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Abstract.  This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT) 
for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic 
foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two 
scale factors are included in the formulation for describing size influences based on NSGT. The material properties for 
FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is 
presented based on three factors including a viscous layer and two elastic layers. The governing equations achieved by 
Hamilton’s principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity, 
temperature rise, scale factors and viscous damping. 
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1. Introduction 
 

When the pore distribution inside the material is selected to be non-uniform, it might be defined 

as a functionally graded material since its properties obey some specified functions. However, the 

term functionally graded is not used only for non-uniform porous foams only. This term is a general 

term for a variety of materials in which the properties are graded and are not uniform. One example 

is a functionally graded (FG) material based on two components which are ceramic and metal. In 

fact, the properties are graded from ceramic to metal. In such gradation of material properties, 

porosities could be inevitable. Due to contribution of two materials in this FG material, porosities 

occur as a sequence of material combination defect. Many researches have been focused on such FG 

material based structures with the consideration of pore effect (Jabari et al. 2008, Chikh et al. 2016, 

Sobhy 2016, Lal et al. 2017, Bouderba et al. 2016, El-Hassar et al. 2016, Atmane et al. 2017, Alasadi 

et al. 2019, Medani et al. 2019, Berghouti et al. 2019). 

A structure at nano scale could not be modeled based on well-known elasticity theory which is 

used for macro size structures. This shortcoming comes from the inexistence of a scale parameter in 

classical elasticity. Thus, non-classical or higher order elasticity theories will be utilized in order to 
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mathematically model a structure a nano scale. Such mathematical modeling is of great importance 

since experiments are at nano level are still difficult. As a consequence, the well-known non-local 

elasticity (Eringen 1983) is notably used in such mathematical modeling for structures at nano level. 

After this mathematical modeling, it is possible to analyze structural behaviors of beams, plates and 

shell having nano-dimension. Some examples are the works done by Berrabah et al. (2013), Zenkour 

and Abouelregal (2014), Aissani et al. (2015), Besseghier et al. (2015), (2017), Elmerabet et al. 

(2017), Bouadi et al. (2018), Yazid et al. (2018), Natarajan et al. (2012), Karami et al. (2018), 

(2019a-d), Daneshmehr and Rajabpoor (2014), Belkorissat et al. (2015), Semmah et al. (2019), 

Larbi Chaht et al. (2015). Due to the ignorance of strain gradient effect in nonlocal elasticity theory, 

a more general theory will be required. Strain gradients at nano-scale are observed by many 

researchers (Lam et al. 2003, Lim et al. 2015, Mirsalehi et al. 2017). Thus, nonlocal-strain gradient 

theory was introduced as a general theory which contains an additional strain gradient parameter 

together with nonlocal parameter (Fenjan et al. 2019, Barati and Zenkour 2017). 

In this research, a thick plate model is studied based on 4 field variables (Mahi et al. 2015, Houari 

et al. 2016, Merazi et al. 2015, Younsi et al. 2018, Issad et al. 2018, Sadoun et al. 2018, Bouafia et 

al. 2017, Sayyad and Ghugal 2018, Daouadji et al. 2018). Note that classical plate model doesn’t 

consider shear deformations for thick plates (Bourada et al. 2015, Draiche et al. 2016, Boulefrakh 

et al. 2019, Chaabane et al. 2019, Mahmoudi et al. 2019, Attia et al. 2018, Zarga et al. 2019, Meksi 

et al. 2019, Khiloun et al. 2019). Based on introduced plate theory, dynamic characteristics of nano-

scale plates made of porous FG material exposed to thermal-hygral loads will be studied. The 

material is ceramic-metal with different pore distributions inside it. Nonlocal and strain gradient 

effects due to nano-dimension of the plate have been considered. The governing equations of the 

nano-dimension plate will be solved with the help of DQ approach. The obtained results will be 

verified with a previously published article. The dynamic characteristics of porous FG nano-size 

plate is shown to be dependent on applied loading, pore distribution, non-local impacts, and some 

other parameters. 

 

 
2. Nanoplate modeling based on NSGT 

 

In the well-known nonlocal strain gradient theory (Lim et al. 2015), strain gradient impacts are 

taken into accounting together with nonlocal stress influences defined in below relation 

(0) (1)
ij ij ij  = −  (1) 

in such a way that stress 
(0)
ij is corresponding to strain components εkl and a higher order stress is 

related to strain gradient components kl  which are (Lim et al. 2015): 

(0)
0 0( , , ) ( )ijkl klij

V
x x e a x dxC     =   (2a) 

(1) 2
1 1( , , ) ( )ijkl klij

V
l x x e a x dxC     =   (2b) 

in which Cijkl express the elastic properties; Also, e0a and e1a are corresponding to nonlocality  
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Fig. 1 Geometry of porous FG composite nanoplate coupled by visco-elastic medium 

 

 

impacts and l is related to strains gradients. Whenever two nonlocality functions 0 0( , , )x x e a   and 

1 1( , , )x x e a   verify Eringen’s announced conditions, NSGT constitutive relation may be written as 

follows 

2 2 2 2 2 2 2 2 2 2

1 0 1 0[1 ( ) ][1 ( ) ] [1 ( ) ] [1 ( ) ]ijkl kl ijkl klije a e a e a l e aC C −  −  = −  − −    (3) 

so that 2 defines the operator for Laplacian; by selecting e1=e0=e, above relationship decreases to 

2 2 2 2[1 ( ) ] [1 ]ijkl klijea lC −  = −   (4) 

Taking into account the temperature/humidity impact Eq. (4) might be rewritten as 

2 2 2 2[1 ( ) ] [1 ]( )ijkl kl ij ijea l T Cij C   −  = −  − −  (5) 

so that ij and ij respectively define the temperature and humidity expansion properties. 

 

 

3. Modeling FG plates having porosity 
 

For the nanoplate shown in Fig. 1, the material distribution in FG materials may be characterized 

via a power-law function. FG materials are not always perfect because of porosity production in 

them. Existence of porosities in the FG materials may significantly change their mechanical 

characteristics. Depending on the type of porosity distribution, the elastic moduli E, density ρ, 

temperature expansion property γ and humidity expansion property β for porous FG material can be 

expressed in the following power-law form having material gradient index p as 

1
( ) ( ) ( )

2 2

p

c m m c m

z
E z E E E E E

h

 
= − + + − + 

 
 (6a) 

1
( ) ( ) ( )

2 2

p

c m m c m

z
z

h


     

 
= − + + − + 

 
 (6b) 
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1
( ) ( ) ( )

2 2

p

c m m c m

z
z

h


     

 
= − + + − + 

 

 (6c) 

1
( ) ( ) ( )

2 2

p

c m m c m

z
z

h


     

 
= − + + − + 

 

 (6d) 

where m and c corresponds to the metallic and ceramic sides, respectively; α defines the porosity 

volume fraction. 

By defining exact location of neutral surface, the displacement components based on axial u, 

lateral v, bending wb and shear ws displacements may be introduced as (Fenjan et al. 2019) 

( ) ( ) * **, , , , , ( ) [ ( ) ] s
x

bw w
r z r

x
u x y z t u x y t z

x
= −

 
 −− −

 
 (7a) 

( ) ( ) * **, , , , , ( ) [ ( ) ] s
y

bw w
r z r

y
u x y z t v x y t z

y
= −

 
 −− −

 
 (7b) 

( , , , ) ( , , )z b su x y z t w x y t w w= = +  (7c) 

so that 

/2 /2
*

/2 /2
( ) / ( )

h h

h h
r E z zdz E z dz

− −
=   , 

/2 /2
**

/2 /2
( ) ( ) / ( )

h h

h h
r E z z dz E z dz

− −
=    (8) 

Here, secant type shear function is employed as 

( ) sec( ) sec(0.5 )[1 0.5 tan(0.5 )], 0.1
rz

z z z z r r r r
h

 = − + + =  (9) 

 Finally, the strains based on the four-unknown plate model have been obtained as 

2 2
* **

2 2

2 2
* **

2 2

2 2
* **

( ) [ ( ) ]

( ) [ ( ) ]

2( ) 2

( ) (

[ ) ]

)

(

,

x

y

xy

yz

b s

b s

b s

s s
xz

w wu
z r z r

x x x

w wv
z r z r

y y y

w wu v
z r z r

y x x y x y

w w

y x
g z g z







 

=

=

=

=

 
− − −  −

  

 
− − −  −

  

  
+ − − −  −

     

 

 
=  

 (10) 

Next, one might express the Hamilton’s rule as follows based on strain energy (U) and kinetic 

energy (T) 

0
( ) 0

t

U T V dt − + =  
(11) 

and V is the work of non-conservative loads. Based on above relation we have 

(1) (1) (1)

(1) (1)

(

)

xx xx xx xx yy yy yy yy xy xy xy xy
V

yz yz yz yz xz xz xz xz

U

dV

                  

           

= +  + +  + + 

+ +  + + 

  (12) 
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Note that for obtaining Eq. (12), the thickness effects have been neglected by the authors. Placing 

Eqs. (8) and (10) in Eq. (12) leads to 

2 2

2 20

2 2 2

2 2

2

0
[ [ ] [ ]

( ) 2

2 ]

b
b sb s

xx xx xx yy

b s bb s b
yy yy xy xy

s s s s
xy yz xz

a w wu w w v w w

x x x x x y y y

w w wu v w w w w
M M N M

y y y x x y y x x y

w w w
M Q Q dydx

x y y x

U N M M N
    

     

  


      

+ + +
       

       
− − + + + + −

         

  
− + +

   

= − −
 
(13) 

in which 

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0

/2

( )

( )

( )

( )

(

h

xx xx xx xx xx
h

h

xy xy xy xy xy
h

h

yy yy yy yy yy
h

h
b b b

xx xx xx xx xx
h

h
s

xx xx xx
h

N dz N N

N dz N N

N dz N N

M z dz M M

M f

 

 

 

 

 

−

−

−

−

−

= − = −

= − = −

= − = −

= − = −

= −










(1) (0) (1)

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (

/2

)

( )

( )

( )

( )

s s

xx xx

h
b b b

yy yy yy yy yy
h

h
s s s

yy yy yy yy yy
h

h
b b b

xy xy xy xy xy
h

h
s s

xy xy xy xy
h

dz M M

M z dz M M

M f dz M M

M z dz M M

M f dz M

 

 

 

 

−

−

−

−

= −

= − = −

= − = −

= − = −

= − =








0) (1)

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

( )

( )

s

xy

h

xz xz xz xz xz
h

h

yz yz yz yz yz
h

M

Q g dz Q Q

Q g dz Q Q

 

 

−

−

−

= − = −

= − = −




 

(14a) 

where 

/2 /2
(0) (0) (1) (1)

/2 /2

/2 /2
(0) (0) (1) (1)

/2 /2

/2 /2
(0) (0) (1) (1)

/2 /2

/2
(0) (0)

/2

( ) ,    ( )

( ) ,    ( )

( ) ,    ( )

(

h h

ij ij ij ij
h h

h h
b b b b

ij ij ij ij
h h

h h
s s s s

ij ij ij ij
h h

h
i

xz xz
h

N dz N dz

M z dz M z dz

M f dz M f dz

Q g

 

 

 



− −

− −

− −

−

= =

= =

= =

=

 

 

 
/2

(1) (1)

/2

/2 /2
(0) (0) (1) (1)

/2 /2

) , ( )

( ) , ( )

h
i

xz xz
h

h h
i i

yz yz yz yz
h h

dz Q g dz

Q g dz Q g dz



 

−

− −

=

= =

 

 

 (14b) 

So that (ij=xx, xy, yy). The variation for the works of non-conservative force is expressed by 
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0 0

0 0

0

( ) ( ) ( ) ( )
(

( ) ( ) ( )
2 ( ) ( )

( ) ( ) ( ) ( )
( ))

a b
b s b s b s b s

x y

b s b s b s
xy w b s b s d

b s b s b s b s
p

w w w w w w w w
V N N

x x y y

w w w w w w
N k w w w w c

x y t

w w w w w w w w
k dydx

x x y y

 


  

 

 +  +  +  +
= +

   

 +  +  +
+ − + + −

  

 +  +  +  +
+ +

   

 

 
(15a) 

where 0 0 0, ,x y xyN N N  denote membrane forces; kw, kp and cd are viscoelastic substrate constants. 

Herein, the nano-dimension plate has been exposed to the below in-plane loading while shearing 

load has been neglected 
0

xyN =0 

0 0,T H T H

x yN N N N N N= + = +   (15b) 

where hygro-thermal resultants may be defined as 

/2

0
/2

/2

0
/2

( )
( ) ( )

1

( )
( ) ( )

1

h
T

h

h
H

h

E z
N z T T dz

v

E z
N z C C dz

v





−

−

= −
−

= −
−





 (15c) 

so that  C=∆C+C0 and T=∆T+T0 define humidity and thermal variations; C0 and T0 express prescribed 

humidity and temperature. 

Also, the kinetic energy variation is obtained as 

(16) 

so that  

(17) 

Substituting Eqs. (13)-(16) into Eq. (11) then collecting the coefficients for field variables results 

in
 
four equations of motion 

3 32

0 1 32 2 2

xyx b s
NN w wu

I I I
x y t x t x t

  
+ = − −

        
(18) 

3 32

0 1 32 2 2

xy y b s
N N w wv

I I I
x y t y t y t

   
+ = − −

        
(19) 

0 1
0 0

3 2

( ) ( )
[ ( ) (

) ( ) (

a b
b s b s b b b

b s s s s b b b b

w w w w w w wu u v v u u v
K I I

t t t t t t t x t x t t t y t

w w w w w w w w wv v u u v
I I

y t t y t t x t t t x t t y t y t y t x t

    


     

 +  +         
= + + − + +

              

            
+ − + + + + + + +
                    

 

5 4

)

( ) ( )]s s s s b s s b s b b s

x t

w w w w w w w w w w w w
I I dydx

y t y t x t x t x t x t y t y t x t x t y t y t

     

 

           
+ + + + + + +

                       

/2
* * 2 ** * ** ** 2

0 1 2 3 4 5
/2

( , , , , , ) (1, ,( ) , ,( )( ),( ) ) ( )
h

h
I I I I I I z r z r r z r r r z dz

−
= − − − − − −
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2 22 2 2

2 2 2 2

2 3 3

0 12 2 2

2 22 2 2 2

2 42 2 2 2 2 2

( ) ( )
2 ( )[ ]

( ) ( )
( ) ( )

( )( ) ( )( )

b bb
xy y T Hx b s b s

p

b s b s
w b s d

b s

M MM w w w w
N N k

x x y y x y

w w w w u v
k w w c I I

t t x t y t

w w
I I

x y t x y t

   +  +
+ + − + − +

     

 +  +  
− + − = + +

     

    
− + − +

       

(20) 

2 22 2 2

2 2 2 2

2

0 2

2 23 3 2 2 2 2

3 4 52 2 2 2 2 2 2 2

( ) ( )
2 ( )[ ]

( ) ( )
( )

( ) ( )( ) ( )( )

s ss
xy y yz T Hx xz b s b s

p

b s b s
w b s d

b s

M M QM Q w w w w
N N k

x x y y x y x y

w w w w
k w w c I

t t

w wu v
I I I

x t y t x y t x y t

     +  +
+ + + + − + − +

       

 +  +
− + − =

 

      
+ + − + − +

           

(21) 

Next, all edge conditions for x=0, a and y=0, b may be expressed by 

Specify x yun vn+  or   2 22 0x x x y xy y yN n n n N N n+ + =  

(22) 

Specify y xun vn− +  or   2 2( ) ( ) 0y x x y xy x yN N n n N n n− + − =  

Specify bw  or 

3 32

1 2 42 2 2

3 32

1 2 42 2 2
0

bb
xyxx b s

x

b b

yy xy b s
y

MM w wu
I I I n

x y t x t x t

M M w wv
I I I n

y x t y t y t

   
+ − + +         

    
+ + − + + =         

 

Specify sw  or 

3 32

3 4 52 2 2

3 32

3 4 52 2 2
0

ss
xyxx b s

xz x

s s

yy xy b s
yz y

MM w wu
Q I I I n

x y t x t x t

M M w wv
Q I I I n

y x t y t y t

   
+ + − + +         

    
+ + + − + + =         

 

Specify bw

n




 or 2 2 0b b b

xx x x y xy yy yM n n n M M n+ + =  

Note that ∂( )/∂n=nx∂( )/∂x+ny∂( )/∂y; nx and ny respectively define axial as well as lateral normal 

vectors at edges, and non-classic edge condition may be written as 

Determine 
2

2

bw

x




 or (1) 0b

xxM =  

(23) 

Determine 
2

2

bw

y




 or (1) 0b

yyM =  

Determine 
2

2

sw

x




 or (1) 0s

xxM =  

Determine 
2

2

sw

y




 or (1) 0s

yyM =  
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Finally, the nonlocal strain gradient constitutive relations based on refined FG plate model can 

be expressed by 

1 0 0 0

1 0 0 0
( )2 2) ) 0 0 (1 )/2

21 0 0 (1 )/2

(1 (1 0 0

0 0

0 0 0 ( 20 1 )/

v

v
E z

v
v

T Cx x

T Cy y

xy xy

yz yz
v

z

v

xz x

   

   

 

 

 

 −  = −  −
− −

  −  − 
   
    −  − 
   
   

    
    
    
     

  

−
  

 

(24) 

After integrating Eq. (24) in thickness direction, we get to the following relationships 

1 0
2

(1 ) 1 0

0 0 (1 )/2

2)(1

u

xN vx
v

N A vy
y

vNxy u v

y x

 

  
       

−  =   
   −     

+ 
  

−   (25) 

2 2

2 2

1 0 1 02 2
2

(1 ) 1 0 1 0
2 2

0 0 (1 )/2 0 0 (1 )/2
2 2

2 2

(1 (2 2) )1

w wb s

b x xM x v v
w wb b sM D v E vy
y yv vbM xy

w wb s
x y x y

  

     − −
     
      
        

−  = − + −       
        − −       

    
− −        

−  −   
(26) 

2 2

2 2

1 0 1 02 2
2

(1 ) 1 0 1 0
2 2

0 0 (1 )/2 0 0 (1 )/2
2 2

2 2

(1 (2 2) )1

w wb s

s x xM x v v
w ws b sM E v F vy
y yv vsM xy

w wb s
x y x y

  

     − −
     
      
        

−  = − + −       
        − −       

    
− −        

−  −   
(27) 

2
(1 )

44

1 0
(1

0 1

2)

ws
Qx x

A
Q wy s

y

 

 
    

−  =  
  

  

 
 
 

−   (28) 

in which 

* 2 * **
/2 /2 /2

2 2 2/2 /2 /2

** 2
/2 /2

2

442/2 /2

( ) ( )( ) ( )( )( )
, ,

1 1 1

( )( ) ( )
,

1 2(1 )

h h h

h h h

h h

h h

E z E z z r E z z r r
A dz D dz E dz

v v v

E z r E z
F dz A g dz

v v

− − −

− −

− − −
= = =

− − −

−
= =

− +

  

 

  

  

 (29) 

Three equations of motion based on neutral surface location will be achieved by placing Eqs. 
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(25)-(28) in Eqs. (18)-(21) by 

3 32
2 2

2 2 2

2 2 0 1 32 2 2

1 1
(1 ( ) (1

2 2
) )( ) 0b su v u v v

A
w wu

I I I
t x t xx y x ty

 
 

−  −
 −  + 

+ + + −
 

 + + =
     

 (30) 

3 32
2 2

2 2 2

2 2 0 1 32 2 2

1 1
(1 ( ) (1

2 2
) )( ) 0b sv v v v u

A
w wv

I I I
t y t yy x x ty

 
 

−  −
 −  + 

+ + + −
 

 + + =
     

 
(31) 

2 2

2 23 3
2 2

0 1 22 2 2 2

2 2 2
2

4 2 2

4 4 4 4 4 4

4 2

2

2 4 4 2 2 4
(1 ( 2 ) (1 ( 2 )) )

( )
)( ( ) ( )

( ) ( )
( ) ( )[ ]

( )(

(1 b s b

T Hs b s b s

w d b

b b b s s s

w w wu v
I I I

t x t y

w w w w w w
D E

x x y y x x

t t

w w w w w
I

y

N N
t x y

k c w
t

y
 



−  − 

 +  
−  − −

     
− + + − + +

+ + 

    

     

  +  +
+  − + +

  


− +



+



 

+
2 2

2 2

( ) ( )
) [ ] 0)b s b s

s P

w w w w
w k

x y

 +  +
+ +


=



 
(32) 

4 4 4 4
2 2

2 3 3
2 2

0 3

4 4

4 2 2 4 4 2 2 4

2 2

44 2 2 2 2 2

2 2 2
2 2

4 52 2 2

(1 ( 2 ) (1) )
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4. Solution by differential quadrature method (DQM) 

 

In the present chapter, differential quadrature method (DQM) has been utilized for solving the 

governing equations for NSGT porous FG nanoplate. According to DQM, at an assumed grid point 

(𝑥𝑖 , 𝑦𝑗)  the derivatives for function F are supposed as weighted linear summation of all functional 

values within the computation domains as 

𝑑𝑛𝐹

𝑑𝑥𝑛 | 𝑥=𝑥𝑖
= ∑ 𝑐𝑖𝑗

(𝑛)
𝐹(𝑥𝑗)𝑁

𝑗=1    (34) 

where  

𝐶𝑖𝑗
(1)

=
𝜋(𝑥𝑖)

(𝑥𝑖−𝑥𝑗) 𝜋(𝑥𝑗)
        𝑖, 𝑗 = 1,2, … , 𝑁,        𝑖 ≠ 𝑗  (35) 

in which 𝜋(𝑥𝑖) is defined by 

𝜋(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑗)𝑁
𝑗=1 ,      𝑖 ≠ 𝑗  (36) 

And when 𝑖 = 𝑗 
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𝐶𝑖𝑗
(1)

= 𝑐𝑖𝑖
(1)

= − ∑ 𝐶𝑖𝑘
(1)𝑁

𝑘=1 ,     𝑖 = 1,2, … , 𝑁,      𝑖 ≠ 𝑘, 𝑖 = 𝑗  (37) 

Then, weighting coefficients for high orders derivatives may be expressed by 

𝐶𝑖𝑗
(2)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(1)𝑁

𝑘=1   

𝐶𝑖𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(2)𝑁

𝑘=1 = ∑ 𝐶𝑖𝑘
(2)

𝐶𝑘𝑗
(1)𝑁

𝑘=1   

𝐶𝑖𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(3)𝑁

𝑘=1 = ∑ 𝐶𝑖𝑘
(3)

𝐶𝑘𝑗
(1)𝑁

𝑘=1           𝑖, 𝑗 = 1, 2, … , 𝑁.  

𝐶𝑖𝑗
(5)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(4)𝑁

𝑘=1 = ∑ 𝐶𝑖𝑘
(4)

𝐶𝑘𝑗
(1)𝑁

𝑘=1   

𝐶𝑖𝑗
(6)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(5)𝑁

𝑘=1 = ∑ 𝐶𝑖𝑘
(5)

𝐶𝑘𝑗
(1)𝑁

𝑘=1   

(38) 

According to presented approach, the dispersions of grid points based upon Gauss-Chebyshev-

Lobatto assumption are expressed as 

𝑥𝑖 =
𝑎

2
[1 − cos (

𝑖−1

𝑁−1
𝜋)]       𝑖 = 1, 2, … , 𝑁,  

𝑦𝑗 =
𝑏

2
[1 − cos (

𝑗−1

𝑀−1
𝜋)]       𝑗 = 1, 2, … , 𝑀,  

(39) 

Next, the time derivative for displacement components may be determined by 

( , , ) ( , ) i t

b bw x y t W x y e =  (40) 

( , , ) ( , ) i t

s sw x y t W x y e =  (41) 

where Wb and Wn denote vibration amplitudes and 𝜔 defines the vibrational frequency. Then, it is 

possible to express obtained boundary conditions as 

2 2 2 2

2 2 2 2

4 4 4 4

4 4 4 4
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b s

b s b s

b s b s

w w

w w w w

x x y y

w w w w

x x y y

= =

   
= = = =

   

   
= = = =

   

 

(42) 

Now, one can express the modified weighting coefficients for all edges simply-supported as 

𝐶1̅,𝑗
(2)

= 𝐶�̅�,𝑗
(2)

= 0,       𝑖 = 1, 2, … , 𝑀,  

𝐶�̅�,1
(2)

= 𝐶1̅,𝑀
(2)

= 0,       𝑖 = 1, 2, … , 𝑁.  
(43) 

and 

𝐶�̅�𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

�̅�𝑘𝑗
(2)𝑁

𝑘=1        𝐶�̅�𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶�̅�𝑗
(3)𝑁

𝑘=1   (44) 

By placing Eqs. (38)-(39) into Eqs. (30)-(33) and performing some simplifications leads to the 

following system based on mass matrix [M], stiffness matrix [K] and damping matrix [C] as 

 2{ ] [ ] [ ] 0

mn

mn

n n

bmn

smn

U

V
K i C M

W

W

 

 
 
 

+ + = 
 
  

 
(45) 
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(a) p=0.5 (b) p=1 

 
(c) p=5 

Fig. 2 Changing of normalized frequency for ideal nanoplates with respect to temperature variation based on 

diverse nonlocality and strain gradients factors (a/h=15, Kw=0, Kp=0, ΔC=0%) 

 

 

Six grid points are adequate for convergence of the method. The presented results are based on 

the following dimensionless factors 

24 32

2

ρ
ˆ ω , , , ,

E 12(1 )

pc w c
w p d d c

c c c cc

k ak a E ha
a K K C c D

D D vhD



= = = = =

−
 (46) 

 

 

5. Obtained results and discussions 
 

This section studies vibrational behaviors of porous FG nano-dimension plates coupled by visco- 

elastic foundation using secant function based four-variable plate model and DQ approach. Nonlocal 
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(a) α=0 (b) α=0.1 

 
(c) α=0.2 

Fig. 3 Normalized frequency of FG nanoplate according to damping coefficient for diverse pore volume 

fraction (p=1, a/h=10, ΔT=10, Kw=5, Kp=0.5, µ=0.2, λ=0.1) 

 

 

and strain gradient coefficients are used in order to define the size-dependent behavior of nano-size 

plate. Presented results indicate the prominence of moisture/temperature variation, damping factor, 

material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational 

frequencies of FG nano-size plate. A verification study is presented in Table 1 for FG nanoplate 

with comparing the vibrational frequency presented by DQM and those obtained by Natarajan et al. 

2012. Also, each material property for FG plate may be assumed by: 

• 𝐸𝑐  = 380 GPa, 𝜌𝑐 = 3800 𝑘𝑔/𝑚3 , 𝑣𝑐 = 0.3 , 𝛾𝑐 = 7 × 10−6 1/ 𝐶0 , 𝛽𝑐 =
0.001 (𝑤𝑡. % 𝐻2𝑜)−1 

• 𝐸𝑚  = 70 GPa, 𝜌𝑚 = 2707 𝑘𝑔/𝑚3 , 𝑣𝑚 = 0.3 , 𝛾𝑚 = 23 × 10−6 1/ 𝐶0 , 𝛽𝑚 =
0.44 (𝑤𝑡. % 𝐻2𝑜)−1 
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(a) p=0.5 (b) p=1 

 
(c) p=5 

Fig. 4 Changing of normalized frequency of porous nanoplates according to nonlocal coefficient based on 

diverse strain gradients coefficient (ΔT=50, ΔC=1%, a/h=10, Kw=25, Kp=10) 
 

 

In Fig. 2, one can see the variation of vibrational frequency versus temperature for a variety of 

both nonlocal and strain gradient coefficients. This figure has three parts and each part is related to 

one value for material gradient index. Porosity parameter for nanoplates is chosen to be zero. It can 

be understand from Fig. 2 that vibration frequency of system will rise with strain gradient coefficient 

and will reduce with nonlocality coefficient. This observation is valid for all values of material 

gradient index. So, vibration behavior of double nanoplate system is dependent on both scale effects. 

In Fig. 3 one can see the variation of vibrational frequency of nanoplate system versus damping 

factor of visco-elastic substrate with different porosity coefficients. Thus, the effect of surrounding 

visco-medium is considered for this figure. It can be understand from Fig. 3 that vibration frequency 

of system will reduce with pore coefficient and humidity rise. By considering visco-elastic substrate, 

vibrational frequency will reduce with the damping factor magnitude. So, the nanoplate system will 
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be less rigid as the damping factor or visco-elastic parameters become stiffer. 

One can see from Fig. 4 the variation of vibrational frequency of the nano-size plate against non-

local and strain gradient coefficients when a=10h. Void or pore dispersion is set as uniform with 

different values for material gradient index (p). The vibration frequency of a large-size plate might 

be achieved by selecting a zero non-local parameter. From the figure, it might be seen that non-local 

coefficient assigns a stiffness devaluation characteristic together with a smaller vibration frequency. 

Besides, growth of material gradient index yields a smaller frequency regardless of non-local 

parameter magnitude.  

 

 
6. Conclusions 

 

This article focused on vibration characteristic of a nanoplate system coupled by visco-elastic 

medium and modeled by NSGT and refined plate theories. Nanoplates were considered to be 

porosity-dependent accounting for thermal effects. It was understood that vibration frequency of 

system raised with strain gradient coefficient and reduced with nonlocality coefficient. It was also 

found that vibration frequency of system might reduce with pore coefficient. By considering visco-

elastic substrate, vibrational frequency will reduce with the damping factor magnitude. Besides, 

growth of material gradient index yields a smaller frequency regardless of non-local parameter 

magnitude. 
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