴𝒚

𝒃𝜹𝒌𝒚
𝒃 +𝑴𝒙𝒚

𝒃 𝜹𝒌𝒙𝒚
𝒃 +𝑴𝒙

𝒔𝒆𝜹𝒌𝒙
𝒔 +𝑴𝒚

𝒔𝜹𝒌𝒚
𝒔

𝜴

 

+𝑴𝒙𝒚
𝒔 𝜹𝒌𝒚

𝒔 +𝑴𝒙𝒚
𝒔 𝜹𝒌𝒙𝒚

𝒔 + 𝑺𝒚𝒛
𝒔 𝜹𝜸𝒚𝒛

𝒔 + 𝑺𝒙𝒛
𝒔 𝜹𝜸𝒙𝒛

𝒔 ]𝒅𝜴− ∫ (𝒒 − 𝒇𝒆)(𝜹𝒘𝒃 + 𝜹𝒘𝒔)𝒅𝜴 = 𝟎𝜴
  (11) 

The stress resultants N, M, and S are defined by: 

{

𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦

𝑀𝑥
𝑏 𝑀𝑦

𝑏 𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠 𝑀𝑦

𝑠 𝑀𝑥𝑦
𝑠

} = ∫ (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)
ℎ/2

−ℎ/2
{
1
𝑧

𝑓(𝑧)
} 𝑑𝑧 

(𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 ) = ∫ (𝜏𝑥𝑧, 𝜏𝑦𝑧)𝑔(𝑧)𝑑𝑧
ℎ/2

−ℎ/2
                      (12) 

Substituting Eq. (10) into Eq. (16) and integrating through the thickness of the plate, the stress 

resultants are given as 

{
𝑁
𝑀𝑏

𝑀𝑠
} = [

𝐴 𝐵 𝐵𝑠

𝐴 𝐷 𝐷𝑠

𝐵𝑠 𝐷𝑠 𝐻𝑠
] {
𝜀
𝑘𝑏

𝑘𝑠
} − {

𝑁𝑇

𝑀𝑏𝑇

𝑀𝑠𝑇

} ,   S = 𝐴𝑠𝛾               (13) 

Where 

𝑵 = {𝑵𝒙, 𝑵𝒚, 𝑵𝒙𝒚}
𝒕
,  𝑴𝒃 = {𝑴𝒙

𝒃,𝑴𝒚
𝒃,𝑴𝒙𝒚

𝒃 }
𝒕
,  𝑴𝒔 = {𝑴𝒙

𝒔 ,𝑴𝒚
𝒔 ,𝑴𝒙𝒚

𝒔 }
𝒕
 

𝜺 = {𝜺𝒙
𝟎, 𝜺𝒚

𝟎, 𝜸𝒙𝒚
𝟎 }

𝒕
,  𝒌𝒃 = {𝒌𝒙

𝒃, 𝒌𝒚
𝒃, 𝒌𝒙𝒚

𝒃 }
𝒕
,  𝒌𝒔 = {𝒌𝒙

𝒔 , 𝒌𝒚
𝒔 , 𝒌𝒙𝒚

𝒔 }
𝒕
 

𝑨 = [

𝑨𝟏𝟏 𝑨𝟏𝟐 𝟎
𝑨𝟏𝟐 𝑨𝟐𝟐 𝟎
𝟎 𝟎 𝑨𝟔𝟔

],   𝑩 = [

𝑩𝟏𝟏 𝑩𝟏𝟐 𝟎
𝑩𝟏𝟐 𝑩𝟐𝟐 𝟎
𝟎 𝟎 𝑩𝟔𝟔

] ,  𝑫 = [

𝑫𝟏𝟏 𝑫𝟏𝟐 𝟎
𝑫𝟏𝟐 𝑫𝟐𝟐 𝟎
𝟎 𝟎 𝑫𝟔𝟔

] 

𝑩𝒔 = [

𝑩𝟏𝟏
𝒔 𝑩𝟏𝟐

𝒔 𝟎

𝑩𝟏𝟐
𝒔 𝑩𝟐𝟐

𝒔 𝟎

𝟎 𝟎 𝑩𝟔𝟔
𝒔
],  𝑫𝒔 = [

𝑫𝟏𝟏
𝒔 𝑫𝟏𝟐

𝒔 𝟎

𝑫𝟏𝟐
𝒔 𝑫𝟐𝟐

𝒔 𝟎

𝟎 𝟎 𝑫𝟔𝟔
𝒔
] ,  𝑯𝒔 = [

𝑯𝟏𝟏
𝒔 𝑯𝟏𝟐

𝒔 𝟎

𝑯𝟏𝟐
𝒔 𝑯𝟐𝟐

𝒔 𝟎

𝟎 𝟎 𝑯𝟔𝟔
𝒔
] 

𝑺 = {𝑺𝒚𝒛
𝒛 , 𝑺𝒙𝒛

𝒔 }
𝒕
 ,  𝜸 = {𝜸𝒚𝒛, 𝜸𝒙𝒛}

𝒕
,   𝑨𝒔 = [

𝑨𝟒𝟒
𝒔 𝟎

𝟎 𝑨𝟓𝟓
𝒔 ]             (14) 

Where Aij, Bij, etc., are the plate stiffness, defined by 

{

𝑨𝟏𝟏 𝑩𝟏𝟏 𝑫𝟏𝟏 𝑩𝟏𝟏
𝒔 𝑫𝟏𝟏

𝒔 𝑯𝟏𝟏
𝒔

𝑨𝟏𝟐 𝑩𝟏𝟐 𝑫𝟏𝟐 𝑩𝟏𝟐
𝒔 𝑫𝟏𝟐

𝒔 𝑯𝟏𝟐
𝒔

𝑨𝟔𝟔 𝑩𝟔𝟔 𝑫𝟔𝟔 𝑩𝟔𝟔
𝒔 𝑫𝟔𝟔

𝒔 𝑯𝟔𝟔
𝒔
} = ∫

𝑬(𝒛)

𝟏−𝝂𝟐
(𝟏, 𝒛, 𝒛𝟐, 𝒇(𝒛), 𝒛𝒇(𝒛), 𝒇𝟐(𝒛){

𝟏
𝝂
𝟏−𝝂

𝟐

}
𝒉/𝟐

−𝒉/𝟐
  (15)

 and 

(𝑨𝟐𝟐, 𝑩𝟐𝟐, 𝑫𝟐𝟐, 𝑩𝟐𝟐
𝒔 , 𝑫𝟐𝟐

𝒔 , 𝑯𝟐𝟐
𝒔 ) = (𝑨𝟏𝟏, 𝑩𝟏𝟏, 𝑫𝟏𝟏, 𝑩𝟏𝟏

𝒔 , 𝑫𝟏𝟏
𝒔 , 𝑯𝟏𝟏

𝒔 ) 

𝐴44
𝑠 = 𝐴55

𝑠 = ∫
𝐸(𝑧)

2(1+𝜈)
[𝑔(𝑧)]2𝑑𝑧

ℎ/2

−ℎ/2
                      (16) 

The stress and moment resultants,
 
𝑁𝑥
𝑇 = 𝑁𝑦

𝑇 ,  𝑀𝑥
𝑏𝑇 = 𝑀𝑦

𝑏𝑇 ,  𝑀𝑥
𝑠𝑇 = 𝑀𝑦

𝑠𝑇 due to thermal loading 

are defined respectively by 

{

𝑁𝑥
𝑇

𝑀𝑥
𝑏𝑇

𝑀𝑥
𝑠𝑇

} = ∫
𝐸(𝑧)

1−𝜈

ℎ/2

−ℎ/2
𝛼(𝑧)𝑇 {

1
𝑧

𝑓(𝑧)
} 𝑑𝑧                     (17) 
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Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation 

The governing equations of equilibrium can be derived from Eq. (15) by integrating the 

displacement gradients by parts and setting the coefficients 𝛿𝑢0,  𝛿𝑣0,  𝛿𝑤𝑏 and 𝛿𝑤𝑠 zero 

separately. Thus one can obtain the equilibrium equations associated with the present shear 

deformation theory 

𝛿𝑢0:  
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0 

𝛿𝑣0:  
𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦

𝜕𝑦
= 0 

𝛿𝑤𝑏:  
𝜕2𝑀𝑥

𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
− 𝑓𝑒 + 𝑞 = 0  

𝛿𝑤𝑠:  
𝜕2𝑀𝑥

𝑠

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑠

𝜕𝑦2
+
𝜕𝑆𝑥𝑧

𝑠

𝜕𝑥
+
𝜕𝑆𝑦𝑧

𝑠

𝜕𝑦
− 𝑓𝑒 + 𝑞 = 0             (18) 

Substituting from Eq. (17) into Eq. (21), we obtain the following equation 

𝐴11𝑑11𝑢0 + 𝐴66𝑑22𝑢0 + (𝐴12 + 𝐴66)𝑑12𝜈0 − 𝐵11𝑑111𝑤𝑏 − (𝐵12 + 2𝐵66)𝑑122𝑤𝑏 

−(𝐵12
𝑠 + 2𝐵66

𝑠 )𝑑122𝑤𝑠 − 𝐵11
𝑠 𝑑111𝑤𝑠 = 𝑝1                   (19)

 𝐴22𝑑22𝜈0 + 𝐴66𝑑11𝜈0 + (𝐴12 + 𝐴66)𝑑12𝑢0 − 𝐵22𝑑222𝑤𝑏 

−(𝐵12 + 2𝐵66)𝑑112𝑤𝑏 − (𝐵12
𝑠 + 2𝐵66

𝑠 )𝑑112𝑤𝑠 − 𝐵22
𝑠 𝑑222𝑤𝑠 = 𝑝2          (20) 

𝐵11𝑑11𝑢0 + (𝐵12 + 2𝐵66)𝑑122𝑢0 + (𝐵12 + 2𝐵66)𝑑112𝜈0 + 𝐵22𝑑222𝜈0 

−𝐷11𝑑1111𝑤𝑏 − 2(𝐷12 + 2𝐷66)𝑑1122𝑤𝑏 − 𝐷22𝑑2222𝑤𝑏 − 𝐷11
𝑠 𝑑1111𝑤𝑠 

−2(𝐷12
𝑠 + 2𝐷66

𝑠 )𝑑1122𝑤𝑠 − 𝐷22
𝑠 𝑑2222𝑤𝑠 = 𝑝3                 (21)

 𝐵11
𝑠 𝑑111𝑢0 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑122𝑢0 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑112𝜈0 

+𝐵22
𝑠 𝑑222𝜈0 − 𝐷11

𝑠 𝑑1111𝑤𝑏 − 2(𝐷12
𝑠 + 2𝐷66

𝑠 )𝑑1122𝑤𝑏 

−𝐷22
𝑠 𝑑2222𝑤𝑏 −𝐻11

𝑠 𝑑1111𝑤𝑠 − 2(𝐻12
𝑠 + 2𝐻66

𝑠 )𝑑1122𝑤𝑠 
−𝐻22

𝑠 𝑑2222𝑤𝑠 + 𝐴55
𝑠 𝑑11𝑤𝑠 + 𝐴44

𝑠 𝑑22𝑤𝑠 = 𝑝4                  (22)

 Where {𝑝} = {𝑝1, 𝑝2, 𝑝3, 𝑝4}
𝑡 is a generalized force vector,

 
𝑑𝑖𝑗 ,  𝑑𝑖𝑗𝑙   and 𝑑𝑖𝑗𝑙𝑚 are the following 

differential operators 

𝑑𝑖𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
,   𝑑𝑖𝑗𝑙 =

𝜕3

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑙
,   𝑑𝑖𝑗𝑙𝑚 =

𝜕4

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑙𝜕𝑥𝑚
,   𝑑𝑖 =

𝜕

𝜕𝑥𝑖
,   (𝑖, 𝑗, 𝑙, 𝑚 = 1,2)    (23) 

The components of the generalized force vector {p} are given by 

𝑝1 =
𝜕𝑁𝑥

𝑇

𝜕𝑥
,  

𝑝2 =
𝜕𝑁𝑦

𝑇

𝜕𝑦
,  

𝑝3 = 𝑓𝑒 + 𝑞 −
𝜕2𝑀𝑥

𝑏𝑇

𝜕𝑥2
−
𝜕2𝑀𝑦

𝑏𝑇

𝜕𝑦2
,  

𝑝4 = 𝑓𝑒 + 𝑞 −
𝜕2𝑀𝑥

𝑠𝑇

𝜕𝑥2
−
𝜕2𝑀𝑦

𝑠𝑇

𝜕𝑦2
                         (24) 

To solve this problem, Navier presented the uniform external force and the transverse uniform 

temperature loads in the form of a double trigonometric series  

{
𝑞
𝑇1
} = {

𝑞0
𝑡1
} 𝑠𝑖𝑛( 𝜆𝑥) 𝑠𝑖𝑛( 𝜇𝑦),    (𝑖 = 1, 2, 3)                   (25) 

505



 

 

 

 

 

 

Benferhat Rabia, Hassaine Daouadji Tahar and Rabahi Abderezak 

where 𝜆 = 𝜋/𝑎,   𝜇 = 𝜋/𝑏, q0 and ti are constants. 

Clearly, the Navier solution can be assumed as 

{

𝜇0
𝜈0
𝑤𝑏
𝑤𝑠

} = {

𝑈 𝑐𝑜𝑠( 𝜆𝑥) 𝑠𝑖𝑛( 𝜇𝑦)
𝑉 𝑠𝑖𝑛( 𝜆𝑥) 𝑐𝑜𝑠( 𝜇𝑦)
𝑊𝑏 𝑠𝑖𝑛( 𝜆𝑥) 𝑠𝑖𝑛( 𝜇𝑦)
𝑊𝑠 𝑠𝑖𝑛( 𝜆𝑥) 𝑠𝑖𝑛( 𝜇𝑦)

}                      (26) 

Where U, V, Wb and Ws are arbitrary parameters to be determined subjected to the condition that 

the solution in Eq. (25) satisfies governing Eq. (22). One obtains the following operator equation 

[𝐾]{𝛥} = {𝑃}                            (27a)
 

[
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14
𝑘12 𝑘22 𝑘23 𝑘24
𝑘13 𝑘23 𝑘33 𝑘3

𝑘14 𝑘24 𝑘34 𝑘44]
 
 
 
 

{𝛥} = {𝑃}                   (27b) 

Where {𝛥} = {𝑈, 𝑉,𝑊𝑏 ,𝑊𝑠}
𝑡 and [𝐾] is the symmetric matrix. 

In which  

𝑘11 = −(𝐴11𝜆
2 + 𝐴66𝜇

2) 
𝑘12 = −𝜆𝜇(𝐴12 + 𝐴66) 
𝑘13 = 𝜆[𝐵11

𝑠 𝜆2 + (𝐵12 + 2𝐵66)𝜇
2] 

𝑘14 = 𝜆[𝐵11
𝑠 𝜆2 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝜇2] 

𝑘22 = −(𝐴66𝜆
2 + 𝐴22𝜇

2) 
𝑘23 = 𝜇[(𝐵12 + 2𝐵66)𝜆

2 + 𝐵22𝜇
2] 

𝑘24 = 𝜇[(𝐵12
𝑠 + 2𝐵66

𝑠 )𝜆2 + 𝐵22
𝑠 𝜇2] 

𝑘33 = −(𝐷11𝜆
4 + 2(𝐷12 + 2𝐷66)𝜆

2𝜇2 +𝐷22𝜇
4 + 𝐾𝑊 + 𝐽1𝜆

2 + 𝐽2𝜇
2) 

𝑘34 = −(𝐷11
𝑠 𝜆4 + 2(𝐷12

𝑠 + 2𝐷66
𝑠 )𝜆2𝜇2 +𝐷22

𝑠 𝜇4 + 𝐾𝑊 + 𝐽1𝜆
2 + 𝐽2𝜇

2) 
𝑘44 = −(𝐻11

𝑠 𝜆4 + 2(𝐻11
𝑠 + 2𝐻66

𝑠 )𝜆2𝜇2 +𝐻22
𝑠 𝜇4 + 𝐴55

𝑠 𝜆2 + 𝐴44
𝑠 𝜇2 + 𝐾𝑊 + 𝐽1𝜆

2 + 𝐽2𝜇
2) (28) 

The components of the generalized force vector {𝑃} = {𝑃1, 𝑃2, 𝑃3, P4}
𝑡 are given by 

𝑃1 = 𝜆(𝐴
𝑇𝑡1 + 𝐵

𝑇𝑡2 + 𝐵𝛼 𝑇𝑡3) 
𝑃2 = 𝜇(𝐴

𝑇𝑡1 +𝐵
𝑇𝑡2 + 𝐵𝛼 𝑇𝑡3) 

𝑃3 = −𝑞0 − ℎ(𝜆
2 + 𝜇2)(𝐵𝑇𝑡1 + 𝐷

𝑇𝑡2 + 𝐷𝛼 𝑇𝑡3) 

𝑃4 = −𝑞0 − ℎ(𝜆
2 + 𝜇2)( 𝐵𝑠 𝑇𝑡1 + 𝐷𝑠 𝑇𝑡2 + 𝐹𝑠 𝑇𝑡3)            (29) 

Where 

{𝐴𝑇 , 𝐵𝑇 , 𝐷𝑇} = ∫
𝐸(𝑧)

1 − 𝜈
𝛼(𝑧){1, 𝑧, 𝑧

2
}𝑑𝑧

ℎ

2

−
ℎ

2

 

{ 𝐵𝛼 𝑇 , 𝐷𝛼 𝑇} = ∫
𝐸(𝑧)

1 − 𝜈
𝛼(𝑧)𝑓(𝑧){1, 𝑧}𝑑𝑧

ℎ

2

−
ℎ

2

 

{ 𝐵𝑠 𝑇 , 𝐷𝑠 𝑇 , 𝐹𝑠 𝑇} = ∫
𝐸(𝑧)

1−𝜈
𝛼(𝑧)𝑓(𝑧){1, 𝑧, 𝑓(𝑧)}𝑑𝑧

ℎ/2

−ℎ/2
                 (30) 
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Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation 

Table 1 materials properties of functionally graded plate (Ti-6Al-4V / ZrO2) 

Materials E   

Ti-6Al-4V 66.2 GPa 1/3 10.3×(10-6/C°). 

ZrO2 117.0 GPa 1/3 7.11×(10-6/C°). 

 
Table 2 Effect of the porosity on the dimensionless deflection �̂�  of square plates (a=10h, b=a, q0=100, 

T1=T3=0, T2=0) 

k Theory Porosity �̂�
 

2 

Thai H-T et al. =0 0.3737 

Taibi et al. =0
 

0.3734 

Present 

=0
 

0.3795406 

=0.1
 

0.4278580 

=0.2
 

0.4909164 

5 

Thai H-T et al. =0
 

0.4101 

Taibi et al. =0
 

0.4094 

Present 

=0
 

0.4036893 

=0.1
 

0.4581206 

=0.2
 

0.5300833 

10 

Thai H-T et al. =0
 

0.3988 

Taibi et al. =0
 

0.4178 

Present 

=0
 

0.4234319 

=0.1
 

0.4829429 

=0.2
 

0.5622425 

 

 

In which 

𝑧 = 𝑧/ℎ,  𝑓(𝑧) = 𝑓(𝑧)/ℎ                           (31)
  

 
3. Results and discussions 
 

The procedure outlined in the previous sections is used here to analyze the thermo-mechanical 

effect on the bending of porous functionally graded plates resting on Winkler-Pasternak foundations. 

A comparison study is presented between the results of the present study and those given by 

Bouderba (2013), Thai H-T (2014), Taibi (2015). Here, Titanium, Ti-6Al-4V, and Zirconia, ZrO2 are 

used as the metal and ceramic constituents. The material properties of the used FGM's are listed in 

Table 1. For all the computations, the Poisson's ratio is taken as 0.3 and the reference temperature is 

taken by T0=25°C (room temperature). 

Table 2 presents the comparison study of dimensionless deflection �̂�of square plates subjected 

to mechanical loading. These two comparisons show that the results presented when 0 are in good 

agreement with existing results. The results show that the porosity has a significant effect on the 

dimensionless deflection of FG plate. 

Tables 3 and 4 present the effect of the volume fraction exponent and elastic foundation 

parameters on the dimensionless and stresses of an FG rectangular plate with porosities. Temperature  
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Table 3 Effect of the porosity and volume fraction exponent on the dimensionless and stresses of an FG 

rectangular plate (a=10h, b=2a, q0=100, T=0, K0=100, J0=100) 

k Theory Porosity 𝑤 𝜎𝑥 𝜏𝑥𝑧 

ceramic 

Bouderba (2013) =0
 

0.077197 0.048071 -0.044643 

PSDT =0
 

0.077197 0.048050 -0.043259 

TSDT =0
 

0.077197 0.048071 -0.044643 

Present 

=0
 

0.077195 0.047277 -0.04423 

=0.1
 

0.077886 0.043968 -0.04113 

=0.2
 

0.078589 0.040598 -0.03798 

2 

Bouderba (2013) =0
 

0.079758 0.044595 -0.032215 

PSDT =0
 

0.079758 0.044574 -0.031170 

TSDT =0
 

0.079758 0.044595 -0.032215 

Present 

=0
 

0.079756 0.043748 -0.03190 

=0.1
 

0.080519 0.040129 -0.02847 

=0.2
 

0.081304 0.036395 -0.024945 

5 

Bouderba (2013) =0
 

0.080150 0.045736 -0.029922 

PSDT =0
 

0.080150 0.045714 -0.028921 

TSDT =0
 

0.080150 0.045736 -0.029922 

Present 

=0
 

0.080149 0.044821 -0.02962 

=0.1
 

0.080910 0.041156 -0.026179 

=0.2
 

0.081693 0.037354 -0.022645 

metal 

Bouderba (2013) =0
 

0.081190 0.050559 -0.026565 

PSDT =0
 

0.081191 0.050538 -0.025744 

TSDT =0
 

0.081190 0.050559 -0.026565 

Present 

=0
 

0.081189 0.050545 -0.026318 

=0.1
 

0.081954 0.024470 -0.022890 

=0.2
 

0.082733 0.020736 -0.019397 

 

 

elevation is ignored (T=0) in only Table 1, and side-to-thickness ratio is set equal to a/h=10. It is 

seen that the results of this study are in excellent agreement with the results of Bouderba (2013) 

when =0 and take different values when 0. As the FG plate becomes richer on metal, the 

dimensionless and the stresses of the FG plate increase when (T=0) and decrease when (T≠0). Table 

5 shows the effect of the volume fraction of the porosity on the dimensionless deflection �̂� of an 

FG square plate (b=a) resting on the elastic foundation and subjected to a thermo-mechanical 

loading. It can be seen that the dimensionless deflection decrease as the side-to-thickness ratio 

increase (thin plate).  

Tables 6 and 7 show the effect of the volume fraction of the porosity, volume fraction exponent, 

and elastic foundation parameters on the dimensionless center deflection �̂� of an porous FG plate 

subjected to mechanical and thermo-mechanical loading, respectively. The side-to-thickness ratio is 

taken to be a/h=10. It can be seen that the dimensionless center deflection of the porous FG plate 

decreases with an increase in foundation stiffness, but increases with an increase in the volume 

fraction of the porosity and the volume fraction exponent. Compared to the Winkler parameter K0, 

the Pasternak foundation parameter J0 has a dominant effect on decreasing the dimensionless center 

deflection. 
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Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation 

Table 4 Effect of the porosity and volume fraction exponent on the dimensionless and stresses of an FG 

rectangular plate (a=10h, b=2a, q0=100, T1=T3=0, T2=10, K0=100, J0=100)  

k Theory Porosity 𝑤 𝜎𝑥 𝜏𝑥𝑧 

ceramic 

Bouderba (2013) =0
 

0.17270 -0.50052 0.38756 

PSDT =0
 

0.17270 -0.50034 0.37555 

TSDT =0
 

0.17270 -0.50052 0.38756 

Present 

=0
 

0.17269 -0.49364 0.3839 

=0.1
 

0.16669 -0.45837 0.3571 

=0.2
 

0.16059 -0.42263 0.3297 

2 

Bouderba (2013) =0
 

0.16819 -0.48398 0.35985 

PSDT =0
 

0.16819 -0.48375 0.34801 

TSDT =0
 

0.16819 -0.48398 0.35985 

Present 

=0
 

0.16817 -0.47455 0.3563 

=0.1
 

0.15957 -0.43542 0.3174 

=0.2
 

0.15071 -0.39501 0.2775 

5 

Bouderba (2013) =0
 

0.16719 -0.48223 0.34986 

PSDT =0
 

0.16720 -0.48201 0.33789 

TSDT =0
 

0.16719 -0.48223 0.34986 

Present 

=0
 

0.16719 -0.47156 0.3462 

=0.1
 

0.15822 -0.43329 0.3055 

=0.2
 

0.14902 -0.39350 0.26367 

 
Table 5 Effects of the porosity and side-to-thickness ratio on the dimensionless deflection �̂� of an FG square 

plate (b=a, q0=100, T1=T3=0, T2=10, K0=100, J0=100)  

k Theory Porosity 
a/h 

5 10 20 50 

ceramic 

Bouderba (2013) =0
 

0.53445 0.18171 0.077180 0.046508 

Present 

=0
 

0.53496 0.18171 0.077181 0.046507 

=0.1
 

0.50155 0.17273 0.075238 0.046622 

=0.2
 

0.46741 0.16354 0.073262 0.046738 

2 

Bouderba (2013) =0
 

0.49953 0.17443 0.076803 0.048043 

Present 

=0
 

0.50013 0.17445 0.076800 0.048045 

=0.1
 

0.45280 0.16139 0.073856 0.048053 

=0.2
 

0.40400 0.14789 0.070794 0.048061 

5 

Bouderba (2013) =0
 

0.48761 0.17256 0.076639 0.048259 

Present 

=0
 

0.48835 0.17257 0.076638 0.048259 

=0.1
 

0.43872 0.15895 0.073531 0.048243 

=0.2
 

0.38789 0.14489 0.070344 0.048229 

 

 

Dimensionless deflection �̂� of a square FG plate is presented in Table 8 for different values of 

thickness ratio a/h, power-law index k, and foundation parameters (K0, J0). The obtained results are 

compared with those given by Taibi (2015) for the perfect FG plate (=0). It can be concluded that 

the volume fraction of the porosity has a significant effect on the dimensionless deflection �̂� of a 

square FG plate resting on the Pasternak or Winkler-Pasternak foundations 
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Table 6 Effect of porosity and elastic foundation parameters on the dimensionless center deflection �̂� of an 

FG square plate subjected to mechanical loading (a=10h, b=a, q0=100, T1=T2=T3 =0)  

k Theory Porosity K0=0, J0=0 K0=100, J0=0 K0=0, J0= 100 K0=100, J0=100 

0
 

Taibi (2015) =0
 

0.6813082 0.4052251 0.08365248 0.07719493 

Present 

=0
 

0.6812934 0.4052198 0.08365225 0.07719474 

=0.1
 

0.7391629 0.4250108 0.08446419 0.07788565 

=0.2
 

0.8077758 0.4468341 0.08529205 0.07858903 

2 

Taibi (2015) =0
 

1.109938 0.5260525 0.08781631 0.08072715 

Present 

=0
 

0.9507665 0.4873809 0.08666835 0.07975602 

=0.1
 

1.071814 0.5173312 0.08756987 0.08051885 

=0.2
 

1.229831 0.5515355 0.08849891 0.08130363 

5 

Taibi (2015) =0
 

1.181016 0.5414982 0.08823646 0.08108206 

Present 

=0
 

1.009736 0.5024222 0.08713221 0.08014868 

=0.1
 

1.145591 0.5339279 0.08803308 0.08091029 

=0.2
 

1.325117 0.5699143 0.08895923 0.08169198 

 
Table 7 Effect of porosity and elastic foundation parameters on the dimensionless center deflection �̂� of an 

FG plate subjected to thermo-mechanical loading (a=10h, b=2a, q0=100, T1=T3=0, T2=10)  

k Theory Porosity K0=0, J0=0 K0=100, J0=0 K0=0, J0= 100 K0=100, J0=100 

0 

Taibi (2015) =0
 

1.524169 0.9065374 0.1871406 0.1726943 

Present 

=0
 

1.524154 0.9065366 0.1871425 0.1726961 

=0.1
 

1.582024 0.9096466 0.1807779 0.1666979 

=0.2
 

1.650637 0.9130758 0.1742886 0.1605915 

2 

Taibi (2015) =0
 

2.288283 1.084526 0.1810449 0.1664296 

Present 

=0
 

2.004883 1.027741 0.1827577 0.1681818 

=0.1
 

2.124061 1.025218 0.1735411 0.1595679 

=0.2
 

2.279672 1.022352 0.1640458 0.1507082 

5 

Taibi (2015) =0
 

2.394417 1.097845 0.1788923 0.1643874 

Present 

=0
 

2.106337 1.048066 0.1817601 0.1671923 

=0.1
 

2.240229 1.044108 0.1721507 0.1582219 

=0.2
 

2.417239 1.039620 0.1622767 0.1490200 

 

 

To illustrate the effect of temperature parameters (T2) on the bending responses of FG plates, 

Table 9 shows the results of the dimensionless and stresses of an FG rectangular plate subjected to 

mechanical and thermo-mechanical loading. It can be observed that the dimensionless and stresses 

increase when the volume fraction of the porosity increase for both mechanical and thermo-

mechanical loading. 

Table 10 present the effect of the distribution shape of the porosity on the dimensionless and 

stresses of an FG plate subjected to a thermomechanical loading. Both even distribution and uneven 

distribution of porosity are taken into account. From this table, it was found that the distribution 

shape of porosity significantly influences on the thermo-mechanical behavior of FG plates, in terms 

of deflection and stresses. 
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Table 8 Effect of porosity and elastic foundation parameters on the dimensionless center deflection �̂� of an 

FG square plate subjected to thermo-mechanical loading (b=a, q0=100, T1=0, T2=T3 =10) 

k Theory Porosity 
K0=0, J0=100 K0=100, J0=100 

a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20 

1 

SPT =0
 

0.5464189 0.1850845 0.08088404 0.5226103 0.1771234 0.07741799 

HPT =0
 

0.5459374 0.1850501 0.08088214 0.5221480 0.1770903 0.07741611 

Taibi (2015) =0
 

0.5456821 0.1850325 0.08088109 0.5219026 0.1770732 0.07741516 

Present 

=0
 

0.5374418 0.1850155 0.08059350 0.5142352 0.1771592 0.07718862 

=0.1
 

0.4908725 0.1722699 0.07775425 0.4694427 0.1648617 0.07442569 

=0.2
 

0.4429306 0.1590929 0.07481506 0.4233768 0.1521627 0.07156912 

2 

SPT =0
 

0.5288591 0.1804318 0.08005720 0.5056076 0.1725899 0.07658943 

HPT =0
 

0.5282195 0.1803852 0.08005454 0.5049920 0.1725450 0.07658675 

Taibi (2015) =0
 

0.5278306 0.1803571 0.08005289 0.5046192 0.1725179 0.07658525 

Present 

=0
 

0.5228637 0.1822373 0.08021888 0.5001213 0.1744407 0.07680412 

=0.1
 

0.4736050 0.1687084 0.07718506 0.4527749 0.1613975 0.07385538 

=0.2
 

0.4227992 0.1546860 0.07403606 0.4039917 0.1478945 0.07079844 

 
Table 9 Effect of the porosity volume fraction exponent on the dimensionless and stresses of an FG rectangular 

plate subjected to mechanical and thermo-mechanical loading (a=10h, b=2a, q0=100, T1=T3 =0, K0=0, J0=0) 

T2 Theory Porosity 𝑤 𝜎𝑥 

0 

Bouderba (2013) =0
 

0.68131 0.42424 

PSDT =0
 

0.68134 0.42408 

TSDT =0
 

0.68131 0.42424 

Present 

=0
 

0.68129 0.41725 

=0.1
 

0.73917 0.41726 

=0.2
 

0.80778 0.41730 

10 

Bouderba (2013) =0
 

1.5241 0.34104 

PSDT =0
 

1.5243 0.34091 

TSDT =0
 

1.5241 0.34104 

Present 

=0
 

1.5241 0.33410 

=0.1
 

1.5820 0.34060 

=0.2
 

1.6507 0.34710 

 

 

Fig. 2 aims to analyze the influence of the volume fraction of the porosity on the dimensionless 

center deflection of an FGM square plate subjected to thermo-mechanical loading. The gradient 

index is taken to be k=2. It can be observed that the dimensionless deflection decreases when the 

foundation parameters K0, J0 increase, and the Winkler foundation parameter K0 has more effect on 

reducing the dimensionless deflection than the Pasternak parameter J0. Such behavior is because 

the inclusion of foundation parameters will increase the stiffness of the plate, and thus, lead to a 

reduction of deflection. It is also observed from these figures that the volume fraction of the porosity 

has more effect when the plate reposed on the Winkler-Pasternak foundation. Fig. 3 shows the effect 

of the porosity on the dimensionless center deflection through the aspect ratio of an FGM plate 

subjected to thermo-mechanical loading. The side-to-thickness ratio is taken to be a/h=10, and the 

volume fraction index is taken to be k=2. It can be seen that the dimensionless center deflection  
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Table 10 Effect of the distribution shape of the porosity on the dimensionless and stresses of an FG rectangular 

plate (a=10h, b=2a, q0=100, T1=0, T2= T3=10, K0=100, J0=100) 

a/h k Porosity 
𝑤

 
𝜎𝑥 

𝜏𝑥𝑧 
Even Uneven

 
Even Uneven

 
Even Uneven

 

5 

0 

=0
 

0.6967 0.6967 - 0.5916 - 0.5916 1.3729 1.3729 

=0.1
 

0.6536 0.6832 -0.5506 -0.5893 1.2756 1.3062 

=0.2
 

0.6097 0.6695 -0.5087 -0.5864 1.1768 1.2368 

2 

=0
 

0.6497 0.6497 -0.5277 -0.5277 1.2406 1.2406 

=0.1
 

0.5894 0.6304 -0.4821 -0.5191 1.1043 1.1468 

=0.2
 

0.5278 0.6105 -0.4348 -0.5087 0.96458 1.0470 

5 

=0
 

0.6366 0.6366 -0.5082 -0.5082 1.1918 1.1918 

=0.1
 

0.5738 0.6158 -0.4642 -0.4977 1.0489 1.0872 

=0.2
 

0.5097 0.5941 -0.4176 -0.4848 0.9027 0.9742 

10 

0 

=0
 

0.2465 0.2465 -0.6480 -0.6480 0.7207 0.7207 

=0.1
 

0.2354 0.2435 -0.6035 -0.6484 0.6701 0.6878 

=0.2
 

0.2240 0.2404 -0.5580 -0.6492 0.6187 0.6534 

2 

=0
 

0.2365 0.2365 -0.6107 -0.6107 0.6613 0.6613 

=0.1
 

0.2206 0.2320 -0.5594 -0.6072 0.5891 0.6141 

=0.2
 

0.2043 0.2275 -0.5056 -0.6027 0.5149 0.5637 

5 

=0
 

0.2343 0.2343 -0.6070 -0.6070 0.6407 0.6407 

=0.1
 

0.2178 0.2295 -0.5572 -0.6034 0.5651 0.5881 

=0.2
 

0.2008 0.2247 -0.5046 -0.5986 0.4875 0.5308 

20 

0 

=0
 

0.1203 0.1203 -0.5262 -0.5262 0.3014 0.3014 

=0.1
 

0.1180 0.1197 -0.4905 -0.5275 0.2803 0.2878 

=0.2
 

0.1156 0.1190 -0.4538 -0.5287 0.2588 0.2737 

2 

=0
 

0.1197 0.1197 -0.5067 -0.5067 0.2904 0.2904 

=0.1
 

0.1163 0.1188 -0.4642 -0.5053 0.2586 0.2699 

=0.2
 

0.1127 0.1178 -0.4194 -0.5031 0.2260 0.2481 

5 

=0
 

0.1195 0.1195 -0.5041 -0.5041 0.2839 0.2839 

=0.1
 

0.1159 0.1185 -0.4633 -0.5032 0.2505 0.2609 

=0.2
 

0.1122 0.1175 -0.4200 -0.5016 0.2161 0.2359 
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Fig. 2 Effect of the porosity on the dimensionless center deflection through side-to thickness ratio of an FGM 

square plate subjected to thermo-mechanical loading 
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Fig. 2 Continued 
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Fig. 3 Effect of the porosity on the dimensionless center deflection through the aspect ratio of an FGM plate 

subjected to thermo-mechanical loading 

 

 

decrease when the aspect ratio a/b increase. The results show that the imperfect FGM plate (0) 

will undergo small deflections when the plate is reposed on the elastic foundation. 

Fig. 4 present the variation of the dimensionless axial stress through the thickness of an FGM 

rectangular plate containing porosities and subjected to thermo-mechanical loading. The side-to-

thickness ratio is taken to be a/h=10, and the aspect ratio is taken to be b=2a. it can be concluded 

that the volume fraction of porosity influences the variation of the dimensionless axial stress through  
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Fig. 4 Effect of the porosity on the dimensionless axial stress through the thickness of an FGM rectangular 

plate subjected to thermo-mechanical loading 
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Fig. 5 Effect of the porosity on the dimensionless shear stress through the thickness of an FGM rectangular 

plate subjected to thermo-mechanical loading 
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Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation 
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Fig. 6 Effect of the porosity and the thermal loading on the dimensionless center deflection through side-to 

thickness ratio of an FGM rectangular plate subjected to thermo-mechanical loading 

 

 

the thickness. It can also be seen that the dimensionless axial stresses are tensile at the top surface 

and compressive at the bottom surface when (K0=0, J0=0) and becomes compressive at the top 

surface and tensile at the bottom surface when the FGM plate reposed on an elastic foundation. 

Fig. 5 shows the through-the-thickness variation of dimensionless shear stress of an FGM 

rectangular plate subjected to thermo-mechanical loading. It can be observed easily from the figure 

that the volume fraction of the porosity provides a greater influence on dimensionless shear stress 

when the FGM plate reposed on an elastic foundation. It is also seen from the figure that, increasing 

the value of the volume fraction of the porosity  decreases the dimensionless shear stress. In 

addition, it can be seen that the shear stiffness coefficient J0 increases the dimensionless shear stress, 

in contrast, Winkler coefficient K0 decreases it. 
To examine the influence of the thermal loading on the dimensionless center deflection of an 

FGM rectangular plate with porosities reposed on the Winkler-Pasternak foundation, the variation 

of the dimensionless center deflection of Ti-6Al-4V / ZrO2 FG plate is displayed in Fig. 6 versus the 

side-to-thickness ratio. The main conclusion of Fig. 6 is that increasing the thermal loading increases 

the dimensionless center deflection. 

 

 
5. Conclusions 
 

This paper presents an analytical solution for thermo-mechanical bending of FG plates containing 

porosities and resting on elastic foundation using a new refined hyperbolic shear deformation plate 

theory. The variation of distribution shape of porosity is described using the modified power-law 
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distribution for two material constitutions with porosity. The governing equations are solved easily 

by using Navier’s solutions. The dimensionless center deflections as well as the stresses obtained 

are compared with others and a very good agreement has been found which proves the precision of 

the method. In accordance with numerical and graphical results, some conclusions can be drawn as 

follows: 

- The porosity distribution in the functionally graded materials has a significant effect on the 

dimensionless center deflection and stresses of FGM plate subjected to thermo-mechanical 

loading . 

- The dimensionless deflection decreases when the foundation parameters K0, J0 increase, and 

the Winkler foundation parameter K0 has more effect on reducing the dimensionless deflection 

than the Pasternak parameter J0. 

- Increasing value of the volume fraction of the porosity  decreases the dimensionless shear 

stress. 

- The results show that the imperfect FGM plate (0) will undergo small deflections when the 

plate reposed on the elastic foundation. 

- Increasing thermal loading increases the dimensionless center deflection. 

- The uneven distribution of porosity has more effect on increasing the dimensionless deflection 

and stresses than the even distribution of the porosity when the FG plate reposed on the elastic 

foundations. 
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