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Abstract.  Fee vibrational characteristics of porous steel double-coupled nanoplate system in thermo-elastic 

medium is studied via a refined plate model. Different pore dispersions called uniform, symmetric and 

asymmetric have been defined. Nonlocal strain gradient theory (NSGT) containing two scale parameters has 

been adopted to stablish size-dependent modeling of the system. Hamilton’s principle has been adopted to 

stablish the governing equations. Obtained results from Galerkin’s method are verified with those provided 

in the literature. The effects of nonlocal parameter, strain gradient, foundation parameters, porosity 

distributions and porosity coefficient on vibration frequencies of metal foam nanoscale plates have been 

examined. 
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1. Introduction 
 

The material structure in some metals is not perfect and there are porosities in them. This 

material imperfection or porosities might cause serious concerns about the accurate performance 

of metals in engineering applications. Also, there are many engineering structures which are 

constructed from porous metals or metal foams. As an example, metal (steel) plates are basic 

components of engineering structures and they may subjected to various sources of vibrations 

during their application period. Thus, studying vibrational characteristic of this components will be 

crucial and important. Looking for related researches in this subject reveals that there are some 

published papers (Chen et al. 2015, 2016, Rezaei and Saidi 2016).  

Researches on metal foams state that pores might distribute with uniform or- non-uniform 

patterns. The terms uniform and non-uniform are related to the distribution of pores in thickness 

direction of plates. In the case of non-uniform pore distribution, the material can be placed in the 

category of functionally graded (FG) materials. The word FG is associated with a wide range of 

materials in which all material properties are position-dependent. So, there are also another type of 

FG materials which have ceramic and metal phases simultaneously. It means that the material 

dispersion is non-uniform thorough the plate thickness. In such materials, porosities might occur 

because of their imperfect production. This is another case study in the field of structural analysis, 
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for example porous FG beams and plates (Wattanasakulpong et al. 2014, Yahia et al. 2015, 

Atmane et al. 2015a,b, Barati and Zenkour 2016, Mechab et al. 2016, Ebrahimi and Barati 2017). 

Recently, this kind of materials have found their applications in nano-scale structures. 

Vibration behavior of a nano-scale plate is not the same as a macro-scale plate. This is because 

small-size effects are not present at macro scale. So, mathematical modeling of a nanoplate can be 

done with the use of nonlocal elasticity (Eringen 1983) incorporating only one scale parameter 

(Natarajan et al. 2012, Belkorissat et al. 2015, Bounouara et al. 2016, Barati et al. 2016, Zenkour 

2016, Barati 2017a, b, c, d, Ebrahimi and Daman 2016, Ebrahimi and Haghi 2018, Ebrahimi and 

Heidari 2018, Ebrahimi et al. 2018). Due to the ignorance of strain gradient effect in nonlocal 

elasticity theory, a more general theory wil be required. Strain gradients at nano-scale are observed 

by many researchers (Li et al. 2015). Thus, nonlocal-strain gradient theory was introduced as a 

general theory which contains an additional strain gradient parameter together with nonlocal 

parameter. 

This paper uses NSGT for analyzing vibrational behavior of a double-coupled nanoplate system 

based on a refined plate theory (Zenkour 2009, Mehala et al. 2018, Sadoun et al. 2018, Mahmoudi 

et al. 2018). Two nanoplates are coupled with each other with the use of linear springs. These two 

nanoplates are made of metal foam with different pore distributions. Results will be illustrated to 

indicate the importance of pores, coupling springs and scale parameters.  

 

 

2. Small scales based on NSGT 
 

In its simplest form, NSGT contains two scale coefficients: one related to non-locality (ea) and 

one another related to strain gradients (l). By having elastic constants Cijkl in hand, the NSGT the 

stresses σij to strains as (Barati 2017b) 
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where αΔT is thermal strain in which α is thermal expansion coefficient and ΔT is 

temperature change. 
 
 

3. Various porosity distributions 
 

First, it must be mentioned that different kinds of through the thickness pores are shown in Fig. 

1. Also, Fig. 2 illustrates a double-coupled nanoplate system with all parameters defined on it. 

Based upon these through the thickness pores, the material properties (elastic modulus E and mass 

density ρ) might be defined as (Barati 2017a) 
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(a) Non-uniform porosity distribution 1 

 
(b) Non-uniform porosity distribution 2 

 
(c) Uniform porosity distribution 

Fig. 1 Various kinds of pore dispersions 

 

 

Fig. 2 A double-coupled nanoplate system 
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• Uniform porosity distribution 

2 0 2 0(1 ), (1 )E E e e   = − = −
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in above relations E2 and ρ2 are corresponding to the highest material properties; e0 is porosity 

parameter and  
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Here, E2 = 200 GPa, ρ2=7850 kg/m3, v =0.33. For mathematical modeling each nanoplate of the 

system, refined plate theory having shear function f(z) can be used which introduces fields 

components in the form 
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Also, u and v are membrane displacements and wb and ws are associated with the bending and 

shear displacement, respectively. The derivation of governing equations might be done based on 

Hamiltons’ principle and the whole procedure can be find in the work of Barati (2017b) 
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(12b) 
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where membrane loads and moments are Nx, Nxy, Ny, Mx, Mxy and My; and kw and kp are Winkler 

and Pasternak constants; NT is thermal loading. Complete expressions for these loads and moments 

can be found in Barati (2017b) and there is no need to re-publish them in the present paper. The 

mass moments of inertia in above equations can be defined as 
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The governing equations can be stablished in terms of displacement components. So, after 

computing the membrane loads and moments the governing equations will become 

 

(14) 
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(16) 
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(17) 

 
 
4. Method of solution 
 

With the help of double Fourier series and the concept of Galerkin’s method, the governing 

differential equations can be solved numerically.  However, it must be considered that the system 

undergoes the following types of vibration as 

• Out of phase vibration: wb=w1,b−w2,b≠0 and ws=w1,s−w2,s≠0  

• In-phase vibration: wb=w1,b−w2,b=0 and ws=w1,s−w2,s=0 

• One nanoplate fixed: wb=w1,b=0 and ws=w1,s=0 

Since exact location of neutral surface is considered in this research, the in-plane and out-of-

plane displacements have been decoupled. So, only the last two of governing equations will be 

solved. Based on double Fourier series, the transverse displacements will be assumed as 
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where (Wbmn, Wsmn) are the maximum deflections and the functions Xm=Sin(mπx/a) and 

Yn=Sin(nπy/b) satisfy simply-supported edge conditions. Now, Eqs. (18) and (19) must be placed 

into governing equations and the coefficients of maximum deflections must be collected 
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where the procedure of computing stiffness and mass matrices is very similar to that introduced in 

Barati (2017b). Here, the determinant of coefficient matrix is selected to be zero and then natural 

frequencies will be found. In this research, in-put and out-put parameters are normalized as 
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5. Numerical results and discussions 
 

This paper uses NSGT for analyzing vibrational behavior of a double-coupled nanoplate system 

based on a refined plate theory. Two nanoplates are coupled with each other with the use of linear 

springs. These two nanoplates are made of metal foam with different pore distributions. Results 

will be illustrated to indicate the importance of pores, coupling springs and scale parameters. 

The validation is performed based on a comparison of vibrational frequencies with those 

stablished by Natarajan et al. (2012) for a FG nanoplate. It can be seen from Table 1 that presented 

solution is previous section can predict the vibration frequency of a nanoplate with high accuracy. 
 

 

  
(a) Out-of-phase vibration (b) One nanoplate fixed 

 
(c) In phase vibration 

Fig. 3 Normalized frequency of double-coupled nanoplate against nonlocal and strain gradient parameters 

(a/h=10, Kw=0, Kp=0, ΔT=0, K0=50, e0=0.5) 
 

Table 1 Frequency verification of simply-supported FG nanoplates 

a/h µ     

  a/b=1  a/b=2  

  Natarajan et al. (2012) present Natarajan et al. (2012) present 

10 0 0.0441 0.043823 0.1055 0.104329 

 1 0.0403 0.04007 0.0863 0.085493 

 2 0.0374 0.037141 0.0748 0.074174 

 4 0.0330 0.032806 0.0612 0.060673 
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(a) Uniform distribution (b) Non-uniform distribution 1 

 
(c) Non-uniform distribution 2 

Fig. 4 Normalized frequency of double-coupled nanoplate against strain gradient parameter for different 

porosity distributions (K0=50, a/h=10, ΔT=0, Kw=0, Kp=0, µ=0.2) 
 

 

In Fig. 3, one can see the variation of vibrational frequency for a variety of both nonlocal and 

strain gradient coefficients. This figure has three parts and each part is related to one type of 

motion for double-coupled system. Porosity parameter for nanoplates is chosen to be e0=0.5. It can 

be understood from Fig. 3 that vibration frequency of system will rise with strain gradient 

coefficient and will reduce with nonlocality coefficient. This observation is valid for all kinds of 

coupled system motion. So, vibration behavior of double nanoplate system is dependent on both 

scale effects. 

In Fig. 4 one can see the variation of vibrational frequency of double-nanoplate system with 

different porosity coefficients and dispersions. Effect of surrounding medium is neglected for this 

figure. It can be understood from Fig. 4 that vibration frequency of system will reduce or increase 

with pore coefficient. But, this variation relies on the type of pore dispersion in thickness of 

nanoplates. Pore type 1 gives higher vibrational frequencies than other pore types.  

Fig. 5 presents the stiffness effect of coupling springs on vibrational frequency of double-

nanoplate system. As an example, pore coefficient is chosen as e0=0.5 with uniform type. 

Vibrational frequency is found to be independent of coupling springs in the case of in-phase 

motion. But, in other two cases, vibrational frequency will rise with the coupling spring stiffness. 

So, the double nanoplate system will be more rigid as the coupling spring or Winkler/Pasternak 

parameters become stiffer. 
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(a) Kw=0, Kp=0 (b) Kw=25, Kp=0 

 
(c) Kw=25, Kp=5 

Fig. 5 Normalized frequency of double-coupled nanoplate against interlayer stiffness for various elastic 

foundation parameters (a/h=10  e0=0.5, µ=0.2, ΔT=0.1, λ=0.1) 

 

  
(a) Uniform distribution (b) Non-uniform distribution 1 

Fig. 6 Normalized frequency of double-coupled nanoplate against side-to-thickness ratio for different 

types of vibration (e0=0.5, Kw=25, Kp=5, µ=0.2, ΔT=0.1, K0=100) 

 

 

In Fig. 6, the change of vibration frequency of double-coupled nanoplate with side-to-thickness  

ratios (a/h) is illustrated for all kinds of system motion as well as uniform and non-uniform pores 
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1. One can see that double-nanoplate system is less rigid for greater side-to-thickness ratios. Thus, 

derived vibrational frequency becomes lower by an increase of a/h. Since material properties are 

constant over the thickness in the case of uniform pore type, the vibration frequency in this case is 

smaller than the case of non-uniform pore type 1. 

 
 
6. Conclusions 
 

This article focused on vibration characteristic of a double-coupled nanoplate system modeled 

by NSGT and refined plate theories. Nanoplates were considered to be porosity-dependent 

accounting for different pore types. It was understood that vibration frequency of system raised 

with strain gradient coefficient and reduced with nonlocality coefficient. It was also found that 

vibration frequency of system might reduce or increase with pore coefficient. Also, pore type 1 

gave highest vibration frequency among considered pore types. Vibrational frequency was found 

to be independent of coupling springs in the case of in-phase motion. But, in the case of out-of-

phase motion, vibrational frequency raised with the coupling spring stiffness. 
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