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Towards isotropic transport with co-meshes
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Abstract. Transport is the central ingredient of all numerical schemes for hyperbolic partial differential
equations and in particular for hydrodynamics. Transport has thus been extensively studied in many of its
features and for numerous specific applications. Inmore than one dimension, it is most commonly plagued
by a major artifact: mesh imprinting. Though mesh imprinting is generally inevitable, its anisotropy can
be modulated and is thus amenable to significant reduction.

In the present work we introduce a new definition of stencils by taking into account second nearest
neighbors (across cell corners) and call the resulting strategy “co-mesh approach”. The modified equation
is used to study numerical dissipation and tune enlarged stencils in order to minimize transport anisotropy.

Keywords: transport; numerical diffusion; isotropy; mesh imprinting; modified equation

1. Introduction

Various existing techniques for reducing the anisotropy of numerical transport resort to either
of two strategies: i) improve the order of accuracy of schemes, or ii) make mesh and discretiza-
tion stencil more isotropic. In the latter approach, one can mention Lagrange-remap schemes for
hydrodynamics, where so-called corner fluxes appear (Burton et al. 2015, Hirt et al. 1974), face
centered cubic (FCC) or body-centered cubic (BCC) lattices, often used for 3D wave propagation
and linear magneto-hydrodynamics (MHD) (Potter et al. 2011, Salmasi and Potter 2018, Hamilton
and Bilbao 2013), isotropic finite-differences, to correct lowest order error terms (Kumar 2004), in-
terfacial flux splitting, to reduce mesh-locking effects for the heterogeneous, anisotropic diffusion
problem (Terekhov et al. 2017), flux-corrected transport (FCT), which treats mesh-imprinting issues
to achieve vorticity preservation (Lung and Roe 2014), geometric correctors, to achieve consistency
by constraining convergence to asymptotically regular meshes (Bouche et al. 2005), etc.

Motivated by the development of hydro-codes for Inertial Confinement Fusion (ICF), (Zohuri
2017), a novel multi-fluid multi-dimensional direct-ALE hydro-scheme approach was recently intro-
duced (Vazquez-Gonzalez 2016). When deriving the scheme—designated as GEEC for Geometry,
Energy, and Entropy Compatible—a critical step appeared to be the definition of a proper discrete
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transport operator. In its present (first-order) form, its displays a significant anisotropic behavior that
requires improvement for effective usage in applications.

The present work thus aims at studying and reducing the 2D anisotropy of the discrete first-order
transport scheme. For this purpose, we privilege strategy ii) above to improve isotropy before upgrad-
ing the transport operator to higher order. This is done with an enlarged first-order upwind stencil.
Following strategy i) above would have introduced complexities in the quasi-symplectic design of
the GEEC scheme due to corner fluxes without actually much improvement on anisotropy to second
order.

This approach is inspired by the following quote from P. Roe: “… respecting the correct propa-
gation of information under all circumstances. This includes seeking modes of propagation that are
isotropic when they should be.” (Roe 2017).

2. Generic form and properties of the discrete Eulerian transport operator

The Eulerian transport operator for a field a under velocity field u writes

Dta = ∂ta+∇ · (au). (1)

In the ALE context (Arbitrary Lagrangian Eulerian) u is the velocity in the reference frame, defined
by the sum of relative-to-grid velocity v and grid velocityw, u = v+w. Remark that by definition
v = 0 represents Lagrangian transport by field w, whereas w = 0 represents Eulerian transport by
field v.

The generic first-order conservative discretization of the linear Eulerian transport operator (1)
writes

D∆ta
n
c = V n+1

c an+1
c − V n

c anc +∆tn
∑

d∈D(c)

(
anc V̊

n
cd − and V̊

n
dc

)
, (2)

where the transported field a is defined at cell center xc as its average value over (moving mesh)
cell c of volume Vc—D(c) being the set of cell labels logically connected to cell c, as defined by
the stencil. In order to preserve linearity with respect to velocity, the volume transfer rates V̊ n

cd must
be linear forms of relative-to-grid velocities vn

q—which are given at some nodes q related but not
necessarily identical to the grid nodes—most generally represented by vectors sncdq

V̊ n
cd :=

∑
q∈Q(c)

vn
q · sncdq, (3)

—Q(c) being the set of nodes q logically connected to cell c.
Elementary analysis of stability and consistency constrain the features of the transport operator (2)

as follows: i) for stability, transport must be upwinded with respect the velocity direction, i.e. sncdq ·
vn
q ≥ 0 in (3), and this makes V̊ n

cd to be a piecewise linear function of the vn
q or

V̊ n
cd :=

∑
q∈Q(c)

σn
cdqv

n
q · sncdq, where σcdq := H(vq · scdq), (4)
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Fig. 1 Cell with its first nearest neighbors (white) and its co-cell boundaries connected to second nearest neigh-
bors (pink).

H being the Heaviside function (H(0) = 1/2 is assumed); ii) to avoid the DeBar artifact (DeBar
1974), velocities vq must be collocated with transported field ac, i.e. only one point xq = xc is
associated to any V̊ n

cd in (3) and scdq reduces to scd := scdc

V̊ n
cd := σn

cdv
n
c · sncd; (5)

iii) consistency to first order with the continuous formulation (1) requires enforcing the following
constraints (see Appendix A) ∑

d∈D(c)

(σn
cds

n
cd − σn

dcs
n
dc) = 0, (6a)

∑
d∈D(c)

σn
cds

n
cd ⊗ δxn

cd = V n
c I, (6b)

where δxn
cd := xn

d − xn
c and I is the identity matrix.

Condition (6a) is trivially ensured in a finite volumes setting where sncd are the cell face vectors—
normal to faces with magnitude given by face area—and if the the upwinding factors are consistent,
that is if σn

cd + σn
dc = 1 for any couple cd. Under these conditions, (6a) reduces to the trivial identity∑

d

sncd = 0. (7)

Now, condition (6b) is far less trivial even in a finite element setting and is strongly dependent
on the cell shapes and sizes. As visible from (19) in Appendix A, the condition is fulfilled with a
uniform upwinding factor and a uniform Cartesian mesh of squares or cubes in 2 or 3D. It is to be
noted however, that conditions (6) are always invariant by both affine transformations and convex
linear combinations of transport schemes.

The approach in the present work is to find the (possibly) best discretization to first order of the
Eulerian transport operator within the framework defined by (2), (5), and (7), and complemented
by (6b) whenever possible. It can be noticed that Vazquez-Gonzalez (2016) used the same formalism
on a structured (but non Cartesian and non uniform) mesh. This paper goes further by exploiting the
freedom left in (6) to improve transport isotropy.

3. Co-mesh approach in 2D

Usual 2D Cartesian 5-point stencils of finite volume schemes only take into account first nearest
neighbors (across cell faces). In the present work so-called co-meshes (as described in section 3.1) are
introduced in order to deal with corner fluxes through second nearest neighbors (across cell corners).
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Fig. 2 Meshes and the corresponding co-meshes. Cartesian grid (top) and randomly distorted quadrilateral grid
(bottom).

3.1 Construction of the co-mesh

The co-mesh represents a fictive grid that links second nearest neighbors (neighbors across cell
corners in the initial mesh) through fictive cell faces (see Fig. 1). Notably, the co-mesh defines the
vectors s(2)cd as its face normals, whereas s(1)cd are the face normals of the initial mesh. A cell of the
co-mesh is called a co-cell. Each co-cell is built from the cell centers of the first nearest neighbors,
where these cell centers act as the nodes of the co-mesh. This results in two co-meshes for a structured
2D grid, as shown in Fig. 2. The main idea behind this construction is to build a mesh, on top of the
initial one, which omits the numerical information of the first nearest neighbors. Fig. 3b illustrates
the volume of the co-cells and how the omitted parts prevent the co-mesh from having “holes” in
it, in order to result in a well-defined mesh. At the moment, the co-mesh strategy is applied only to
quadrilateral (but not necessarily Cartesian) structured grids. It is not clear yet how this method will
be adaptable to unstructured grids.

Let us remark at this point the importance of computing the cell volumes of the co-meshes V (i)
c

exactly, in order to preserve conservation. Considering V (2)
c = 2V

(1)
c is of course true in the case of

Cartesian meshes. However, this estimate is almost surely wrong in the case of more general meshes
and violates conservation as illustrated in Fig. 6.
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Results for three different schemes given by: ω = 1 (a), ω = 0 (b), and ωopt (c):

Fig. 3 Initial Cartesian grid (a) and co-mesh (b). Applying the co-mesh strategy is equivalent to applying the
initial transport operator on a non-tailing but volume-preserving octagonal grid (c).

Fig. 4 Graph of the dimensionless coefficients of matrix M in basis {e, e⊥} = { v
∥v∥ , e⊥} as a function of

transport direction θ: e ·M · e (blue), e⊥ ·M · e⊥ (green), and e ·M · e⊥ (red), scaled by h∥v∥.

Fig. 5 Representation of numerical diffusion on the transport of a “delta” function (four cells at bottom left
corner) along directions v = ∥v∥(cos θ, sin θ), for θ = 0, π/8, and π/4; transport over a radius of 96h (where
h is the spatial discretization step), on a 128× 128 grid, in 192 iterations, with CFL = 0.5.
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3.2 General method

The co-mesh approach consists in solving transport terms of a numerical scheme over an initial
mesh and several related co-meshes (introduced in section 3.1) and linearly combine the resulting
schemes ω × scheme + (1 − ω) × co-scheme with weight ω. This leads to a 9-point stencil on a
fictive mesh as represented in Fig. 1.

The notation for the transport operator in (2) is not changed; only the neighborhood of cell c is
redefined as

D(c) = D1(c) ∪ D2(c), (8)

where D1(c) and D2(c) are the sets of respectively first and second nearest neighbors, and vectors
scd are weighted with linear factors ω and (1− ω) as

scd =

{
ωs

(1)
cd if d ∈ D1(c),

(1− ω)s
(2)
cd if d ∈ D2(c).

(9)

Hence, the co-mesh method applied to the first-order transport scheme D∆ta
n
c = 0 on an Eulerian

grid (i.e. V n+1
c = V n

c =: Vc = ωV
(1)
c + (1− ω)V

(2)
c ) writes

an+1
c − anc
∆tn

+
1

Vc

∑
i=1,2

d∈Di(c)

(
anc V̊

(i),n
cd − and V̊

(i),n
dc

)
= 0, (10)

where D1(c) and D2(c) are the set of first and second nearest neighbors respectively, and the super-
scripts (1) and (2) indicate initial and co-mesh. In other words, the geometry of the co-mesh defines
the coefficients of the second nearest neighbors in the stencil.

3.3 Reducing anisotropy

The co-mesh strategy aims at reducing anisotropy. In order to find the most isotropic transport,
we seek the value of ω leading to some minimal measure of anisotropy. Here, the modified equation
(Warming and Hyett 1974) is used to study numerical dissipation of (10) and to determine ω. The
modified equation is the equation that is actually solved to higher order by a first-order scheme of a
given initial equation. It writes

(∂ta)
n
c + vx∂xa

n
c + vy∂ya

n
c =

(
Mxx(∂

2
xxa)

n
c + 2Mxy(∂

2
xya)

n
c +Myy(∂

2
yya)

n
c

)
(11a)

=:

(
∂x
∂y

)t

M(v)

(
∂x
∂y

)
anc . (11b)

Mxx, Mxy, Myy are the effective diffusive coefficients that characterize the numerical error, and
depend on the magnitude and orientation of the velocity v.

Consider (10) for constant transport direction v := ∥v∥(cos θ, sin θ), with θ ∈ [0, π/4]. Then,
the stencil is defined through cell c = (i, j) and its donor cells D1(c) = {(i − 1, j), (i, j − 1)} and
D2(c) = {(i− 1, j+1), (i− 1, j− 1)}. As detailed in Appendix B, the diffusion matrix on the right
hand side of (11a) has coefficients

Mxx = 1
2

(
1− vx∆t

∆x

)
vx∆x, (12a)
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Fig. 6 Solver applied to co-mesh (ω = 0). Wrong estimation of cell-volume violates conservation and mono-
tonicity (left), compared to the correct result (right). (For details on the simulation see Fig. 5).

Table 1 Optimized values of ω for three different functionals g.

g(ω) ∥M×∥∞ ∥M× − µ(M×)∥2 ∥M∥ − µ(M∥)∥2
ωopt 0.585786 0.587514 0.585863

Mxy = 1
2

(
(1− ω)vy −

√
vx∆t
∆x

vy∆t
∆y

√
vxvy

)
∆x, (12b)

Myy = 1
2

(
(1− ω)vx +

(
ω − vy∆t

∆y

)
vy

)
∆x. (12c)

Consider matrixM(v) taken in the basis {e, e⊥} = { v
∥v∥ , e⊥}, with transport direction v = ∥v∥ ×

(cos θ, sin θ), and transverse direction e⊥ = (− sin θ, cos θ), which writes

Mv :=

(
M∥ M×
M× M⊥

)
=

(
etMe etMe⊥
et⊥Me et⊥Me⊥

)
. (13)

Fig. 4 shows the coefficients of matrixMv over transport direction defined by θ. The imbalance be-
tween these coefficients reflects the transport anisotropy of the scheme. Transport would be isotropic,
if the coefficients ofMv would not change for different transport direction defined by angle θ. Thus,
reducing transport anisotropy means reducing anisotropy of Mv. This is done through numerical
optimization by minimizing some functional g(ω) = ∥fω(θ)∥, that describes transport anisotropy of
Mv depending on ω. Thus, minimizing over ω leads to an optimal value

ωopt := arg minω∈[0,1] g(ω) = arg minω∈[0,1] ∥fω(θ)∥. (14)

Table 1 shows the optimal ω computed for different minimization functionals g(ω), where µ is
the mean value over interval (0, π/4). The results for ωopt are very similar for these norms. However,
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Fig. 7 Co-mesh strategy applied to a randomly distorted quadrilateral grid with ωopt (details on the simulation
are provided in Fig. 5).

minimizing coefficient M× in the L∞ norm seems to be the most ideal choice. From now on, the
present work refers to the optimal value as ωopt = arg minω∈[0,1] ∥M×∥∞ ≈ 0.585786. Fig. 5c
and 7 show the co-mesh strategy with ωopt applied to the Cartesian grid and a randomly distorted
quadrilateral grid.

4. Conclusion

The generic formulation for the discrete Eulerian transport operator has been introduced. A con-
sistent version has been deduced on the co-mesh approach. The co-mesh strategy leads to improved
isotropy for ωopt, as visible by comparing Fig. 5a to 5c. The co-mesh approach has been introduced
on usual 2D Cartesian, and distorted quadrilateral structured grids. Transport anisotropy is reduced
on all of these general quadrilateral structured grids, where first-order consistency is guaranteed on
2D Cartesian, and uniformly distorted Cartesian grids (i.e. grids of identical parallelograms).

Applying the co-mesh strategy to 3D needs some further considerations. It is not obvious how this
would work, especially because difficulties arise by introducing third nearest neighbors. However, it
is immanent for a 3D extension, that the meshes for first to third nearest neighbors are respectively
built from hexahedra, rhombic dodecahedra, and truncated octahedra in order to respect tessellation.

The co-mesh strategy has been tested on first-order transport on an Eulerian grid. It can be readily
inserted in a GEEC approach, which defines a quasi-symplectic ALE scheme and requires a consistent
formulation of the transport operator for mass, momentum and internal energy equations. A second-
order extension is also being investigated.
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A. First-order expansion and consistency conditions

This paragraph provides the derivation of consistency conditions (6) for the first-order discretiza-
tion (2) of the transport operator (1). Some details on the special case of Cartesian meshes are also
provided.

First-order Taylor expansions in time around tn and space around center of mass xn
c of cell c give

V n+1
c = V n

c +∆t ∂tV
n
c +O(∆t2), (15a)

an+1
c = anc +∆t (∂ta)

n
c +O(∆t2), (15b)

and = anc + δxn
cd · (∇a)nc +O(||δx||2), (15c)

vq = vn
c + δxn

cq · (∇⊗ v)nc +O(||δx||2), (15d)

where δxn
cd := xn

d −xn
c and δxn

cq := xn
q −xn

c . Combining these expressions and with the definition
of V̊ n

dc in (3), the first-order expansion of the transport scheme (2) is

(∂ta)
n
c +

∂tV
n
c

V n
c

anc

+
1

V n
c

vn
c ·

∑
d,q

(sncdq − sndcq)a
n
c +

1

V n
c

∑
d,q

δxn
cq · (∇⊗ v)nc · (sncdq − sndcq)a

n
c

+
1

V n
c

∑
d,q

−vn
c · sndcq δxn

cd · (∇a)nc = O(∆t, ||δx||), (16)

where for simplicity the upwinding factors σcdq have been omitted (i.e. σcdqsdcq → sdcq) and sums
on d or q are now restricted by setting scdq = 0 whenever d /∈ D(c) or q /∈ Q(c).

Now, the the Eulerian transport operator can be decomposed as Dta = ∂ta+a∇ ·w+∇ ·(av) =
∂ta+ a∇ ·w+ a∇ · v+ v ·∇a, and thus term to term identification to first order with (16) yields

∂tV
n
c

V n
c

anc = anc (∇ ·w)nc , (17a)

1

V n
c

∑
d,q

vn
c · (sncdq − sndcq) a

n
c = 0, (17b)

1

V n
c

∑
d,q

δxn
cq · (∇⊗ v)nc · (sncdq − sndcq) a

n
c = anc (∇ · v)nc , (17c)

1

V n
c

∑
d,q

−(vn
c · sndcq) (δxn

cd · (∇a)nc ) = vn
c · (∇ac)

n. (17d)

As these conditions must hold whatever the transported field a and the transport velocity v—that is
whatever anc , (∇a)nc , vn

c , and (∇⊗ v)nc ,—they simplify into

∂tV
n
c = V n

c (∇ ·w)nc , (18a)
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∑
d,q

(sncdq − sndcq) = 0, (18b)

∑
d,q

(sncdq − sndcq)⊗ δxn
cq = V n

c I, (18c)

∑
d,q

−sndcq ⊗ δxn
cd = V n

c I, (18d)

where I is the identity matrix. The grid evolution always complies with (18a) (it is the so-called GCL
condition) thus only the last three conditions need to be retained.

When further restricting the velocity discretization by setting the set of points xq equal to the
single point xc in V̊dc, conditions (18c) and (18d) become identical and, reintroducing the upwinding
factors, the final two conditions provided in (6) are obtained.

In the case of a 2DCartesianmeshwith transport between adjacent cells, constraint (18d) is simply
expanded along x and y coordinates, and with explicit upwinding factors σ reduces to∑

d∈D(c)

σcdscd,xδxcd,x = Vc, (19a)

∑
d∈D(c)

σcdscd,yδxcd,y = Vc, (19b)

∑
d∈D(c)

σcdscd,xδxcd,y = 0, (19c)

∑
d∈D(c)

σcdscd,yδxcd,x = 0. (19d)

It is readily observed that these conditions are fulfilled with a velocity of uniform direction on a uni-
formmesh: only one donor cell appears in each sum and Vc = scdδxcd for any couple of neighboring
cells cd.

B. Modified equation applied to the first-order transport scheme with co-meshes

The numerical diffusion coefficients Mxx, Mxy and Myy of the modified equation (11a) can be
calculated by the following recipe: first the second-order expansion of the scheme is computed and
then time derivatives higher than the scheme’s order and mixed time and space derivatives are elim-
inated. The latter is a straightforward computation and can be implemented in any computer algebra
system (CAS) performing symbolic computations, such asMathematica or the Python library Sympy.
However, this appendix provides some details for the calculations on scheme (10).

In order to compute the second-order residue, the corresponding Taylor expansions in time and
space are introduced

an+1
c = anc +∆t(∂ta)

n
c + 1

2(∆t)2(∂2
tta)

n
c +O(∆t3), (20a)

and = anc + δxn
cd · (∇a)nc + 1

2δx
n
cd · (∇2a)nc · δxn

cd +O(||δx||3), (20b)

with δxn
cd := xn

d − xn
c , for d ∈ Di(c), i = 1, 2. Furthermore, δxn

dc = xn
c − xn

d = −δxn
cd.

Considering a Cartesian grid and a constant velocity vector vd = vc, the space discretization can be
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simplified. Recall from section 2 that conservation of a field a is enforced over any volume Vc by
constraint

∑
d∈D(c) s

n
cd = 0. It follows

∑
d∈D(c)

(
V̊ n
cda

n
c − V̊ n

dca
n
d

) (20b)
=

∑
d∈D(c)

(σn
cd + σn

dc)︸ ︷︷ ︸
=1

sncd · vn
c a

n
c︸ ︷︷ ︸

=0

−
∑

d∈D(c)

σn
dcs

n
dc · vn

c

(
δxn

cd · (∇a)nc + 1
2δx

n
cd · (∇2a)nc · δxn

cd

)
. (21)

A simple computation shows that (18d) is valid on the Cartesian mesh and its co-mesh. Therefore,
the following term on the right hand side of (21) can be simplified in this case and becomes

−
∑
i=1,2

d∈Di(c)

σ
(i)
dc (s

(i)
dc ·vc) δx

n
cd ·(∇a)nc = ωV (1)

c vc ·(∇a)nc +(1−ω)V (2)
c vc ·(∇a)nc = Vcvc ·(∇a)nc . (22)

Then, the second-order expansion writes

(∂ta)
n
c + vc · (∇a)nc = −1

2∆t(∂2
tta)

n
c +

1

Vc

∑
i=1,2

d∈Di(c)

σ
(i)
dc s

(i)
dc · vc

(
1
2δx

n
cd · (∇2a)nc · δxn

cd

)
. (23)

The modified equation is obtained by eliminating the second-order time derivative in (23). (∂2
tta)

n
c

is given by differentiation of (23) in time. In this expression the mixed time and space derivatives
(∂2

txa)
n
c and (∂2

tya)
n
c appear, which can be eliminated by differentiation of (23) in each spatial direc-

tion. Remark that the computations in (19) are valid on the co-mesh of a Cartesian grid, which is used
in the following calculations.

(∂2
tta)

n
c =

1

Vc

∑
i=1,2

d∈Di(c)

σ
(i)
dc s

(i)
dc · vc

(
δxcd,x(∂

2
txa)

n
c + δxcd,y(∂

2
tya)

n
c

)
(19)
= −vx(∂

2
txa)

n
c − vy(∂

2
tya)

n
c , (24a)

(∂2
txa)

n
c =

1

Vc

∑
i=1,2

d∈Di(c)

σ
(i)
dc s

(i)
dc · vc

(
δxcd,x(∂

2
xxa)

n
c + δxcd,y(∂

2
xya)

n
c

)
(19)
= −vx(∂

2
xxa)

n
c − vy(∂

2
xya)

n
c , (24b)

(∂2
tya)

n
c =

1

Vc

∑
i=1,2

d∈Di(c)

σ
(i)
dc s

(i)
dc · vc

(
δxcd,x(∂

2
xya)

n
c + δxcd,y(∂

2
yya)

n
c

)
(19)
= −vx(∂

2
xya)

n
c − vy(∂

2
yya)

n
c , (24c)

and therefore
(∂2

tta)
n
c = v2x(∂

2
xxa)

n
c + 2vxvy(∂

2
xya)

n
c + v2y(∂

2
yya)

n
c . (25)

Hence, the coefficients of the modified equation (11a) write

2Mxx = −∆tv2x +
1

Vc

∑
i=1,2

d∈Di(c)

σ
(i)
dc s

(i)
dc · vc δx2cd,x, (26a)
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2Mxy = −∆tvxvy +
1

Vc

∑
i=1,2

d∈Di(c)

σ
(i)
dc s

(i)
dc · vc δxcd,xδxcd,y, (26b)

2Myy = −∆tv2y +
1

Vc

∑
i=1,2

d∈Di(c)

σ
(i)
dc s

(i)
dc · vc δx2cd,y. (26c)

C. Anisotropy and CFL

Consider constant velocity vector vd = vc. In this case, there are eight possible sets of active
donor cells. These sets are defined through the intervals Ik = [kπ4 , (k+1)π

4 ], for k ∈ Z/8Z. Choose
for instance transport direction v = ∥v∥(cos θ, sin θ), with θ ∈ [0, π4 ], then on the Cartesian mesh,
where δxx = δxy =: ∆x, the numerical diffusion matrix defined in (11b) writes

M(v) = 1
2∆x

(
vx (1− ω)vy

(1− ω)vy (1− ω)vx + ωvy

)
+MCFL, θ ∈ [0, π/4], (27)

with

MCFL = −∆t

∆x

(
v2x vxvy
vxvy v2y

)
(28)

Remark that the coefficients of M(v) change for the different sets of donor cells symmetrically.
Fig. 4a to 4c illustrate the symmetries ofM(v) in basis {e, e⊥} over I0 to I3.

Recall the representation of matrix M in basis {e, e⊥} = { v
∥v∥ , e⊥}, noted Mv, with transport

direction v = ∥v∥(cos θ, sin θ), and transverse direction e⊥ = (− sin θ, cos θ).

Mv =

(
M∥ M×
M× M⊥

)
=

(
e ·M · e e ·M · e⊥
e ·M · e⊥ e⊥ ·M · e⊥

)
. (29)

The following calculations show that the representation of this matrix in basis {e, e⊥} does not de-
pend on the CFL up to a linear term (and this only for coefficientM∥), as the coefficients ofMv,CFL
are constant over θ.

M∥,CFL = e ·MCFL · e = −∆t

∆x

(
v4x + 2v2xv

2
y + v4y

)
= −∆t

∆x

(
v2x + v2y︸ ︷︷ ︸

= cos2 θ + sin2 θ = 1

)2
= −∆t

∆x
, (30a)

M×,CFL = e ·MCFL · e⊥ = −∆t

∆x

(
v3xvx⊥ + vxvy(vxvy⊥ + vx⊥vy) + v3yvy⊥︸ ︷︷ ︸
=sin θ cos θ(− cos2 θ+cos2 θ−sin2 θ+sin2 θ)=0

)
= 0, (30b)

M⊥,CFL = e⊥ ·MCFL · e⊥ = −∆t

∆x

(
v2xv

2
x⊥

+ 2vxvx⊥vyvy⊥ + v2yv
2
y⊥

)
= −∆t

∆x

(
vxvy + vx⊥vy⊥︸ ︷︷ ︸

= − cos θ sin θ + sin θ cos θ = 0

)2
= 0. (30c)
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