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Abstract.  The present paper deals with delamination fracture analyses of the multilayered functionally 

graded non-linear elastic Symmetric Split Beam (SSB) configurations. The material is functionally graded in 

both width and height directions in each layer. It is assumed that the material properties are distributed non-

symmetrically with respect to the centroidal axes of the beam cross-section. Sine laws are used to describe 

the continuous variation of the material properties in the cross-sections of the layers. The delamination 

fracture is analyzed in terms of the strain energy release rate by considering the balance of the energy. A 

comparison with the J-integral is performed for verification. The solution derived is used for parametric 

analyses of the delamination fracture behavior of the multilayered functionally graded SSB in order to 

evaluate the effects of the sine gradients of the three material properties in the width and height directions of 

the layers and the location of the crack along the beam width on the strain energy release rate. The solution 

obtained is valid for two-dimensional functionally graded non-linear elastic SSB configurations which are 

made of an arbitrary number of lengthwise vertical layers. A delamination crack is located arbitrary between 

layers. Thus, the two crack arms have different widths. Besides, the layers have individual widths and 

material properties. 
 

Keywords:  multilayered beam; delamination fracture; material non-linearity; two-dimensional sine 

material gradient 

 
1. Introduction 
 

Functionally graded materials are a promising alternative to homogeneous structural materials 

mainly because by gradual varying the material properties along one or more spatial directions 

during manufacturing, one can get optimum performance of functionally graded structural 

members and components to external loads (Bensaid and Kerboua 2017, Bensaid et al. 2017, 

Bohidar et al. 2014, Gasik 2010, Hirai and Chen 1999, Koizumi 1993, Markworth et al. 1995, 

Mortensen and Suresh 1995, Nemat-Allal et al. 2011, Neubrand and Rödel 1997, Uslu Uysal and 

Kremzer 2015, Uslu Uysal 2016, Uslu Uysal and Güven 2016, Uslu Uysal 2017). In structural 

applications of functionally graded materials, facture is a critical failure mode. The 

inhomogeneous character of functionally graded materials imposes a significant difficulty in 
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fracture analyses of functionally graded structures.  

Multilayered materials are manufactured by bonding of layers of different materials. Recently, 

multilayered materials have been used as advanced structural materials in various engineering 

applications (Markov and Dinev 2005). One of the major drawbacks of the layered materials is 

their high susceptibility to delamination fracture (Dolgov 2005, 2016). Delamination, i.e., 

separation of layers, considerably reduces the strength and stiffness of multilayered structural 

members and components and even may lead to catastrophic failure (Guadette et al. 2001, Narin 

2006, Hsueh et al. 2009, Szekrenyes 2010, Szekrenyes 2016a, b).  

An interesting work on delamination fracture behavior of multilayered beam configurations has 

been published by Narin (2006). The analysis has been carried-out by assuming linear-elastic 

mechanical behavior of the material in each layer. Thus, the principles of linear-elastic fracture 

mechanics have been applied. The delamination has been studied in terms of the strain energy 

release rate.  Methods for analyzing the strain energy release rate have been developed with 

considering the influence of residual stresses. The effect of temperature differences on the 

delamination fracture behavior has also been analyzed and discussed. Delamination behavior of 

several multilayered beam configurations has been investigated. 

Delamination fracture in multilayered linear-elastic beam configurations subjected to four-point 

bending has been analyzed by Hsueh et al. (2009). A solution to the strain energy release rate has 

been obtained by applying methods of linear-elastic fracture mechanics. The solution can be used 

for multilayered four-point bending beam systems with any number of layers. It is assumed that 

the delamination cracking can occur at any interface.    

Delamination fracture in multilayered functionally graded beam structures has been analyzed 

recently also with considering the non-linear behaviour of the material by Rizov (2017a), (2017b), 

(2017c), Rizov (2018). The material non-linearity has been described by a power-law stress-strain 

relation. By considering the complementary strain energy, analytical solutions for the strain energy 

release rate have been derived assuming that only one material property (the coefficient of the 

power law stress-strain relation) is functionally graded.  

The purpose of the present paper is to develop a delamination fracture analysis of the 

multilayered functionally graded non-linear elastic SSB configuration assuming that the material is 

functionally graded in both width and height directions of each layer. The three material 

properties, which are involved in the non-linear stress-strain relation, vary continuously in the 

cross-section of each layer according to a sine law (the properties are distributed non-

symmetrically with respect to the centroidal axes of the beam cross-section). The solution for the 

strain energy release rate, derived by analyzing the balance of the energy, is applied to evaluate the 

influences of sine material gradients along the width and height of the layers, the delamination 

crack location along the beam width and the non-linear mechanical behavior of the functionally 

graded material on the delamination fracture.         

 

 

2. Analysis of the strain energy release rate     
 

The multilayered functionally graded SSB configuration that is analyzed in the present paper is 

shown schematically in Fig. 1. The beam is made of lengthwise vertical layers. Perfect adhesion is 

assumed between the layers. The number of the layers is arbitrary. Also, the layers have different 

widths and material properties. Besides, the functionally graded material in each layer exhibits 

non-linear mechanical behaviour. The beam cross-section is a rectangle of width, b, and height, h. 
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Influence of sine material gradients on delamination in multilayered beams  

The beam length is 2l. A notch of depth, b2, is introduced in the right-hand lateral surface of the 

beam in order to generate conditions for delamination fracture. A delamination crack is located 

symmetrically with respect to the beam mid-span. The crack length is 2a. The delamination crack 

is located arbitrary along the beam width. The widths of the left-hand and the right-hand crack 

arms are denoted by b1 and b2, respectively. The boundaries of the left-hand crack arm are 

alxal +− 3
, 2/2/ 13 bbyb −−  and 2/2/ 3 hzh − . The right-hand crack arm has the 

following boundaries: alxal +− 3
, 2/2/ 31 bybb −  and 2/2/ 3 hzh − .  

 

 

 
Fig. 1 The geometry of the multilayered functionally graded SSB configuration 

   

 

The notch divides the right-hand crack arm in two symmetric segments of length, a, each. The 

beam is loaded by two moments, M, applied at the end sections of the beam (Fig. 1). Obviously, 

the two segments of the right-hand crack arm are free of stresses. It should be noted that the 

normal stresses induced by the bending of the SSB configuration around the horizontal centroidal 

axis of the beam cross-section generate a combination between mode two and mode three 

cracking.     

Due to the symmetry, only half of the beam, lxl 23  , is analyzed (Fig. 1).  

The delamination fracture is studied in terms of the strain energy release rate, G, by analyzing 
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the balance of the energy. By assuming an increase of the crack length, δa, the balance of the 

energy is written as 

aGha
a

U
M  +




= , (1) 

where δφ is the increase of the rotation of the end section of the beam, U is the strain energy 

cumulated in half of the beam. Form (1), one arrives at 

a

U

hah

M
G




−




=

1
. (2) 

 

 

 
Fig. 2 The cross-section of the left-hand crack arm in the beam mid-span 

 

 

It should be mentioned that the present analysis is performed assuming validity of the small 

strains hypothesis. Besides, the present analysis holds for non-linear elastic behaviour of the 

material. However, the analysis is applicable also for elastic-plastic behaviour if the beam under 

consideration undergoes active deformation, i.e., if the external loading increases only 

(Chakrabarty 2006, Lubliner 2006). 

The rotation of the end section of the beam, φ, is determined by the Castigliano’s theorem for 

structures exhibiting material non-linearity 

M

U




=

*

 , (3) 
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where U* is the complementary strain energy cumulated in half of the beam.  

Since the two segments of the right-hand crack arm are free of stresses (Fig. 1), the 

complementary strain energy cumulated in half of the beam is written as 

***

UL UUU += , (4) 

where 
*

LU  and 
*

UU  are the complementary strain energies cumulated, respectively, in the left-

hand crack arm and the un-cracked beam portion, lxal 23+ .  

By addition of the complementary strain energies cumulated in the layers of the left-hand crack 

arm, 
*

LU  is expressed as 

  
=

=
−

+

=
L i

i

i

ni

i

y

y

h

h

LL dzdyuaU
1

2

2

11

*

0

*
11

1

, (5) 

where nL is the number of the layers in the left-hand crack arm, iy1  and 11 +iy  are the coordinates, 

respectively, of the left-hand and the right-hand lateral surfaces of the i-th layer (Fig. 2), 
*

0 iLu  is 

the complementary strain energy density in the same layer, y1 and z1 are the centroidal axes of the 

cross-section of the left-hand crack arm.  

 

 

 
Fig. 3 Schematic of a non-linear stress-strain curve (the strain energy and the complementary strain energy 

densities are denoted by u0 and 
*

0u , respectively) 

 

 

In principle, the complementary strain energy density is equal to the area, OQR, which 

supplements the area, OPQ, enclosed by the stress-strain curve to a rectangle (Fig. 3). Thus, 
*

0 iLu  

is written as 

ii LiL uu 0

*

0 −=  , (6) 
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where σi is the distribution of the longitudinal normal stresses in the i-th layer of the left-hand 

crack arm, ε is the distribution of the longitudinal strains, u0Li is the strain energy density in the 

same layer. The strain energy density is equal to the area, OPQ, enclosed by the stress-strain curve 

(Fig. 3). Therefore, u0Li is expressed as 

=



0

0 du iLi
. (7) 

In the present paper, the non-linear mechanical behaviour of the functionally graded material in 

the i-th layer is described by the following stress-strain relation (Lukash 1998) 























−−=

ir

i

ii E



 11 , (8) 

where Ei, βi and ri are material properties.  

By combining of (7) and (8), one obtains 

1
1

1

1

0
+

−







−

+
+=

+

i

ii

r

ii

ii
iL

r

E

r

E
Eu

i

i






 . (9) 

From (6), (8) and (9), one derives  

1
1

1
1

1

*

0
+

+







−

+
−








−−=

+

i

ii

r

ii

ii

r

i

iL
r

E

r

E
Eu

ii

i










 . (10) 

It assumed that the material properties, Ei, βi and ri, which are involved in the stress-strain 

relation (8), are functionally graded in both width and height directions in each layer. The 

continuous variation of Ei, βi and ri in the cross-section of the i-th layer is described by the 

following sine laws 
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(13) 

where 
iEf , 

i
f   and 

ir
f  are material properties which govern the material gradients, respectively, 
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of Ei, βi and ri along y1 axis. The material gradients of Ei, βi and ri along z1 axis are governed by 

iEg , 
i

g  and 
ir

g , respectively. Formulae (11), (12) and (13) indicate that Ei, βi and ri are 

distributed non-symmetrically with respect to y1 and z1. It should be noted that the sine laws 

provide smooth material gradients in both width and height directions in each layer.  

The distribution of the longitudinal strains is analyzed assuming validity of the Bernoulli’s 

hypothesis for plane sections, since the span to height ratio of the beam under consideration is 

large. It should also be noted that since the beam is loaded in pure bending, the only non-zero 

strain is ε. Thus, according to the small strains compatibility equations, ε is distributed linearly in 

the cross-section. Hence, the strain distribution in the cross-section of the left-hand crack arm is 

written as 

11 111
zy zyC  ++= , (14) 

where 
1C  is the strain in the centre of the cross-section, 

1y  and 
1z

  are the curvatures of left-

hand crack arm in the x1y1 and x1z1 planes, respectively.  

The following equations for equilibrium of the cross-section of the left-hand crack arm are used 

to determine 
1C , 

1y  and 
1z

  

  
=

=
−

+

=
L i

i

ni

i

y

y

h

h

i dzdyN
1

2

2

111

11

1

 , (15) 
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=

=
−

+

=
L i

i

ni

i

y

y

h

h
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1
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2
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1

1
 , (16) 
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=
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−

+

=
L i

i
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i
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y

h

h

iz dzdyyM
1

2

2

111

11

1

1
 , (17) 

where 
1N  is the axial force, 

1yM  and 
1z

M are the bending moments about y1 and z1 axes, 

respectively. It is obvious that (Fig. 2) 

01=N , MM y =
1

, 0
1
=zM . (18) 

By substituting of (8), (11), (12), (13) and (14) in (15), (16) and (17), one derives 


=

=









++=

L

i

ni

i

iiiiiii qcEhN
1

01
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2

1
 , (19) 
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where 

( )ii

i
yy 1112 −

=
+


 , (22) 

 ii y1−= , (23) 

h2


 = , (24) 

( )707.0sin10 iii
gf ii   ++= , (25) 

i

C

i



 11−= , (26) 

( )707.0sin10 iii riri gfr ++=  , (27) 
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iii yy 111 −= + , (30) 

2

1

2

11 iii yy −= + , (31) 

3

1

3

11 iii yy −= + , (32) 

ii EiEi gf 707.0sin1 ++=  , (33) 

iiEi i
f  cos= , (34) 
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
iEi g707.0= , (35) 

12

2h
c iiiii  += , (36) 

iiiiiq  +=  . (37) 

It should be noted that at 1=Ln , 0=
iEf , 0=

iEg , 0=
i

f , 0=
i

g , 0=
ir

f  and 1=
ir

g , 

formulae (19), (20) and (21) transform in 

bhEN Ci 101 = , (38) 

11 12

3

0 zy

bh
EM

i
= , (39) 

11 12

3

0 yz

hb
EM

i
= . (40) 

The fact that (38), (39) and (40) are exact matches of the equations for equilibrium of linear-

elastic homogeneous beam of rectangular cross-section of width, b1, and height, h, indicates the 

consistency of Eqs. (19), (20) and (21) since at βi=1 and ri=1 the non-linear stress-strain relation 

(8) transforms into the Hooke’s law assuming that 
i

E0  is the modulus of elasticity.  

Eqs. (19), (20) and (21) should be solved with respect to 
1C , 

1y  and 
1z

  by using the 

MatLab computer program.  

The complementary strain energy cumulated in the un-cracked beam portion is written as 

  
=

=
−

+

−=
ni

i

y

y

h

h

UU

i

i

i
dzdyualU

1

2

2

22

*

0

*
12

2

)( , (41) 

where n  is the number of the layers, iy2  and 12 +iy  are the coordinates, respectively, of the left-

hand and the right-hand lateral surfaces of the i-th layer, 
*

0 iUu  is the complementary strain energy 

density in the same layer, y2 and z2 are the centroidal axes of the beam cross-section.  

Formula (10) is applied to obtain 
*

0 iUu . For this purpose, Ei, βi, ri and ε are replaced with 
iUE , 

iU , 
iUr  and εU, respectively (

iUE , 
iU  and 

iUr  are the distributions of the material properties in 

the i-th layer of the un-cracked beam portion, εU is the distribution of the longitudinal strains in the 

un-cracked beam portion). Formulae (11), (12), (13) and (14) are used to obtain 
iUE , 

iU , 
iUr  and 

U , respectively. For this purpose, 
1y , iy1 , 11 +iy , 1z , 

1C , 
1y  and 

1z  are replaced with y2, iy2 , 
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12 +iy , 
2z , 

2C , 
2y  and 

2z ,  respectively (
2C  is the strain in the centre of the cross-section of 

the un-cracked beam portion, 
2y  and 

2z  are the curvatures of the un-cracked beam portion in  

x2y2 and x2z2 planes, respectively). Equilibrium Eqs. (19), (20) and (21) are used to determine 
2C , 

2y  and 
2z . For this purpose, N1, 

1yM , 
1z

M , nL, 
1C , 

1y , 
1z , iy1 , 11 +iy , i , i , i , i , 

i , i , i , i , i , i , i , i , i , ci and qi are replaced, respectively, with 
2N , 

2yM , 

2zM , n , 
2C , 

2y , 
2z , iy2 , 12 +iy , 

iU , 
iU , 

iU , 
iU , 

iU , 
iU , 

iU , 
iU , 

iU , 
iU , 

iU , 
iU , 

iU , 
iUc  and 

iUq  in formulae (19)-(37), where N2 is the axial force in the un-cracked 

beam portion, 
2yM  and 

2zM  are the bending moments about y2 and z2 axes (apparently, N2=0, 

My2=M and Mz2=0).  

The strain energy in half of the beam is written as 

UL UUU += , (42) 

where UL and Uu are the strain energies cumulated in the left-hand crack arm and the un-cracked 

beam portion, respectively.  

The strain energy in the left-hand crack arm is expressed as 
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=
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+

=
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h

LL dzdyuaU
1

2

2
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11

1

, (43) 

where the strain energy density, u0Li, in the i-th layer of the left-hand crack arm is obtained by (9).  

The strain energy cumulated in the un-cracked beam portion is written as 

  
=

=
−

+

−=
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y

h

h

UU

i

i
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dzdyualU
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220
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2

)( , 
(44) 

where 
iUu0  is determined by (9). For this purpose, Ei, βi, ri and ε are replaced with 

iUE , 
iU , 

iUr  

and εU, respectively. 

The expression obtained by substituting of (3), (4), (5), (41), (42), (43) and (44) in (2) is 

doubled in view of the symmetry (Fig. 1). In this manner, one arrives at 
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(45) 

The integration in (45) should be performed by the MatLab computer program. The derivative, 
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( )...
M


, in (45) should be determined numerically by the MatLab computer program.   

The strain energy release rate (45) is verified by the J-integral approach (Rice 1968, Broek 

1986). The integration is carried-out along the integration contour, Γ, shown by a dashed line in 

Fig. 1. It is obvious that the J-integral has non-zero values only in segments, Γ1 and Γ2, of the 

integration contour, where Γ1 coincides with the cross-section of the left-hand crack arm in the 

beam mid-span, Γ2 coincides with the end section of the beam (Fig. 1). Therefore, the J-integral is 

obtained as 

21  += JJJ , (46) 

where 
1

J  and 
2

J  are the values of the integral in segments Γ1 and Γ2, respectively.  

The J-integral in segment, Γ1, is written as 
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 , (47) 

where α is the angle between the outwards normal vector to the contour of integration and the 

crack direction, pxi and pyi are the components of stress vector in the i-th layer of the left-hand 

crack arm, u and v are the components of displacement vector with respect to the coordinate 

system xy (x is directed along the delamination crack), ds is a differential element along the 

contour.  

The components of 
1

J  are determined as 

ixip −= , (48) 

0=yip , (49) 

1dyds = , (50) 

1cos −= , (51) 

where σi is expressed as a function of ε by (8). The following formula from Mechanics of materials 

is applied to obtain the partial derivative, ∂u/∂x, in (47) 

11 111
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u
zyC  ++==
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
. (52) 

The J-integral in segment, Γ2, is expressed as 
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where  

ixUi
p = , (54) 
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0=
iyUp , (55) 

2dydsU −= , (56) 

1cos =U , (57) 

22 222
zy

x

u
zyC

U

 ++=



. (58) 

The stress, σi, in (54) is obtained by (8). For this purpose, Ei, i , ri and ε are replaced with 
iUE , 

iU , 
iUr  and εU, respectively. 

The average value of the J-integral along the delamination crack front is written as 


−

=
2

2

1

1

h

h

av dzJ
h

J . (59) 

By substituting of (46), (47) and (53) in (59) and doubling of the expression obtained in view of 

the symmetry (Fig. 1), one arrives at 
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(60) 

The MatLab computer program should be used to perform the integration in (60). It should be 

noted that the J-integral values obtained by (60) match the strain energy release rates found by 

(45). This fact is a verification of the delamination fracture analysis of the multilayered 

functionally graded SSB configuration developed in the present paper.    

 

 

3. Parametric analysis 
 

A parametric analysis of the delamination fracture in the multilayered functionally graded SSB 

configuration is performed. Two three-layered functionally graded beams are investigated (Fig. 4). 

A delamination crack is located between layers 2 and 3 in the beam shown in Fig. 4(a). A beam 

with a delamination between layers 1 and 2 is also analyzed (Fig. 4(b)). The width of each layer is 

t (Fig. 4). The external loading consists of two moments, M, applied at the ends of the beams. It is 
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assumed that t=0.003 m, h=0.014 m and M=40 Nm. The influence of the material gradients of Ei, 

βi and ri in both width and height directions of layer 1 on the delamination fracture behaviour are 

investigated.  

 

 

 
Fig. 4 Two three-layered functionally graded SSB configurations 

 

 

For this purpose, calculations of the strain energy release rate are carried-out by applying 

formula (45). The strain energy release rate is presented in non-dimensional form by using the 

formula, ( )hEGGN 10/= . The effect of material property, 
1Ef , on the strain energy release rate for 

both three-layered SSB configurations (Fig. 4) is illustrated in Fig. 5. It is assumed that 8.0
2
=Ef , 

2.1
3
=Ef , 6.0

1
=Eg , 9.0

2
=Eg , 1.1

3
=Eg , 8.0/

12 00 =EE , 6.1/
13 00 =EE , 4.0

1
=f , 

2.0
2
=f , 5.0

3
=f , 3.0

1
=g , 4.0

2
=g , 6.0

3
=g , 3.0

10 = , 6.0
20 = , 4.0

30 = , 

1.0
1
=rf , 3.0

2
=rf , 2.0

3
=rf , 2.0

1
=rg , 1.0

2
=rg , 3.0

3
=rg , 4.0

10 =r , 1.0
20 =r  and 

5.0
30 =r . 
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Fig. 5 The strain energy release rate in non-dimensional form plotted against 

1Ef  for a delamination crack 

located between layers 2 and 3 (curve 1) and for a delamination crack located between layers 1 and 2 (curve 

2) 
 

 
Fig. 6 The strain energy release rate in non-dimensional form plotted against 

1Eg  at non-linear behaviour of 

the functionally graded material (curve 1) and linear-elastic behaviour of the functionally graded material 

(curve 2) for the three-layered SSB configuration shown in Fig. 4(a) 
 

 

The curves in Fig. 5 indicate that the strain energy release rate decreases with increasing of 
1Ef

. This finding is attributed to the fact that the beam stiffness increases when 
1Ef  increases. One 

can observe also in Fig. 5 that the strain energy release rate increases when the crack location is 

changed from this shown in Fig. 4(a) to that in Fig. 4(b). This behaviour is due to the decrease of 

the left-hand crack arm stiffness.  

The influence of material property, 
1Eg , on the fracture behaviour is evaluated too. The beam 

configuration shown in Fig. 4(a) is analyzed. The strain energy release rate in non-dimensional 

form is plotted in against 
1Eg  Fig. 6. It can be observed in Fig. 6 that the strain energy release rate 

decreases with increasing of 
1Eg . The effect of the non-linear mechanical behaviour of the 

functionally graded material on the strain energy release rate is also illustrated in Fig. 6. For this 

purpose, the strain energy release rate obtained assuming linear-elastic behaviour of the 

functionally graded material is plotted in non-dimensional form in Fig. 6 for comparison with the 

non-linear solution. It should be mentioned that the linear-elastic solution for the strain energy  
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Fig. 7 The strain energy release rate in non-dimensional form plotted against 

1
f  at 2.0

1
=g  (curve 1), 

4.0
1
=g  (curve 2) and 6.0

1
=g  (curve 3) for the three-layered SSB configuration shown in Fig. 4(a) 

 

 
Fig. 8 The strain energy release rate in non-dimensional form plotted against 

1r
f  at 1.0

1
=rg  (curve 1), 

2.0
1
=rg  (curve 2) and 3.0

1
=rg  (curve 3) for the three-layered SSB configuration shown in Fig. 4(a) 

 

 

release rate is derived by substituting of 10 =
i

 , 0=
i

f , 0=
i

g , 10 =
i

r , 0=
ir

f  and 0=
ir

g  

in (45). One can observe in Fig. 6 that the material non-linearity leads to increase of the strain 

energy release rate. 

The influence of material properties, 
1

f  and 
1

g , on the strain energy release rate in the 

three-layered functionally graded SSB configuration shown in Fig. 4(a) is also explored. The strain 

energy release rate in non-dimensional form is presented as a function of 
1

f  in Fig. 7 at three 

values of 
1

g . The diagrams in Fig. 7 show that the strain energy release rate decreases with 

increasing of 
1

f  and 
1

g .      

The effects of material properties, 
1r

f  and 
1r

g , on the delamination fracture behaviour are also 
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evaluated. The SSB configuration shown in Fig. 4(a) is analyzed. The strain energy release rate in 

non-dimensional form is plotted against 
1r

f  in Fig. 8 at three values of 
1r

g . It can be observed in 

Fig. 8 that the strain energy release rate decreases with increasing of 
1r

f  and 
1r

g . 

 

 

4. Conclusions 
 

Analyses of the delamination fracture in the multilayered functionally graded SSB 

configurations which exhibit non-linear mechanical behaviour of the material are developed. The 

SSB is made of an arbitrary number of adhesively bonded lengthwise vertical layers which have 

individual widths and material properties.  

The non-linear mechanical behaviour of the material in each layer is described by a non-linear 

stress-strain relation that involves three material properties. 

It is assumed that the three material properties are functionally graded in both width and height 

directions in each layer. Sine laws are used to describe the continuous variations of the material 

properties in the layers (the material properties are distributed non-symmetric with respect to the 

centroidal axes of the beam cross-section). Fracture is studied in terms of the strain energy release 

rate by analyzing the balance of the energy. The solution derived is compared with the J-integral 

for verification. The effects of gradients of the material properties along the width and height of 

the layers on the delamination fracture are investigated. The influence of delamination crack 

location along the width of the beam cross-section is analyzed too. The main findings of the 

present delamination fracture study can be summarized as follows: 

• The strain energy release rate decreases with increasing of 
1Ef  and 

1Eg . 

• The increase of 
1

f  and 
1

g  leads to decrease of the strain energy release rate. 

• The strain energy release rate decreases with increasing of 
1r

f  and 
1r

g .  

• The strain energy release rate decreases when the width of the cross-section of the left-hand 

crack arm increases.                       
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