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Abstract.  The present research deals in two dimensional (2D) transversely isotropic magneto generalized 

thermoelastic solid without energy dissipation and with two temperatures due to time harmonic sources in 

Lord-Shulman (LS) theory of thermoelasticity. The Fourier transform has been used to find the solution of 

the problem. The displacement components, stress components and conductive temperature distribution with 

the horizontal distance are calculated in transformed domain and further calculated in the physical domain 

numerically. The effect of two temperature are depicted graphically on the resulting quantities. 
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1. Introduction 
 

The classical theory of elasticity deals with the systematic study of the stress and strain 

distribution that develops in an elastic body due to the application of forces or change in 

temperature. A lot of research and attention has been given to deformation and heat flow in a 

continuum using thermoelasticity theories during the past few years. It is well known that all the 

rotating large bodies have an angular velocity, as well as magnetism, therefore, the thermoelastic 

interactions in a rotating medium under magnetic field is of importance. When sudden 

heat/external force is applied in a solid body, it transmits time harmonic wave by thermal 

expansion. The change at some point of the medium is beneficial to detect the deformed field near 

mining shocks, seismic and volcanic sources, thermal power plants, high-energy particle 

accelerators, and many emerging technologies. The study of time harmonic source is one of the 

broad and dynamic areas of continuum dynamics. Therefore, in an unbounded rotating elastic 

medium with angular velocity, with two temperature, rotation and relaxation time and without 

energy dissipation in generalized thermoelasticity has been studied in this research. 

Marin (1997) had proved the Cesaro means of strain and kinetic energies of dipolar bodies with 

finite energy. Ailawalia et al. (2010) had studied a rotating generalized thermoelastic medium in 

presence of two temperatures beneath hydrostatic stress and gravity with different kinds of sources 
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using integral transforms. Singh and Yadav (2012) solved the transversely isotropic rotating 

magnetothermoelastic medium equations by cubic velocity equation of three plane waves without 

anisotropy, rotation, and thermal and magnetic effects. Banik and Kanoria (2012) studied the 

thermoelastic interaction in an isotropic infinite elastic body with a spherical cavity for the 

TPL(Three-Phase-Lag) heat equation with two-temperature generalized thermoelasticity theory 

and has shown variations between two models: the two-temperature GN theory in presence of  

energy dissipation and two-temperature TPL model and has shown the effects of ramping 

parameters and two-temperature.  

Mahmoud (2012) had considered the impact of rotation, relaxation times, magnetic field, 

gravity field and initial stress on Rayleigh waves and attenuation coefficient in an elastic half-

space of granular medium and obtained the analytical solution of Rayleigh waves velocity by 

using Lame’s potential techniques. Abd-alla and Alshaikh (2015) had discussed the influence of 

magnetic field and rotation on plane waves in transversely isotropic thermoelastic medium under 

the GL theory in presence of two relaxation times to show the presence of three quasi plane waves 

in the medium.Marin et al. (2013)has modelled a micro stretch thermoelastic body with two 

temperatures and eliminated divergences among the classical elasticity and research. Keivani et al. 

(2014) discussed the forced vibration problem of an Euler-Bernoulli beam with a semi-infinite 

field by considering it a BVP in the frequency domain 

Sharma et al. (2015) investigated the 2-D deception in a transversely isotropic homogeneous 

thermoelastic solids in presence of two temperatures in GN-II theory with an inclined load (linear 

combination of normal load and tangential load). Delfim et al. (2015) presented a coupled FEM-

BEM strategy for elastodynamic problems having infinite-domain models and complex 

heterogeneous media by using  frequency domain analyses and an iterative FEM-BEM coupling 

technique. Kumar et al. (2016) investigated the impact of Hall current in a transversely isotropic 

magnetothermoelastic in presence and absence of energy dissipation due to normal force. Kumar 

et al. (2016) studied the conflicts caused by thermomechanical sources in a transversely isotropic 

rotating homogeneous thermoelastic medium with magnetic effect as well as two temperature and 

applied to the thermoelasticity Green–Naghdi theories with and without energy dissipation using 

thermomechanical sources. Lata et al. (2016) studied two temperature and rotation aspect for GN-

II and GN-III theory of thermoelasticity in a homogeneous transversely isotropic 

magnetothermoelastic medium for the case of the plane wave propagation and reflection. Ezzat et 

al. (2017) proposed a mathematical model of electro-thermoelasticity for heat conduction with 

memory-dependent derivative. Kumar et al. (2017) analyzed the Rayleigh waves in a transversely 

isotropic homogeneous magnetothermoelastic medium in presence of two temperature, with Hall 

current and rotation. Vinyas et al. (2017) discovered a multiphysics behaviour of magneto-electro-

elastic (MEE) cantilever beam using thermo-mechanical loading. Akbaş (2017) study the 

nonlinear static deflections of functionally graded (FG) porous under thermal effect using total 

lagrangian FEM within 2D continuum model in the Newton-Raphson iteration method. 

Marin et.al. (2017) studied the GN-thermoelastic theory for a dipolar body using mixed initial 

BVP and proved a result of Hölder’s-type stability. Lata (2018) studied the impact of energy 

dissipation on plane waves in sandwiched layered thermoelastic medium of uniform thickness, 

with two temperature, rotation and Hall current in the context of GN Type-II and Type-III theory 

of thermoelasticity. Ezzat and El-Bary (2017) had applied the magneto-thermoelasticity model to a 

one-dimensional thermal shock problem of functionally graded half-space of based on memory-

dependent derivative. Hassan et al. (2018) investigated water base nanofluid flow over wavy 

surface in a porous medium (copper oxides particles) of spherical packing beds. Kumar et al. 
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(2018)  investigated the deformations in a homogeneous transversely isotropic magneto-Visco 

thermoelastic medium under GN type I and II theories in presence of rotation and two temperature 

with thermomechanical sources. Despite of this several researchers worked on different theory of 

thermoelasticity as Marin (1997) , Marin (2008), Atwa (2014), Marin (2016), Marin and Baleanu 

(2016), Bijarnia and Singh (2016), Ezzat et al. (2016), Ezzat et al. (2012), Ezzat et al. (2015), 

Ezzat and El-Bary (2016), Ezzat and El-Bary (2017), Ezzat et al. (2017), Chauthale et al. (2017) 

and Shahani and Torki (2018), Lata and Kaur (2019).  

Inspite of these, not much work has been carried out in thermomechanical interactions in 

transversely isotropic magneto thermoelastic solid with two temperature, rotation and relaxation 

time and without energy dissipation due to time harmonic source in generalized LS theories of 

thermoelasticity. Keeping these considerations in mind, analytic expressions for the displacements, 

stresses and temperature distribution in two-dimensional homogeneous, transversely isotropic 

magneto-thermoelastic solids with two temperatures and without energy dissipation, rotation and 

various frequencies of time harmonic source. 
 

 

2. Basic equations 
 

For a general anisotropic thermoelastic medium, the constitutive relations in absence of heat 

source and body forces following Green and Naghdi(1992)are given by 

𝑡𝑖𝑗 =  𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇. (1) 

and equation of motion as described by Schoenberg and Censor (1973) for a uniformly rotating 

medium with an angular velocity and Lorentz force which governs the dynamic displacement u is 

𝑡𝑖𝑗,𝑗 + 𝐹𝑖 =  𝜌{�̈�𝑖 + (Ω × (Ω × u)𝑖 + (2Ω × 𝑢)̇𝑖 }, (2) 

where Ω =  Ω𝑛, n is a unit vector representing the direction of axis of rotation, The term Ω × (Ω ×
u) is the additional centripetal acceleration due to the time-varying motion only, and the term 

2Ω × �̇� is the Coriolis acceleration. All other terms are as usual  𝐹𝑖 =  𝜇0(𝑗 × �⃗⃗⃗�0) . 

The heat conduction equation without energy dissipation using Lord-Shulman (1967) model is 

𝐾𝑖𝑗𝜑,𝑖𝑗 + 𝜌(𝑄 + 𝜏0�̇�) =  𝛽𝑖𝑗𝑇0(�̇�𝑖𝑗 + 𝜏0ё𝑖𝑗) + 𝜌𝐶𝐸(�̇� +  𝜏0�̈�), (3) 

where 

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛼𝑖𝑗, (4) 

   𝑒𝑖𝑗 =  
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),     𝑖, 𝑗 = 1,2,3. 

𝑇 = 𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗 

(5) 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 ,  𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 ,   i is not summed. 

Here 𝐶𝑖𝑗𝑘𝑙(𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑘𝑙𝑖𝑗 =  𝐶𝑗𝑖𝑘𝑙 =  𝐶𝑖𝑗𝑙𝑘) are elastic parameters. 
 
 

3. Formulation and solution of the problem 
 

We consider a homogeneous transversely isotropic magnetothermoelastic medium, permeated 
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by an initial magnetic field �⃗⃗⃗�0 = (0, 𝐻0, 0)  acting along 𝑦-axis. The rectangular Cartesian co-

ordinate system (𝑥, 𝑦, 𝑧) having origin on the surface (𝑧 = 0)with 𝑧-axis pointing vertically into 

the medium is introduced. The surface of the half-space is subjected to a thermomechanical force 

acting at 𝑧 = 0. 

In addition, we consider that 

𝛀 = (0, Ω, 0). 

From the generalized Ohm’s law 

𝐽2 = 0  

The density components 𝐽1and 𝐽3 are given as 

𝐽1 = −휀0𝜇0𝐻0
𝜕2𝑤

𝜕𝑡2 , (6) 

𝐽3  = 휀0𝜇0𝐻0
𝜕2𝑢

𝜕𝑡2 . (7) 

In addition, the equations of displacement vector (�⃗⃗�, �⃗�, �⃗⃗⃗� ) and conductive temperature 𝜑 for 

transversely isotropic thermoelastic solid in presence of two temperature and without energy 

dissipation are 

�⃗⃗� = 𝑢(𝑥, 𝑧, 𝑡), �⃗� = 0, �⃗⃗⃗� = 𝑤(𝑥, 𝑧, 𝑡)𝑎𝑛𝑑 𝜑 = 𝜑(𝑥, 𝑧, 𝑡). (8) 

Now using the proper transformation on equations (1)-(3) following Slaughter (2002) are as 

under: 

Eqns. (1) - (3) with the aid of (8), yield 

𝐶11
𝜕2𝑢

𝜕𝑥2 + 𝐶13
𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝐶44 (

𝜕2𝑢

𝜕𝑧2 +  
𝜕2𝑤

𝜕𝑥𝜕𝑧
) − 𝛽1 

𝜕

𝜕𝑥
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2 + 𝑎3
𝜕2𝜑

𝜕𝑧2 )} − 𝜇0𝐽3𝐻0 =

𝜌 (
𝜕2𝑢

𝜕𝑡2 − 𝛺2𝑢 + 2𝛺
𝜕𝑤

𝜕𝑡
), 

(9) 

(𝐶13 + 𝐶44 )
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝐶44

𝜕2𝑤

𝜕𝑥2
+ 𝐶33 

𝜕2𝑤

𝜕𝑧2
− 𝛽3 

𝜕

𝜕𝑧
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2 )} − 𝜇0𝐽1𝐻0

= 𝜌 (
𝜕2𝑤

𝜕𝑡2
− 𝛺2𝑤 − 2𝛺

𝜕𝑢

𝜕𝑡
), 

(10) 

𝐾1
𝜕2𝜑

𝜕𝑥2 + 𝐾3
𝜕2𝜑

𝜕𝑧2 + 𝜌(𝑄 +  𝜏0�̇�) =  𝜌𝐶𝐸(�̇� + 𝜏0�̈�) + 𝑇0
𝜕

𝜕𝑡
{𝛽1 (1 + 𝜏0

𝜕

𝜕𝑡
)

𝜕𝑢

𝜕𝑥
+ 𝛽3 (1 +

𝜏0
𝜕

𝜕𝑡
)

𝜕𝑤

𝜕𝑧
}, 

(11) 

and 

𝑡11 = 𝐶11𝑒11  +  𝐶13𝑒13 − 𝛽1 𝑇, (12) 

𝑡33 = 𝐶13𝑒11  +  𝐶33𝑒33 − 𝛽3 𝑇, (13) 

𝑡13 = 2𝐶44𝑒13, (14) 
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where 

𝑇 =  𝜑 − (𝑎1
𝜕2𝜑

𝜕𝑥2 +𝑎3
𝜕2𝜑

𝜕𝑧2 ), 

𝛽1 = (𝐶11 + 𝐶12)𝛼1 + 𝐶13𝛼3, 

𝛽3 = 2𝐶13𝛼1 + 𝐶33𝛼3, 

We consider that medium is initially at rest. Therefore, the preliminary and symmetry 

conditions are given by 

𝑢(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 

 𝑤(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 

  𝜑(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0)for 𝑧 ≥ 0, −∞ < 𝑥 < ∞, 

𝑢(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑧, 𝑡) = 𝜑(𝑥, 𝑧, 𝑡) = 0 𝑓𝑜𝑟 𝑡 > 0 when 𝑧 → ∞. 

Assuming the time harmonic behaviour as  

(𝑢, 𝑤, 𝜑, 𝑄)(𝑥, 𝑧, 𝑡) = (𝑢, 𝑤, 𝜑, 𝑄)(𝑥, 𝑧)𝑒𝑖𝜔𝑡, (15) 

where 𝜔 is the angular frequency. 

To simplify the solution, mention below dimensionless quantities are used 

𝑥′ =  
𝑥

𝐿
,      𝑢′ =  

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,    𝑡′ =  

𝑐1

𝐿
𝑡,  

   𝑤′ =  
𝜌𝑐1

2

𝐿𝛽1𝑇0
𝑤, 𝑇′ =  

𝑇

𝑇0
, 𝑡11

′ =  
𝑡11

𝛽1𝑇0
, 𝑡33

′ =  
𝑡33

𝛽1𝑇0
, 

𝑡31
′ =  

𝑡31

𝛽1𝑇0
,   𝜑′ =  

𝜑

𝑇0
, 𝑎1

′ =  
𝑎1

𝐿2
, 𝑧′ =  

𝑧

𝐿
, 

𝑎3
′ =  

𝑎3

𝐿2
, ℎ′ =

ℎ

𝐻0
, Ω′ =

L

𝐶1
Ω . (16) 

Making use of (16) in Eqs. (9)–(11), after suppressing the primes, yield 

𝜕2𝑢

𝜕𝑥2 + 𝛿4
𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝛿2 (

𝜕2𝑢

𝜕𝑧2 + 
𝜕2𝑤

𝜕𝑥𝜕𝑧
) −

𝜕

𝜕𝑥
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2 + 𝑎3
𝜕2𝜑

𝜕𝑧2 )} = (
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1) (−𝜔2𝑢) − Ω2𝑢 +

2Ω𝑖𝜔𝑤, 
(17) 

𝛿1
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝛿2

𝜕2𝑤

𝜕𝑥2 + 𝛿3
𝜕2𝑤

𝜕𝑧2 −
𝛽3

𝛽1

𝜕

𝜕𝑧
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2 + 𝑎3
𝜕2𝜑

𝜕𝑧2 )} = (
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1) (−𝜔2𝑤) − Ω2𝑤 + 2Ω𝑖𝜔𝑢, (18) 

𝜕2𝜑

𝜕𝑥2 +
𝐾3

𝐾1

𝜕2𝜑

𝜕𝑧2 +  𝜌 (1 + 𝜏0
𝑐1

𝐿
𝑖𝜔) 𝑄 = 𝛿5

𝜕

𝜕𝑡
(1 + 𝜏0

𝑐1

𝐿
𝑖𝜔) [𝜑 − 𝑎1

𝜕2𝜑

𝜕𝑥2 − 𝑎3
𝜕2𝜑

𝜕𝑧2 ] + 𝛿6𝑖𝜔 (1 +

𝜏0
𝑐1

𝐿
𝑖𝜔) [𝛽1

𝜕𝑢

𝜕𝑥
+  𝛽3

𝜕𝑤

𝜕𝑧
],  

(19) 

where 
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𝛿1 =  
𝑐13 + 𝑐44

𝑐11
, 𝛿2 =  

𝑐44

𝑐11
, 𝛿3 =  

𝑐33

𝑐11
, 𝛿4 =  

𝑐13

𝑐11
,    

𝛿5 =  
𝜌𝐶𝐸𝐶1𝐿

𝐾1
, 𝛿6 = − 

𝑇0𝛽1𝐿

𝜌𝐶1𝐾1
 

Apply Fourier transforms defined by 

𝑓(𝜉, 𝑧, 𝜔) = ∫ 𝑓(𝑥, 𝑧, 𝜔)𝑒𝑖𝜉𝑥

∞

−∞

𝑑𝑥 (20) 

On Eqs. (17)–(19), we obtain a system of equations 

[−𝜉2 + 𝛿2𝐷2 + 𝛿7𝜔2 + Ω2]�̂�(𝜉, 𝑧, 𝜔) + [𝛿4𝐷𝑖𝜉 + 𝛿2𝐷𝑖𝜉 − 2Ω𝑖𝜔]�̂�(𝜉, 𝑧, 𝜔)
+ (−iξ)[1 + 𝑎1𝜉2 − 𝑎3𝐷2]�̂�(𝜉, 𝑧, 𝜔) = 0, (21) 

[𝛿1𝐷𝑖𝜉 + 2Ω𝑖𝜔]�̂�(𝜉, 𝑧, 𝜔) + [−𝛿2𝜉2 + 𝛿3𝐷2 + 𝛿7𝜔2 + Ω2]�̂�(𝜉, 𝑧, 𝜔) −
𝛽3

𝛽1
𝐷[1 + 𝑎1𝜉2 −

𝑎3𝐷2]�̂�(𝜉, 𝑧, 𝜔) = 0, 
(22) 

[−𝛿6𝜔𝛿8𝛽1𝜉]�̂�(𝜉, 𝑧, 𝜔) + [𝛿6𝑖𝜔𝛿8𝛽3𝐷]�̂�(𝜉, 𝑧, 𝜔) + [𝜉2 −
𝐾3

𝐾1
𝐷2 + 𝛿5𝛿8𝑖𝜔(1 + 𝑎1𝜉2 −

𝑎3𝐷2)] �̂�(𝜉, 𝑧, 𝜔) = 𝜌𝛿8�̂�(𝜉, 𝑧, 𝜔), 
(23) 

where 

𝛿7 =
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1, 𝛿8 = 1 + 𝜏0

𝐶1

𝐿
𝑖𝜔. 

By taking�̂�(𝜉, 𝑧, 𝑠) = 0,  the non trivial solution of homogeneous equations (21)-(23) exists if 

determinant of coefficient matrix (�̂�, �̂�, �̂�) of (21)-(23) is equal to zero i.e., 

 𝐴𝐷6 + 𝐵𝐷4 + 𝐶𝐷2 + 𝐸 = 0, (24) 

where 

𝐷 =
𝑑

𝑑𝑧
, 

A = δ2δ3ϑ7 −  ϑ5δ2
𝛽3

𝛽1
𝑎3, 

B = δ3ϑ1ϑ7 − 𝑎3ϑ1ϑ5
𝛽3

𝛽1
+ δ2δ3ϑ6 + δ2ϑ7ϑ3 − ϑ5ϑ9𝛿2 − ϑ8𝛿1𝑖𝜉ϑ7 + ϑ8ϑ4

𝛽3

𝛽1
𝑎3 − 𝑎3𝜉2ϑ5δ1 −

𝑎3δ3ϑ4𝑖𝜉, 

C = δ3ϑ1ϑ6 + ϑ1ϑ3ϑ7 − ϑ1ϑ5ϑ9 + δ2ϑ6ϑ3 + ϑ4ϑ8ϑ9 − ϑ8𝛿1𝑖𝜉ϑ6 − 4Ω2𝜔2ϑ7 + ϑ2𝛿1𝑖𝜉ϑ5 −
ϑ2ϑ4𝛿3 − 𝑎3ϑ4𝑖𝜉ϑ3, 

𝐸 = ϑ3ϑ1ϑ6 − 4Ω2𝜔2ϑ6 − ϑ2ϑ4𝜗3, 
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ϑ1 =  𝜉2 + δ7𝜔2 + Ω2, 

ϑ2 = −𝑖𝜉(1 + 𝑎1𝜉2), 

ϑ3 = −𝛿2ξ2 + δ7𝜔2 + Ω2, 

ϑ4 = −𝛿6𝛿8𝜔𝛽1𝜉, 

ϑ5 = 𝛿6𝛿8𝑖𝜔𝛽3, 

ϑ6 =  𝜉2 + 𝛿5𝛿8𝑖𝜔(1 + 𝑎1𝜉2), 

ϑ7 = −
𝐾3

𝐾1
− 𝑎3𝛿5𝛿8𝑖𝜔, 

ϑ8 = 𝛿1𝑖𝜉, 

ϑ9 = −(1 + 𝑎1𝜉2)
β3

β1
. 

The roots of the Eq. (24) are ±λj, (j = 1, 2, 3), the solution of the Eq. (24) is calculated by using 

the radiation conditions that �̃�, �̃�, �̃�  → 0 𝑎𝑠 𝑧 → ∞   yields 

�̂�(𝜉, 𝑧, 𝜔) =  ∑ 𝐴𝑗𝑒−𝜆𝑗𝑧3
𝑗=1 , (25) 

�̂�(𝜉, 𝑧, 𝜔) =  ∑ 𝑑𝑗𝐴𝑗𝑒−𝜆𝑗𝑧3
𝑗=1 , (26) 

�̂�(𝜉, 𝑧, 𝜔) =  ∑ 𝑙𝑗𝐴𝑗𝑒−𝜆𝑗𝑧

3

𝑗=1

, (27) 

where 𝐴𝑗(𝜉, 𝜔), 𝑗 = 1, 2, 3 being undetermined constants and  𝑑𝑗 and 𝑙𝑗 are given by 

𝑑𝑗 =
𝛿2휁7𝜆𝑗

4 + (𝜗7𝜗1 − 𝑎3ϑ4𝑖𝜉 + 𝛿2𝜗6)𝜆𝑗
2 + 𝜗1𝜗6 − 𝜗4𝜗2

(𝛿3ϑ7 −
β3

β1
𝑎3ϑ5) 𝜆𝑗

4 + (𝛿3𝜗6 + 𝜗3𝜗7 − 𝜗5𝜗9)𝜆𝑗
2+𝜗3𝜗6

 

𝑙𝑗 =
𝛿2𝛿3𝜆𝑗

4 + (𝛿2휁3 + 𝜗1𝛿3 − 𝛿1𝜗8𝑖𝜉)𝜆𝑗
2 − 4Ω2𝜔2+𝜗3𝜗1

(𝛿3ϑ7 −
β3

β1
𝑎3ϑ5) 𝜆𝑗

4 + (𝛿3𝜗6 + 𝜗3𝜗7 − 𝜗5𝜗9)𝜆𝑗
2+𝜗3𝜗6

 

 
 
4. Boundary conditions 
 

Thermal source and normal force are applied on the half-space (z = 0) surface. 

𝑡33(𝑥, 𝑧, 𝑡) =  −𝐹1𝜓1(𝑥)𝑒𝑖𝜔𝑡, (28) 
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𝑡31 = 0, (29) 

𝜕𝜑

𝜕𝑧
(𝑥, 𝑧, 𝑡) =  𝐹2𝜓2(𝑥)𝑒𝑖𝜔𝑡, (30) 

where F1 is the magnitude of the force applied, F2 is the constant temperature applied on 

the boundary, 𝜓1(𝑥)  specifies the source distribution function along x-axis , 𝜓2(𝑥) 

specifies the source distribution function along z-axis .  

Applying the Laplace and Fourier transform defined by (19) and (20) on the boundary 

conditions (28)-(30), (12)-(14) and with the help of Eqs. (25)-(27), we find the 

components of displacement, stress and conductive temperature as 

�̂� =
𝐹1�̂�1(𝜉)

Γ
[∑ Γ1𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 +
𝐹2�̂�2(𝜉)

Γ
[∑ Γ2𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 , (31) 

�̂� =
𝐹1�̂�1(𝜉)

Γ
[∑ 𝑑𝑖Γ1𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 +
𝐹2�̂�2(𝜉)

Γ
[∑ 𝑑𝑖Γ2𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 , (32) 

�̂� =
𝐹1�̂�1(𝜉)

Γ
[∑ 𝑙𝑖Γ1𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 +
𝐹2�̂�2(𝜉)

Γ
[∑ 𝑙𝑖Γ2𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 , (33) 

𝑡11̂ =
𝐹1�̂�1(𝜉)

Γ
[∑ 𝑆𝑖Γ1𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 +
𝐹2�̂�2(𝜉)

Γ
[∑ 𝑆𝑖Γ2𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 , (34) 

𝑡13̂ =
𝐹1�̂�1(𝜉)

Γ
[∑ 𝑁𝑖Γ1𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 +
𝐹2�̂�2(𝜉)

Γ
[∑ 𝑁𝑖Γ2𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 , (35) 

𝑡33̂ =
𝐹1�̂�1(𝜉)

Γ
[∑ 𝑀𝑖Γ1𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 +
𝐹2�̂�2(𝜉)

Γ
[∑ 𝑀𝑖Γ2𝑖𝑒−𝜆𝑖𝑧

3

𝑖=1

] 𝑒𝑖𝜔𝑡 , (36) 

where 

Γ11 = −𝑁2𝑅3 + 𝑅2𝑁3, 

Γ12 = 𝑁1𝑅3 − 𝑅1𝑁3, 

Γ13 = −𝑁1𝑅2 + 𝑅1𝑁2, 

Γ21 = 𝑀2𝑁3 − 𝑁2𝑀3, 

Γ22 = −𝑀1𝑁3 + 𝑁1𝑀3, 

Γ23 = 𝑀1𝑁2 − 𝑁1𝑀2, 

Γ = −𝑀1Γ11−𝑀2Γ12−𝑀3Γ13 
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𝑁𝑗 =  −𝛿2𝜆𝑗 + 𝑖𝜉𝑑𝑗, 

𝑀𝑗 =  𝑖𝜉 − 𝛿3𝑑𝑗𝜆𝑗 −
β3

β1
𝑙𝑗[(1 + 𝑎1𝜉2) − 𝑎3𝜆𝑗

2], 

𝑅𝑗 = −𝜆𝑗𝑙𝑗[(1 + 𝑎1𝜉2) − 𝑎3𝜆𝑗
2], 

𝑆𝑗 =  −𝑖𝜉 − 𝛿4𝑑𝑗𝜆𝑗 − 𝑙𝑗[(1 + 𝑎1𝜉2) − 𝑎3𝜆𝑗
2]. 

 

 

5. Special Cases 
 

a. Mechanical force on half-space surface 

By taking F2 = 0 in Eqs. (31)-(36), we obtain the components of displacement, normal stress, 

tangential stress and conductive temperature due to mechanical force. 

b. Thermal source on the half-space surface  

By considering F1 = 0 in Eqs. (31)-(36), we obtain the components of displacement, normal 

stress, tangential stress and conductive temperature due to thermal source. 

 

5.1 Concentrated force 
 

We obtained the solution with concentrated normal force on the half space by taking   

ψ1(x) = δ(x), ψ2(x) = δ(x) (37) 

Applying Fourier transform defined by (19)-(20) and (37), we obtain 

ψ̂1(ξ) = 1, ψ̂2(ξ) = 1. (38) 

Using (38) in (31)-(36), the components of displacement, stress and conductive temperature are 

obtained.   

 

5.2 Uniformly distributed force 
  

We obtained the solution with uniformly distributed force applied on the half space by taking 

ψ1(x), ψ2(x) = {
1 if |x|  ≤  m
0 if |x|  >  m

 (39) 

The Fourier transforms of ψ1(x) and ψ2(x)with respect to the pair (x, ξ ) for the case of a 

uniform strip load of non-dimensional width 2m applied at origin of co-ordinate system x = z = 0 

in the dimensionless form after suppressing the primes becomes 

ψ̂1(ξ) =ψ̂2(ξ) = {
2 sin (ξm)

ξ
} , ξ ≠ 0 (40) 

Using (40)  in (31)-(36) , the components of displacement, stress and conductive temperature 

are obtained. 

 

5.3 Linearly distributed force  
 

We obtained the solution with linearly distributed force applied on the half space having 2 m as 
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the width of the strip load by taking   

{ψ1(x), ψ2(x)} = {
1 −

|x|

m
 if |x|  ≤  m

0 if |x|  >  m
 (41) 

By using (15) and applying the transform defined by  (20) on (41), we get 

ψ̂1(ξ) =ψ̂2(ξ) = {
2{1−co s(ξm))

ξ2m
} , ξ ≠ 0 (42) 

Using (42) in (31)-(36), the components of displacement, stress and conductive temperature are 

obtained. 

 
 
6. Inversion of the transformation 
 

For obtaining the result in physical domain, invert the transforms in Eqs. (31)-(36) using 

𝑓(𝑥, 𝑧, 𝜔) =
1

2𝜋
∫ 𝑒−𝑖𝜉𝑥∞

−∞
𝑓(𝜉, 𝑧, 𝜔)𝑑𝜉 =

1

2𝜋
∫ |𝑐𝑜𝑠(𝜉𝑥)𝑓𝑒 − 𝑖𝑠𝑖𝑛(𝜉𝑥)𝑓𝑜|

∞

−∞
𝑑𝜉, 

where fo is odd and fe is the even parts of 𝑓(𝜉, 𝑧, 𝑠)respectively. 

 

 
7. Numerical results and discussion 
 

To demonstrate the theoretical results and effect of rotation, relaxation time and two temperature, 

the physical data for cobalt material, which is transversely isotropic, is taken from Dhaliwal & Singh 

(1980) is given as 

𝑐11 = 3.07 × 1011𝑁𝑚−2,   𝑐33 = 3.581 × 1011𝑁𝑚−2,   𝑐13 = 1.027 × 1010𝑁𝑚−2,    

 𝑐44 = 1.510 × 1011𝑁𝑚−2,   𝛽1 = 7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1,
 𝛽3 = 6.90 × 106𝑁𝑚−2𝑑𝑒𝑔−1,    𝜌 = 8.836 × 103𝐾𝑔𝑚−3,
𝐶𝐸 = 4.27 × 102𝑗𝐾𝑔−1𝑑𝑒𝑔−1,   𝐾1 = 0.690 × 102𝑊𝑚−1𝐾𝑑𝑒𝑔−1,
𝐾3 = 0.690 × 102𝑊𝑚−1𝐾−1, T0  =  298 K, H0  =  1Jm−1nb−1,
ε 0 =  8.838 ×  10−12Fm−1, L = 1. 

Using the above values, the graphical representations of displacement component u, normal 

displacement w, conductive temperature  𝜑 , stress components  𝑡11 , 𝑡13  and 𝑡33  for transversely 

isotropic magneto-thermoelastic medium have been studied and the effect of inclination and 

rotation has been depicted.  

 

Case 1: Mechanical force with rotation and with two temperature 

Sub case i: Concentrated force  

Figs. 1-6 shows the variations of the displacement components(u and w), Conductive 

temperature𝜑and stress components (  𝑡11 , 𝑡13 and 𝑡33)for transversely isotropic magneto-

thermoelastic medium with mechanical force and concentrated force and with combined effects of 

two temperature, relaxation time, rotation, time harmonic source in generalized thermoelasticity 

without energy dissipation respectively. The displacement components (u and w) illustrate the  
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Fig. 1 Variations of displacement component u with distance x 

 

 
Fig. 2 Variations of displacement component w with distance x 

 

 
Fig. 3 Variations of conductive temperature φ with distance x 

 

 

same pattern but having different magnitudes with and without temperature. Conductive 

temperature𝜑shows the different behaviour for two temperature and without two temperatures. 
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Fig. 4 Variations of stress component t11 with distance x 

 

 
Fig. 5 Variations of stress component t13 with distance x 

 

 
Fig. 6 Variations of stress component t33 with distance x 

 

 

Stress components ( 𝑡11, 𝑡13 and 𝑡33)in Figs. 4-6 vary (increases or decreases ) during the initial 
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range of distance near the loading surface of the time harmonic source and follow small oscillatory 

pattern for rest of the range of distance. Zero value of 𝜏0with two temperatureshows more stress 

near loading surface. 

 

Sub case ii: Linearly distributed force 

Figs. 7-12 shows the variations of the displacement components(u and w), Conductive 

temperature 𝜑 and stress components (  𝑡11 , 𝑡13  and 𝑡33 )for transversely isotropic magneto-

thermoelastic medium with mechanical force (linearly distributed force) and with combined effects 

of two temperature, relaxation time, rotation, time harmonic source in generalized thermoelasticity 

without energy dissipation respectively. The displacement components (u and w)and Conductive 

temperature 𝜑 illustrate the same pattern but having different magnitudes with and without 

temperature.Stress components ( 𝑡11, 𝑡13 and 𝑡33) in Figs. 10-12  varies (increases or decreases ) 

during the initial range of distance near the loading surface of the time harmonic source and 

follow. 

 

 

 
Fig. 7 Variations of displacement component u with distance x 

 

 
Fig. 8 Variations of displacement component w with distance x 
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Fig. 9 Variations of conductive temperature φ with distance x 

 

 
Fig. 10 Variations of stress component t11 with distance x 

 

 
Fig. 11 Variations of stress component t11 with distance x 
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Fig. 12 Variations of stress component 𝑡33with distance x 

 

 

small oscillatory pattern for rest of the range of distance. Zero value of 𝜏0 with two 

temperatureshows more stress near loading surface. 

 

Sub case iii: Uniformly distributed force 

Figs. 13-18 shows the variations of the displacement components(u and w), Conductive 

temperature 𝜑 and stress components (  𝑡11 , 𝑡13  and 𝑡33 )for transversely isotropic magneto-

thermoelastic medium with mechanical force (uniformly distributed force) and with combined 

effects of two temperature, relaxation time, rotation, time harmonic source in generalized 

thermoelasticity without energy dissipation respectively. The displacement components (u and 

w)and Conductive temperature𝜑illustrate the same pattern but having different magnitudes with 

and without temperature.Stress components ( 𝑡11, 𝑡13 and 𝑡33) in figures 16 to figure 18 varies 

(increases or decreases ) during the initial range of distance near the loading surface of the time 

harmonic source and follow small oscillatory pattern for rest of the range of distance. Zero value 

of 𝜏0with two temperatureshows less stress near loading surface. 

 

 
Fig. 13 Variations of displacement component u with distance x 
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Fig. 14 Variations of displacement component w with distance x 

 

 
Fig. 15 Variations of conductive temperature φ with distance x 

 

 
Fig. 16 Variations of stress component t11 with distance x 
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Fig. 17 Variations of stress component t13 with distance x 

 

 
Fig. 18 Variations of stress component t33 with distance x 

 

 
Fig. 19 Variations of displacement component u with distance x 
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Fig. 20 Variations of displacement component w with distance x 

 

 
Fig. 21 Variations of stress component t11 with distance x 

 

 
Fig. 22 Variations of stress component t11 with distance x 
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Fig. 23 Variations of stress component t13 with distance x 

 

 
Fig. 24 Variations of stress component t33 with distance x 

 

 

Case II: Thermal source with rotation and with two temperature 

Sub case i: Concentrated Force  

Figs. 19-24 shows the variations of the displacement components(u and w), Conductive 

temperature 𝜑 and stress components (  𝑡11 , 𝑡13  and 𝑡33 )for transversely isotropic magneto-

thermoelastic medium with thermal source (concentrated force) and with combined effects of two 

temperature, relaxation time, rotation, time harmonic source in generalized thermoelasticity 

without energy dissipation respectively. The displacement components (u and w) and Conductive 

temperature 𝜑 illustrate the same pattern but having different magnitudes with and without 

temperature. Stress components ( 𝑡11, 𝑡13and 𝑡33) in Figs. 22-24 show the different behaviour for 

two temperature and without two temperatures.  

 

Sub case ii: Linearly distributed force 

Figs. 25-30 shows the variations of the displacement components(u and w), Conductive  
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Fig. 25 Variations of displacement component u with distance x 

 

 
Fig. 26 Variations of displacement component w with distance x 

 

 
Fig. 27 Variations of conductive temperature φ with distance x 
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Fig. 28 Variations of stress component t11 with distance x 

 

 
Fig. 29 Variations of stress component t13 with distance x 

 

 
Fig. 30 Variations of stress component t33 with distance x 
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temperature 𝜑 and stress components (  𝑡11 , 𝑡13  and 𝑡33 )for transversely isotropic magneto-

thermoelastic medium with thermal source ( linearly distributed force) and combined effects of 

two temperature, relaxation time, rotation, time harmonic source in generalized thermoelasticity 

without energy dissipation respectively. The displacement components (u and w )illustrate the 

same pattern but having different magnitudes with and without temperature. Conductive 

temperature𝜑decreaseduring the initial range of distance near the loading surface of the time 

harmonic source and follow small oscillatory pattern for rest of the range of distance. Stress 

components ( 𝑡11, 𝑡13and 𝑡33) in Figs. 28-30 show the different behaviour for two temperature and 

without two temperatures.  

 

Sub case iii: Uniformly Distributed Force 

Figs. 31-36 shows the variations of the displacement components(u and w), Conductive 

temperature𝜑and stress components (  𝑡11 , 𝑡13 and 𝑡33)for transversely isotropic magneto-

thermoelastic medium with thermal source and uniformly distributed force and with combined  

 

 

 
Fig. 31 Variations of displacement component u with distance x 

 

 
Fig. 32 Variations of displacement component w with distance x 
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Fig. 33 Variations of conductive temperature φ with distance x 

 

 
Fig. 34 Variations of stress component t11 with distance x 

 

 
Fig. 35 Variations of stress component t13 with distance x 
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Fig. 36 Variations of stress component t33 with distance x 

 

 

effects of two temperature, relaxation time, rotation, time harmonic source in generalized 

thermoelasticity without energy dissipation respectively. The displacement components (u and 

w)and Conductive temperature𝜑illustrate the different pattern with and without temperature.Stress 

components (  𝑡11 , 𝑡13 and 𝑡33 ) in Figs. 34-36 show the different pattern with and without 

temperature. Stress component shows small oscillatory pattern without two temperature and large 

oscillatory pattern with two temperature. 

 
 
8. Conclusions 
 

From above research, it is observed that two temperatures and rotation plays a key role for the 

oscillation of physical quantities both close to the point of use of source as well as just as far from 

the source. The physical quantities amplitude differ with change in two temperatures. In presence 

of two temperature and time harmonic source, the displacement components and stress 

components show different nature with respect to x. The result gives an inspiration to study 

magneto-thermoelastic materials as an innovative domain of applicable thermoelastic solids. The 

shape of curves shows the impact of two temperatures, relaxation time and rotation with time 

harmonic source on the body and fulfils the purpose of the study. When sudden heat/external force 

is applied in a solid body, it transmits time harmonic wave by thermal expansion. The outcomes of 

this research are extremely helpful in the 2-D problem with dynamic response of time harmonic 

sources in transversely isotropic magneto-thermoelastic medium with rotation and two temperature 

which beneficial to detect the deformed field near mining shocks, seismic and volcanic sources, 

thermal power plants, high-energy particle accelerators, and many emerging technologies.  
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Nomenclature 
 
δij Kronecker delta 

Cijkl Elastic parameters 

βij Thermal elastic coupling tensor 

T Absolute temperature 

T0 Reference temperature 

φ conductive temperature 

tij Stress tensors 

eij Strain tensors 

ui Components of displacement 

ρ Medium density 

CE Specific heat 

aij Two temperature parameters 

aij Linear thermal expansion coefficient 

Kij Materialistic constant 

K*
ij Thermal conductivity 

ω Frequency 

τ0 Relaxation Time 

Ω Angular Velocity of the Solid 

Fi Components of Lorentz force 

𝐻0
⃗⃗ ⃗⃗ ⃗ Magnetic field intensity vector 

𝐽 Current Density Vector 

�⃗⃗� Displacement Vector 
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