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Abstract.  Analytical investigation of the fracture of inhomogeneous beam with two parallel lengthwise cracks is 
performed. The thickness of the beam varies continuously along the beam length. The beam is loaded in three-point 
bending. Two beam configurations with different lengths of the cracks are analyzed. The two cracks are located 
arbitrary along the thickness of the beam. Solutions to the strain energy release rate are derived assuming that the 
material has non-linear elastic mechanical behavior. Besides, the beam exhibits continuous material inhomogeneity 
along its thickness. The balance of the energy is analyzed in order to derive the strain energy release rate. Verifications 
of the solutions are carried-out by considering the complementary strain energy stored in the beam configurations. 
The influence of the continuous variation of the thickness along the beam length on the lengthwise fracture behavior 
is investigated. The dependence of the lengthwise fracture on the lengths of the two parallel cracks is also studied. 
 

Keywords:  lengthwise fracture; inhomogeneous beam; material non-linearity; three-point bending; 

variable thickness 

 
 
1. Introduction 
 

Beams of continuously varying thickness in the length direction provide a very efficient 

distribution of the material in engineering structures. Thus, beams of continuously varying 

thickness are suitable for attaining of high requirements imposed on advanced structures in terms 

of weight, cost, strength and stability. Therefore, it is not surprising that such beams are widely 

used in various load-bearing structural applications in aeronautical, mechanical and civil 

engineering especially when the low weight is an important issue.  

Beam structures manufactured by using of inhomogeneous materials with continuously 

(smoothly) varying material properties in one or more directions exhibit significant advantages 

over homogeneous beams. This is due mainly to the fact that the microstructure of inhomogeneous 

materials can be tailored during manufacturing so as to improve the behavior of the structural 

members and components in the period of their exploitation. Functionally graded materials are 

typical example for commonly used advanced class of inhomogeneous materials (Altunsaray and 

Bayer 2014, Butcher et al. 1999, Dolgov 2005, 2016, Gasik 2010, Hedia et al. 2014, Hirai and 

Chen 1999, Mahamood and Akinlabi 2017, Markworth et al. 1995, Miyamoto et al. 1999, Nemat-
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Allal et al. 2011, Ṣimṣek 2012, Ṣimṣek 2015, Ṣimṣek et al. 2013, Tokovyy and Ma 2017, Tokovyy 

and Ma 2019, Tokovyy 2019, Uslu Uysal and Kremzer 2015, Uslu Uysal 2016, Uslu Uysal and 

Güven 2015, Uslu Uysal and Güven 2016, Wu et al. 2014). Functionally graded materials are 

made by mixing of two or more constituent materials so as to form a graded distribution of 

material properties in the solid. In this way, requirements for different material properties in 

different parts of a high-performance structural member can be satisfied. Due to their wide 

applications in aerospace, aeronautics, nuclear reactors, electronics, optics, biomedicine, 

mechanical and civil engineering, the functionally graded materials have received considerable 

attention in the international research community around the globe for the last three decades. 

Since certain kinds of inhomogeneous materials, such as functionally graded materials can be 

built-up layer by layer (Miyamoto et al. 1999), a high probability for appearance of lengthwise 

cracks between layers exists. The lengthwise cracks threaten the structural integrity and reduce the 

load bearing capacity of engineering structures (Szekrenyes 2010, 2012). Therefore, several papers 

which are concerned with analyses of lengthwise fracture behaviour of inhomogeneous 

(functionally graded) beams have been published recently (Rizov 2017, 2018a, 2018b, 2019a, 

2019b). These papers, however, consider lengthwise fracture of inhomogeneous beams with one 

lengthwise crack assuming that the beam cross-section is constant along the beam length (Rizov, 

2017, 2018a, 2018b, Rizov 2019a, 2019b).  

In contrast to the previous papers, the present paper is focused on analyzing the lengthwise 

fracture behavior of an inhomogeneous beam structure of continuously varying thickness in the 

length direction. Two parallel lengthwise cracks are located arbitrary along the beam thickness. 

The beam under consideration exhibits continuous (smooth) material inhomogeneity in the 

thickness direction. The material has non-linear elastic mechanical behavior. The lengthwise 

fracture is studied in terms of the strain energy release rate. Solutions to the strain energy release 

rate are derived by considering the balance of the energy at different lengths of the two cracks. The 

fracture is analyzed also by considering the complementary strain energy in the beam for 

verification. The influence of the locations and lengths of the two cracks on the fracture behavior 

is investigated. The effect of the continuous variation of the thickness along the beam length on the 

fracture is also evaluated.  

 

 
2. Analysis of the strain energy release rate 

 

The present paper deals with lengthwise fracture analysis of the inhomogeneous beam 

configuration with two parallel lengthwise cracks shown in Fig. 1. The lengths of the lower and 

upper cracks are a1 and a2, respectively. The length of the beam is l. The cross-section of the beam 

is a rectangle. The width of the beam, b, is constant along the beam length. The thickness of the 

beam, ht, varies continuously along the beam length according to the following law 









−+= 1sin)( x

l
hhhh st


,                           (1) 

where 

lx  10 .                                 (2) 

In (1), h and hs are the thicknesses of the beam at the ends and at the mid-span, respectively.  
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Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness 

 

Fig. 1 Geometry and loading of a beam configuration of continuously varying thickness with two 

lengthwise cracks (the lower crack is shorter than the upper one) 

 

 

The lengthwise centroidal axis, x1, is shown in Fig. 1.  

The beam geometry is symmetrical with respect to the mid-span and with respect to x1 axis. In 

portion, OA, the beam is divided in three parts (lower, interstitial and upper part) by the two 

cracks. At the left-hand end of the beam, the thicknesses of the lower, interstitial and upper parts of 

the beam are h1, h2 and h3, respectively. The thickness of the interstitial part is constant in the 

length direction. By using (1), the variations of the thicknesses of the lower and upper parts of the 

beam, ht1 and ht3, are expressed as 









−+= 111 sin)(

2

1
x

l
hhhh st


                        (3) 

and 









−+= 133 sin)(

2

1
x

l
hhhh st


,                        (4) 

where 

110 ax  .                                (5) 

In portion, AB, the beam is divided in two parts (lower and upper part) by the upper crack (Fig. 

1). The thicknesses of the upper and lower parts of the beam are denoted by ht3 and ht4, 

respectively. By applying (1), the continuous variation of ht4 in the length direction is written as 









−++= 1214 sin)(

2

1
x

l
hhhhh st


                     (6) 

where  

210 ax  .                                (7) 

The beam is subjected to three-point bending by a force, F, directed upwards (Fig. 1). 
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Fig. 2 Cross-section of the lower part of beam portion OA (the position of the neutral axis is denoted by n−n) 

 
 

Apparently, the upper part of the beam in portion, OB, and the interstitial part in portion, OA, 

are free of stresses.  

The beam exhibits continuous material inhomogeneity in thickness direction. Besides, the 

material has non-linear elastic mechanical behavior.   

The fracture is studied in terms of the strain energy release rate by considering the balance of 

the energy. First, the strain energy release rate is derived assuming a small increase, δa1, of the 

length of the lower crack. The balance of the energy is written as 

11

1
1

abGa
a

U
wF a  +




= ,                            (8) 

where w is the vertical displacement of the application point of F, U is the strain energy in the 

beam, Ga1 is the strain energy release rate due to the increase of the lower crack. From (8), one 

obtains 

11

1
1 a

U

ba

w

b

F
Ga




−




= .                              (9) 

The strain energy stored in the beam is expressed as 

DHBDABOA UUUUU +++= ,                          (10) 

where UOA and UAB are the strain energies in the lower parts of the beam portions, OA and AB, 

respectively, UBD and UDH are the strain energies in the beam portions, BD and DH, respectively.    
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Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness 

The strain energy stored in the lower part of the beam portion, OA, is written as 

210

2

2

0

1

1

1

zddxubU OA

h

h

a

OA

t

t


−

= ,                         (11) 

where u0OA is the strain energy density, z2 is the vertical centroidal axis of the cross-section of the 

lower part of the beam portion OA (Fig. 2). A stress-strain relation is necessary in order to obtain 

the strain energy density. In the present paper, the mechanical behavior of the material is treated by 

using the following non-linear stress-strain relation (Lukash 1998) 

nm QP  −= ,                             (12) 

where σ is stress, ε is strain, P, Q, m and n are material properties. 

The strain energy density is derived by integrating (12) in boundaries from 0 to ε 

11

11

0
+

−
+

=
++

n

Q

m

P
u

nm

OA


.                          (13) 

It is assumed that P is distributed along the thickness of the beam according to the following 

exponential law 

t

t

h

z
h

r

U ePP

1
2
+

= ,                             (14) 

where  

22
1

tt h
z

h
− .                             (15) 

In (14), PU is the value of P at the upper surface of the beam, r is a material property that 

controls the gradient of P in the thickness direction, z1 is the vertical centroidal axis of the beam 

cross-section.   

In order to express the distribution of P in the cross-section of the lower part of beam portion, 

OA, formula (14) is re-written as 

t

t
t

h

z
h

h

r

U ePP

2
1

2
+−

= .                             (16) 

The distribution of the strains in thickness direction is treated by applying the Bernoulli’s 

hypothesis for plane sections since the present paper deals with beams of high length to thickness 

ratio. Therefore, ε is distributed linearly along the thickness of the lower part of the beam portion, 

OA   

( )nOA zz 22 −=  ,                             (17) 

where  
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22

1
2

1 tt h
z

h
− .                             (18) 

In (17), κOA is the curvature, z2n is the coordinate of the neutral axis, n−n. It should be noted 

that the neutral axis shifts from the centroid since the beam exhibits material inhomogeneity in the 

thickness direction.   

The curvature and the coordinate of the neutral axis are determined by using the equations for 

equilibrium of the elementary forces in the cross-section of the lower part of the beam portion, OA 


−

=
2

2

2

1

1

t

t

h

h

OA dzbN  ,                             (19) 


−

=
2

2

22

1

1

t

t

h

h

OA dzzbM  ,                            (20) 

where NOA and MOA are, respectively, the axial force and the bending moment in the cross-section. 

Apparently (Fig. 1) 

0=OAN ,                                (21) 

1
2

x
F

M OA= .                               (22) 

After substituting of σ in (19) and (20), the equations are solved with respect to κOA and z2n by 

using the MatLab computer program. Then, (17) is substituted in (13) to obtain u0OA.   

The strain energy in the lower part of the beam portion, AB, is expressed as (Fig. 1)  

310

2

2

4

4

2

1

zddxubU AB

h

h

a

a

AB

t

t


−

= ,                         (23) 

where u0AB is the strain energy density, z3 is the vertical centroidal axis of the cross-section of the 

lower part of the beam portion, AB. Formula (13) is applied to obtain u0AB. For this purpose, ε is 

replaced with εAB where εAB is the strain in the lower part of the beam portion, AB. The distribution 

of εAB is expressed by replacing of κOA, z2n and z2 with κAB, z3n and z3 in (17). The curvature, κAB, 

and the coordinate of the neutral axis, z3n, of the cross-section of the lower part of the beam 

portion, AB, are found from equations (19) and (20). For this purpose, ht1, σ and z2 are replaced 

with ht4, σAB and z3 where σAB is the normal stress. Formula (12) is used to obtain the distribution of 

σAB by replacing of ε with εAB. In order to express the distribution of P, formula (16) is re-written 

as 

t

t
t

h

z
h

h

r

U ePP

3
4

2
+−

= ,                             (24) 
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Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness 

where 

22

4
3

4 tt h
z

h
− .                             (25) 

The strain energy in the beam portion, BD, is written as (Fig. 1)  

410

2

2

2

2

zddxubU BD

h

h

l

a

BD

t

t


−

= ,                         (26) 

where u0BD is the strain energy density, z4 is the vertical centroidal axis of the cross-section of the 

beam. The strain energy density is found by replacing of ε with εBD in formula (13). The curvature 

and the coordinate of the neutral axis are obtained from the equations of equilibrium (19) and (20). 

For this purpose, ht1, σ and z2 are replaced with ht, σBD and z4. The normal stress, σBD, is found by 

replacing of ε with εBD in (12).  

The strain energy in the beam portion, DH, is expressed as (Fig. 1)  

510

2

22

zddxubU DH

h

h

l

l

DH

t

t


−

= ,                        (27) 

where u0DH is the strain energy density, z5 is the vertical centroidal axis of the cross-section of the 

beam. Formula (13) is used to determine the strain energy density by replacing of ε with εDH. The 

curvature, κDH, and the coordinate of the neutral axis, z5n, are obtained from Eqs. (19) and (20) by 

replacing of ht1, σ and z2 with ht, σDH and z5. Besides, the bending moment in the beam portion, 

DH, that participates in equation (20) is found as (Fig. 1)  









−−=

22
11

l
xFx

F
M DH ,                           (28) 

where 

lx
l

 1
2

.                                   (29) 

By using the integrals of Maxwell-Mohr, the vertical displacement of the application point of 

the external force, F, is expressed as 

11

2

1

2

111

111111

0

)(
22

)(
2

1

)(
2

1
)(

2

1

2

2

1

1

dxx
xl

dxxx

dxxxdxxxw

DH

l

l

l

a

BD

AB

a

a

OA

a

















−++

++=

.                    (30) 

By substituting of (10), (11), (23), (26), (27) and (30) in (9), one obtains the following 
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expression for the strain energy release rate 

−



−




= )(

2

1
)(

2

1
11111

aaaa
b

F
G ABOAa 

310

2

2

210

2

2

)()(

4

4

1

1

dzaudzau AB

h

h

OA

h

h

t

t

t

t


−−

+− .      (31) 

The integration in (31) is performed by using the MatLab computer program. It should be 

mentioned that ht1, ht4, κOA, κAB, u0OA and u0AB are obtained by (3), (6), (13), (19) and (20) at x1=a1. 

Further, the strain energy release rate is derived assuming a small increase, 
2a , of the length 

of the upper crack (Fig. 1). Thus, formula (9) is re-written as 

22

1
2 a

U

ba

w

b

F
Ga




−




= .                            (32) 

By substituting of (10), (11), (23), (26), (27) and (30) in (32), one drives 

−



−




= )(

2

1
)(

2

1
22222

aaaa
b

F
G BDABa 

420

2

2

320

2

2

)()(

4

4

dzauzdau BD

h

h

AB

h

h

t

t

t

t


−−

+− ,         (33) 

where ht, ht4, κAB, κBD, u0AB and u0BD are obtained by (1), (6), (13), (19) and (20) at x1=a1. The 

integration in (33) is carried-out by the MatLab computer program.  

The longitudinal fracture behavior of the inhomogeneous non-linear elastic beam is analyzed 

also for the case when the lower crack arm is longer than the upper one (Fig. 3). First, the strain 

energy release rate is derived assuming a small increase, δa1, of the length of the lower crack. Eq. 

(9) is used.  

In portion, OA, the two cracks divide the beam in three parts: lower, interstitial and upper part. 

The interstitial and upper parts are free of stresses. The lower cracks divides beam portion, AB, in 

 

 

 

Fig. 3 Beam configuration in which the lower crack is longer than the upper one 
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lower and upper part.  

The upper part is free of stresses. Therefore, the strain energy in the beam (Fig. 3) is written as 

DHBDOAB UUUU ++= ,                         (34) 

where UOAB is the strain energy in the lower part of the beam portions, OA and AB, UBD and UDH 

are the strain energies in the beam portions, BD and DH, respectively.  

The strain energy in the lower part of the beam portions, OA and AB, is obtained by applying 

formula (11). Formula (13) is used to derive the strain energy density. The curvature and the 

coordinate of the neutral axis are found from equations for equilibrium (19) and (20).   

The strain energy, UBD, is expressed as 

410

2

2

2

1

zddxubU BD

h

h

l

a

BD

t

t


−

= .                         (35) 

The strain energy in the beam portion, DH, is found by using formula (27).   

The expression (30) for the vertical displacement of the application point of F is re-written as 

(Fig. 3) 

11

2

1

2

111

111

0

)(
22

)(
2

1

)(
2

1

1

1

dxx
xl

dxxx

dxxxw

DH

l

l

l

a

BD

OA

a

















−++

+=

.                 (36)  

By substituting of (11), (27), (35) and (36) in (9), one derives the following expression for the 

strain energy release rate: 

−



−




= )(

2

1
)(

2

1
11111

aaaa
b

F
G BDOAa 

310

2

2

210

2

2

)()(

1

1

dzaudzau BD

h

h

OA

h

h

t

t

t

t


−−

+− .       (37) 

Integration in (37) is performed by the MatLab computer program. In (37), ht, ht1, κOB, κBD, u0OA 

and u0BD are obtained by (1), (3), (13), (19) and (20) at x1=a1. 

Since the interstitial and upper parts of portion, OA, and the upper part of portion, AB, of the 

beam are free of stresses, the upper crack in the beam configuration shown in Fig. 3 can not grow. 

Thus 

0
2
=aG .                                 (38) 

It should be noted that formula (38) can be proved by substituting of (11), (27), (35) and (36) in 

(32).   

The solutions to the strain energy release rate (31), (33), (37) and (38) are verified by applying 

the following formula (Rizov 2018) 

bda

dU
G

*

= ,                               (39) 
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where U* is the complementary strain energy stored in the beam, da is an elementary increase of 

the crack length.  

First, the beam configuration shown in Fig. 1 is considered. By assuming an elementary 

increase, da1, of the lower crack, formula (39) takes the form 

1

*

1 bda

dU
Ga = .                               (40) 

The complementary strain energy is written as 

*****

DHBDABOA UUUUU +++= ,                       (41) 

where 
*

OAU  and 
*

ABU  are the complementary strain energies in the lower parts of the beam 

portions, OA and AB, respectively, 
*

BDU  and 
*

DHU  are the complementary strain energies in 

the beam portions, BD and DH, respectively.  

The complementary strain energy in the lower part of the beam portion, OA, is determined by 

formula (11). For this purpose, u0OA is replaced with the complementary strain energy density, 
*

0OAu . The following formula is applied to derive the complementary strain energy density 

OAOA uu 0

*

0 −= .                             (42) 

By substituting of (12) and (13) in (42), one obtains 

11

11
*

0
+

−
+

=
++

n

nQ

m

mP
u

nm

OA


,                          (43) 

where ε is expressed by (17). The curvature, κOA, and the coordinate of the neutral axis, z2n, are 

found equilibrium Eqs. (19) and (20).  

The complementary strain energy, *

ABU , is obtained by applying formula (23). For this 

purpose, u0AB, is replaced with the complementary strain energy density, *

0 ABu . Formula (43) is 

used to determine 
*

0 ABu  by replacing of ε with εAB.  

The complementary strain energy in beam portion, BD, is found by replacing of u0BD with 
*

0BDu in formula (26). The complementary strain energy density, 
*

0BDu , is obtained by (43). For 

this purpose, ε is replaced with εAB.  

The strain energy density, u0DH, is replaced with the complementary strain energy density, 
*

0DHu , in formula (27) in order to obtain 
*

DHU . Formula (43) is used to express the 

complementary strain energy density by replacing of ε with εDH.    

The strain energy release rate, Ga1, is found by substituting of (41), *

OAU , *

ABU , *

BDU  and 
*

DHU  in (40). The result is 

31

*

0

2

2

21

*

0

2

2

)()(

4

4

1

1

1
dzaudzauG AB

h

h

OA

h

h

a

t

t

t

t


−−

−= .                (44) 

The integration in (44) is performed by using the MatLab computer program. It should be 
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mentioned that 1th , 4th , 
*

0OAu  and 
*

0 ABu  are obtained by (3), (6), and (43) at x1=a1. The strain 

energy release rate obtained by (44) is exact match of that found by (31) which is a verification of 

the solution to Ga1. 

The strain energy release rate, Ga2, in the beam configuration shown in Fig. 1 is also obtained 

by applying formula (40). For this purpose, (40) is re-written as 

2

*

2 bda

dU
Ga = ,                              (45) 

where da2 is an elementary increase of the length of the upper crack. By substituting of (41), 
*

OAU , 
*

ABU , 
*

BDU  and 
*

DHU  in (45), one obtains 

42

*

0

2

2

32

*

0

2

2

)()(

4

4

2
dzauzdauG BD

h

h

AB

h

h

a

t

t

t

t


−−

−= ,                  (46) 

where th , 4th , 
*

0 ABu  and 
*

0BDu  are obtained by (1), (6), and (43) at x1=a1. The integration in 

(46) is performed by the MatLab computer program. The fact that the strain energy release rate 

calculated by (46) matches exactly that obtained by (33) verifies the solution to Ga2for the beam 

shown in Fig. 1.  

Formula (40) is applied also to determine the strain energy release rate when the lower crack is 

longer than the upper one in the beam configuration shown in Fig. 3. For this purpose, the 

complementary strain energy in the beam is written as  

****

DHBDOAB UUUU ++= ,                          (47) 

where 
*

OABU  is the complementary strain energy in the lower part of the beam portions, OA and 

AB, 
*

BDU  and 
*

DHU  are the strain energies in the beam portions, BD and DH, respectively.  

The complementary strain energy in the lower part of the beam portions, OA and AB, is 

obtained by replacing of u0AB with 
*

0ABu  in formula (11).  

The complementary strain energy, 
*

BDU , is obtained by applying formula (35). For this 

purpose, u0BD is replaced with the complementary strain energy density, 
*

0BDu .  

By substituting of (47), 
*

OABU , 
*

BDU  and 
*

DHU  in (40), one derives 

31

*

0

2

2

21

*

0

2

2

)()(

1

1

1
dzaudzauG BD

h

h

OA

h

h

a

t

t

t

t


−−

+= .                    (48) 

The integration in (48) is performed by the MatLab computer program. The quantities, ht, ht1,  
*

0OAu  and 
*

0BDu  are obtained by (1), (3) and (43) at x1=a1. The strain energy release rate  
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Fig. 4 The strain energy release rate in non-dimensional form plotted against hs/h ratio (curve 1 - at 

increase of the upper crack, curve 2 - at increase of the lower crack) 

 

 

obtained by (48) is exact match of that found by (37). This fact verifies the solution to Ga1 for the 

beam shown in Fig. 3.  

Formula (38) is verified by substituting of (47), 
*

OABU , 
*

BDU  and 
*

DHU  in (45).  

 

 
3. Numerical results  
 

This section of the paper presents numerical results obtained by applying the solutions to the 

strain energy release rate derived in the previous section. These numerical results illustrate the 

influence of various factors, such as the continuously varying thickness of the beam in the length 

direction, the location of the cracks along the beam thickness, the lengths of the two cracks, the 

material inhomogeneity in the thickness direction and the non-linear mechanical behavior of the 

material on the lengthwise fracture in the beam configurations shown in Fig. 1 and Fig. 3. The 

strain energy release rate is presented in non-dimensional form by applying the formula 

GN=G/(PUb). It is assumed that b=0.008 m, h=0.005 m, l=0.150 m and F=2 N. 

First, the influence of the continuously varying thickness along the beam length on the fracture 

behaviour is investigated. The variation of the thickness along the beam length is characterized by 

hs/h ratio. The beam configuration in which the lower crack is shorter than the upper one is 

considered (Fig. 1). In order to evaluate the influence of the continuously varying thickness on the 

fracture behaviour, the strain energy release rate in non-dimensional form is plotted against hs/h 

ratio in Fig. 4 at m=0.6, n=0.8, Q/PU=0.7 and r=0.3. The curves in Fig. 4 indicate that the strain 

energy release rate decreases with increasing of hs/h ratio (this behavior is due to the increase of 

the beam stiffness). One can observe also in Fig. 4 that the strain energy release rate derived 

assuming increase of the upper crack is higher in comparison to that obtained assuming increase of 

the lower crack.  

The influence of the continuous material inhomogeneity along the thickness of the beam on the 

fracture behavior is investigated too. The beam configuration shown in Fig. 1 is considered. The 
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Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness 

 

Fig. 5 The strain energy release rate in non-dimensional form plotted against material property r (curve 

1 - at a2/l =0.2, curve 2 - at a2/l =0.3 and curve 3 – at a2/l =0.4) 

 

 

Fig. 6 The strain energy release rate in non-dimensional form plotted against h1/h ratio (curve 1 - at 

non-linear elastic behavior of the material and curve 2 - at linear-elastic behavior of the material) 

 

 

solution to the strain energy release rate derived assuming increase of the upper crack is applied. 

The influence of the material inhomogeneity on the fracture behavior is illustrated in Fig. 5 where 

the strain energy release rate in non-dimensional form is plotted against the material property, r, at 

three a2/l ratios for a1/l =0.15. It should be noted that a2/l ratio characterizes the length of the upper 

crack. It is evident from Fig. 5 that the strain energy release rate decreases with increasing of r. It 

can be observed also that the strain energy release rate increases with increasing of a2/l ratio (Fig. 

5).  

The influence of the location of the lower crack along the beam thickness on the fracture 

behavior is evaluated. The beam configuration in which the lower crack is shorter than the upper 

one is considered (Fig. 1). The solution to the strain energy release rate obtained assuming increase  
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Fig. 7 The strain energy release rate in non-dimensional form plotted against the external force F 

(curve 1 - for the beam configuration in which the lower crack is shorter and curve 2 - for the 

beam configuration in which the lower crack is longer)      

 

 

of the lower crack is used. The location of the lower crack along the beam thickness is 

characterized by h1/h ratio. The strain energy release rate in non-dimensional form is plotted 

against h1/h ratio in Fig. 6 at (h1+h2)/h=0.9. The curves shown in Fig. 6 indicate that the strain 

energy release rate decreases with increasing of h1/h ratio. The strain energy release rate obtained 

assuming linear-elastic behavior of the inhomogeneous material is also plotted in Fig. 6. It should 

be noted that the linear-elastic solution to the strain energy release rate is derived by substituting of 

m=0 and Q=0 in the non-linear solution (31) since at m=0 and Q=0 the non-linear stress-strain 

relation (12) transforms in the Hooke’s law assuming that P is the modulus of elasticity of the 

inhomogeneous material. One can observe in Fig. 6 that the material non-linearity leads to increase 

of the strain energy release rate.  

The fracture behavior of the beam in which the lower crack is longer than the upper one (Fig. 

3) is compared with that of the beam in which the lower crack is shorter than the upper one (Fig. 

1). For this purpose, the strain energy release rate obtained by applying the solutions derived 

assuming increase of the lower crack in the beam configurations shown in Fig. 1 and Fig. 3 is 

plotted in non-dimensional form against the external force, F, in Fig. 7.  

One can observe in Fig. 7 that the strain energy release rate in the beam in which the lower 

crack is longer (Fig. 3) is higher in comparison with that in the beam in which the upper crack is 

longer (Fig. 1).   

               

 
4. Conclusions 
 

Lengthwise fracture behavior of inhomogeneous beam of continuously varying thickness along 

the length of the beam is investigated analytically. Two parallel lengthwise cracks are located 

arbitrary along the beam thickness. The beam is subjected to three-point bending. Solutions to the 

strain energy release rate are derived by considering the balance of the energy. It is assumed that 

the beam exhibits continuous material inhomogeneity in the thickness direction. Besides, the 
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material has non-linear elastic mechanical behavior. Two beam configurations are analyzed. In the 

first configuration the lower crack is shorter than the upper one. A beam configuration in which the 

lower crack is longer than the upper one is also analyzed. In order to verify the solutions to the 

strain energy release rate, the lengthwise fracture behavior of the two beam configurations is 

analyzed also by considering the complementary strain energy. The influence of the varying 

thickness along the beam length on the lengthwise fracture behavior is investigated. It is found that 

the strain energy release rate decreases with increasing of hs/h ratio (this ratio characterizes the 

continuous variation of the beam thickness in the length direction). The analysis reveals also that 

the strain energy release rate at increase of the upper crack is higher than that at increase of the 

lower crack in the beam configuration in which the lower crack is shorter than the upper one. The 

analysis of the influence of the material inhomogeneity in the thickness direction of the beam on 

the lengthwise fracture behavior indicates that the strain energy release rate decreases with 

increasing of the material property, r. The strain energy release rate decreases also with increasing 

of h1/h ratio.  

The non-linear mechanical behavior of the beam leads to increase of the strain energy release 

rate. The investigation of the strain energy release rate shows that the upper crack can not grow in 

the beam configuration in which the lower crack is longer than the upper one. When increase of 

the lower crack is assumed, it is found that the strain energy release rate in the beam configuration 

in which the lower crack is longer is higher in comparison with that in the beam configuration in 

which the upper crack is longer.                         
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