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Abstract. Stability of MBC1, a specific matching boundary condition, is proved for atomic simulations
of a diatomic chain. The boundary condition and the Newton equations that govern the atomic dynamics
form a coupled system. Energy functions that decay along with time are constructed for both the boundary
with the same type atoms and the one with different type atoms. For a nonlinear chain, MBC1 is also
shown stable. Numerical verifications are presented. Moreover, MBC1 is proved to be stable for a two
dimensional square lattice.

Keywords: stability; matching boundary condition; diatomic chain; two-dimensional square lattice; en-
ergy function

1. Introduction

Atomic simulations are widely used in the study of mechanical properties for materials and dy-
namics for structures, yet usually limited to the scale of microns. To include atomic features beyond
this scale, concurrent multiscale algorithms have been developed in the past two decades, e.g., see
an introduction in Liu (2005). For such an algorithm, the most challenging part is the numerical
boundary (interface) treatment. An exact boundary condition in terms of convolution was invented
for atomic simulations by Adelman (1974), and later further developed under the name of time his-
tory treatment, e.g., Cai (2000), Wagner (2003), Karpov (2005), Tang (2006a, b), Dreher (2008).
To alleviate numerical costs of convolutions and difficulty in computing the kernel functions, local
boundary conditions have been developed. Perfectlymatched layermethodwas one among them, first
invented for treating electromagnetic fields Berenger (1994), Thirunavukkarasu (2011). Some other
accurate boundary treatments based on wave point of view include the variational boundary condition
Engquist (1979), Li (2008), velocity interfacial condition Tang (2008), and matching boundary con-
dition Wang (2010a, 2013). A boundary condition and the Newton equations of the atomic dynamics
form a coupled dynamical system.
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Fig. 1 Diatomic chain

For boundary conditions, one of the fundamental properties is its stability. An unstable condition
may lead to divergent result and contaminate the multiscale computation. There are extensive studies
for the continuous boundary value problems for partial differential equations, e.g., Baffet (2011) for
wave equation with Higdon absorbing boundary condition, Zhang (2014) for first and second order
absorbing boundary conditions, Eriksson (2017) for nonreflecting boundary conditions of an incom-
plete parabolic system, etc. There are relatively limited results for atomic dynamics with numerical
boundary conditions. These include Trefethen (1985) for Gustafsson-Kreiss-Sundström theory, Li
(2009) for molecular dynamics simulations in semi-infinite domain. For finite computational do-
main, results were obtained for velocity interfacial conditions Fang (2012), and matching boundary
condition Tang (2014).

In this work, the stability for MBCs in a finite domain is discussed. MBCs are local in both space
and time, designed by matching the dispersion relations. It applies to simulations not only for simple
lattices, but also for complex lattices, with diatomic chain as a representative. The stability of MBC1
for linear diatomic chain using different boundary atoms, is studied systematically. Its stability can
be proved by constructing energy function which is positive and monotone decreasing over time. In
addition, stability of MBC1 for nonlinear diatomic chain and square lattice is also studied.

The rest of this paper is organized as follows. In Section 2, we prove stability of MBC1 for
linear diatomic chain by constructing energy functions. Numerical tests are presented in Section
3. We discuss stability for nonlinear diatomic chain and square lattice in Section 4 and Section 5,
respectively.

2. Stability of MBC1 for diatomic chain

Diatomic chain is the simplest complex lattice. Its unit cell (minimal periodic unit) is made of two
atoms, shown as a solid circle and a hollow one in Fig. 1. Their masses arem1 andm2, respectively.
We consider the diatomic chain with nearest neighbour interaction. Displacements of the 2k-th and
(2k+1)-th atoms away from equilibrium are denoted by u2k(t) and u2k+1(t). The pair-wise potential
energy of the chain is J2k+1/2(u2k+1 − u2k). The total energy of the chain can be written as Tang
(2014)

Ediatomic =
1

2

∑
k

(m1u̇
2
2k +m2u̇

2
2k+1) +

∑
k

[
J2k+1/2(u2k+1 − u2k)

+J2k−1/2(u2k − u2k−1)
]
.

(1)

The dynamic equations of the diatomic chain are{
m1ü2k = J ′

2k+1/2(u2k+1 − u2k)− J ′
2k−1/2(u2k − u2k−1),

m2ü2k+1 = J ′
2k+3/2(u2k+2 − u2k+1)− J ′

2k+1/2(u2k+1 − u2k), k ∈ Z. (2)
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For a harmonic chain, in another word, J2k+1/2(u2k+1 − u2k) = κ(u2k+1 − u2k)
2/2, where κ is

the elastic constant, the Newton Eq. (2) read{
m1ü2k = κ(u2k+1 − 2u2k + u2k−1),
m2ü2k+1 = κ(u2k+2 − 2u2k+1 + u2k), k ∈ Z. (3)

We rescale time by
√

κ/m1, and denote γ = m1/m2 > 0 the mass ratio of the two atoms. Eq.
(3) can be written as {

ü2k = u2k+1 − 2u2k + u2k−1,
ü2k+1 = γ(u2k+2 − 2u2k+1 + u2k), k ∈ Z. (4)

2.1 MBC1 for diatomic chain

We sketch the derivation of MBC1 as follows Wang (2010a). MBC1 involves the velocity and
displacement of the boundary atom and its neighbour. For the diatomic chain, consider a solution for
Eq. (4) in the wave form {

u2k = U1e
i(ωt−2kξ),

u2k+1 = U2e
i(ωt−(2k+1)ξ), k ∈ Z,

(5)

where ω is the frequency, and ξ is the wave number. Then we obtain an eigenvalue problem[
ω2 − 2 2 cos ξ
2γ cos ξ ω2 − 2γ

] [
U1

U2

]
= 0. (6)

This gives dispersion relation

ω2
± = (1 + γ)±

√
(1− γ)2 + 4γ cos2 ξ, (7)

and the relative amplitude of two type atoms[
U1

U2

]
±
=

[
cos ξ

1
2

[
1− γ ∓

√
(1− γ)2 + 4γ cos2 ξ

] ]
. (8)

If the boundary atom is even-numbered, we suppose MBC1 to be

u̇2N + c1u̇2N−1 = b1(u2N−1 − u2N ), (9)

where c1 and b1 are undetermined coefficients Wang (2010b, 2013). The residual function is defined
as

∆(ξ) = iω(ξ)
[
U1(ξ) + c1U2(ξ)e

iξ
]
− b1

[
U2(ξ)e

iξ − U1(ξ)
]
. (10)

By requiring ∆(0) = 0,∆′(0) = 0,∆′′(0) = 0, we calculate the coefficients

c1 =
1

γ
, b1 =

√
2

(
1 +

1

γ

)
, (11)
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Fig. 2 A finite chain with boundary of the same type atoms

and obtain MBC1

u̇2N +
1

γ
u̇2N−1 =

√
2

(
1 +

1

γ

)
(u2N−1 − u2N ). (12)

If the boundary atom is odd-numbered, we can obtain similarly

u̇2N+1 + γu̇2N =
√

2γ(1 + γ)(u2N − u2N+1). (13)

To investigate the stability, we consider a finite chain with boundary condition MBC1. We define
an energy function of atomic velocities and displacements, which is positive andmonotone decreasing
over time.

2.2 Boundary of the same type atoms

For simplicity, we assume that two boundary atoms are both the even-numbered atoms as shown
in Fig. 2. Then the equations of the finite chain with boundary conditions are

ü2k = u2k+1 − 2u2k + u2k−1, k = −N + 1,−N + 2, ..., N − 2, N − 1,

ü2k+1 = γ(u2k+2 − 2u2k+1 + u2k), k = −N,−N + 1, ..., N − 2, N − 1,

u̇−2N +
1

γ
u̇−2N+1 =

√
2

(
1 +

1

γ

)
(u−2N+1 − u−2N ),

u̇2N +
1

γ
u̇2N−1 =

√
2

(
1 +

1

γ

)
(u2N−1 − u2N ).

(14)

Let energy function be

Esame(t) =
1

2

N−1∑
k=−N+1

u̇22k +
1

2γ

N−1∑
k=−N

u̇22k+1 +
1

2

N−1∑
k=−N+1

[
(u2k+1 − u2k)

2 + (u2k−1 − u2k)
2
]

+
γ

1 + γ

[
1

2
(u−2N+1 − u−2N )2 +

1

2
(u2N−1 − u2N )2

]
.

(15)
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Fig. 3 A finite chain with boundary of different types atoms

It is positive, and direct calculations show that

dEsame

dt
=

N−1∑
k=−N+1

u̇2k(u2k+1 − 2u2k + u2k−1) +
N−1∑
k=−N

u̇2k+1(u2k+2 − 2u2k+1 + u2k)

+

N−1∑
k=−N+1

[(u̇2k+1 − u̇2k)(u2k+1 − u2k) + (u̇2k−1 − u̇2k)(u2k−1 − u2k)]

+
γ

1 + γ
[(u̇−2N+1 − u̇−2N )(u−2N+1 − u−2N )

+(u̇2N−1 − u̇2N )(u2N−1 − u2N )]

=u̇−2N+1(u−2N − u−2N+1)−
γ

1 + γ
(u̇−2N+1 − u̇−2N )(u−2N − u−2N+1)

+ u̇2N−1(u2N − u2N−1)−
γ

1 + γ
(u̇2N−1 − u̇2N )(u2N − u2N−1)

=− γ

1 + γ

[
(u̇−2N +

1

γ
u̇−2N+1)(u−2N+1 − u−2N )

+(u̇2N +
1

γ
u̇2N−1)(u2N−1 − u2N )

]
=−

√
2γ

1 + γ

[
(u−2N+1 − u−2N )2 + (u2N−1 − u2N )2

]
⩽ 0.

(16)

So the energy function is monotone decreasing over time. The boundary condition (14) is hence
stable for diatomic chain with any mass ratio.

2.3 Boundary of different type atoms

Without loss of generality, we assume that the right boundary atom is even-numbered atom and
the left one is odd-numbered as shown in Fig. 3. Then the equations of the finite chain with boundary
conditions are

ü2k = u2k+1 − 2u2k + u2k−1,

ü2k+1 = γ(u2k+2 − 2u2k+1 + u2k), k = −N + 1,−N + 2, ..., N − 2, N − 1,

u̇−2N+1 + γu̇−2N+2 =
√

2γ(1 + γ)(u−2N+2 − u−2N+1),

u̇2N +
1

γ
u̇2N−1 =

√
2

(
1 +

1

γ

)
(u2N−1 − u2N ).

(17)
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We define an energy function

Ediff (t) =
1

2

N−1∑
k=−N+1

u̇22k +
1

2γ

N−1∑
k=−N+1

u̇22k+1 +
1

2

N−1∑
k=−N+1

(u2k+1 − u2k)
2

+
1

2

N−1∑
k=−N+2

(u2k−1 − u2k)
2 +

1

2(1 + γ)
(u−2N+2 − u−2N+1)

2

+
γ

2(1 + γ)
(u2N−1 − u2N )2.

(18)

The function is positive and

dEdiff

dt
=

N−1∑
k=−N+1

u̇2k(u2k+1 − 2u2k + u2k−1)

+

N−1∑
k=−N+1

u̇2k+1(u2k+2 − 2u2k+1 + u2k)

+

N−1∑
k=−N+1

[(u̇2k+1 − u̇2k)(u2k+1 − u2k)]

+
N−1∑

k=−N+2

[(u̇2k−1 − u̇2k)(u2k−1 − u2k)]

+
1

1 + γ
[(u̇−2N+1 − u̇−2N+2)(u−2N+1 − u−2N+2)]

+
γ

1 + γ
[(u̇2N−1 − u̇2N )(u2N−1 − u2N )]

=u̇−2N+1(u−2N+2 − u−2N+1)

− 1

1 + γ
(u̇−2N+1 − u̇−2N+2)(u−2N+2 − u−2N+1)

+ u̇2N−1(u2N − u2N−1)−
γ

1 + γ
(u̇2N−1 − u̇2N )(u2N − u2N−1)

=− 1

1 + γ
(u̇−2N+1 + γu̇−2N+2)(u−2N+2 − u−2N+1)

− γ

1 + γ
(u̇2N +

1

γ
u̇2N−1)(u2N−1 − u2N )

=−
√

2γ

1 + γ

[
(u−2N+2 − u−2N+1)

2 + (u2N−1 − u2N )2
]
⩽ 0.

(19)

So, it is monotone decreasing over time.
The boundary condition (17) is hence stable for diatomic chain with different type boundary atoms.
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Fig. 4 Displacements with same boundary: (a) un(0); (b) un(40); (c) un(80); (d) un(120). The horizontal
axis represents the atomic numbering, and the vertical axis represents the displacement

3. Numerical test

In this section, we compute diatomic chains, with 201 atoms (N = 100 in the Eq. (14)) for the
boundary with same type atoms; and with 200 atoms (N = 100 in the Eq. (17)) for the boundary
with different type atoms by speed verlet algorithm with time step size ∆t = 0.01. The mass ratio
γ = 2. We take initial data as in Tang (2006a)

un(0) =

 0.005 [1 + 0.1 cos(0.4πn)]
e−0.0025n2 − e−6.25

1− e−6.25
, −50 < n < 50,

0, elsewhere.

(20)

The velocity is uniformly zero initially. The displacements are shown in Figs. 4 and 5. From Fig.
6, we know that the reflection is about 3%. The choice of boundary atoms makes little difference in
terms of the reflection.

The energy decay rate is shown in Fig. 7. The numerically calculated decay rate and the one
calculated by the boundary terms are almost the same. As asserted by the theoretical results, both
types of boundaries are stable.
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Fig. 5 Displacements with different boundaries: (a) un(0); (b) un(40); (c) un(80); (d) un(120). The horizontal
axis represents the atomic numbering, and the vertical axis represents the displacement
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Fig. 6 Comparison of un(200)with different boundary atoms: (a) boundarywith same type atoms; (b) boundary
with different type atoms. The horizontal axis represents the atomic numbering, and the vertical axis represents
the displacement
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Fig. 7 Energy decay rate for MBC1: solid curve for numerically calculated −Ė(t) and circle for
(a)

√
2γ/(1 + γ)[(u−2N − u−2N+1)

2 + (u2N−1 − u2N )2] (boundary with the same type atoms); (b)√
2γ/(1 + γ)[(u−2N+1 − u−2N+2)

2 + (u2N−1 − u2N )2] (boundary with the different type atoms). The
horizontal axis represents time, and the vertical axis represents the rate

4. Stability of MBC1 for nonlinear diatomic chain

For nonlinear diatomic chain (2), MBC1 with sound speed is as follows ?.
u̇−2N +

1

γ
u̇−2N+1 = CL(t)

√
2

(
1 +

1

γ

)
(u−2N+1 − u−2N ),

u̇2N +
1

γ
u̇2N−1 = CR(t)

√
2

(
1 +

1

γ

)
(u2N−1 − u2N ),

(21)

where

CL(t) =√[
J ′
−2N+3/2(u−2N+2 − u−2N+1)− J ′

−2N+1/2(u−2N+1 − u−2N )
]/

(u−2N+2 − 2u−2N+1 + u−2N )

> 0,

CR(t) =√[
J ′
2N−3/2(u2N−1 − u2N−2)− J ′

2N−1/2(u2N − u2N−1)
]/

(u2N−2 − 2u2N−1 + u2N )

> 0.
(22)
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Here we take same type atoms for the boundary as an example. Let energy function

Enonlinear(t) =
1

2

N−1∑
k=−N+1

u̇22k +
1

2γ

N−1∑
k=−N

u̇22k+1 +

N−1∑
k=−N+1

[
J2k+1/2(u2k+1 − u2k)

−J2k−1/2(u2k − u2k−1)
]
+

γ

1 + γ
J−2N+1/2(u−2N+1 − u−2N )

+
γ

1 + γ
J2N−1/2(u2N − u2N−1).

(23)

We calculate

dEnonlinear

dt
=

N−1∑
k=−N+1

u̇2kü2k +
1

γ

N−1∑
k=−N

u̇2k+1ü2k+1

+

N−1∑
k=−N+1

(u̇2k+1 − u̇2k)
[
J ′
2k+1/2(u2k+1 − u2k)

−(u̇2k − u̇2k−1)J
′
2k−1/2(u2k − u2k−1)

]
+

γ

1 + γ
(u̇−2N+1 − u̇−2N )J ′

−2N+1/2(u−2N+1 − u−2N )

+
γ

1 + γ
(u̇2N − u̇2N−1)J

′
2N−1/2(u2N − u2N−1)

=− u̇−2N+1J
′
−2N+1/2(u−2N+1 − u−2N ) + u̇2N−1J

′
2N−1/2(u2N − u2N−1)

+
γ

1 + γ
(u̇−2N+1 − u̇−2N )J ′

−2N+1/2(u−2N+1 − u−2N )

+
γ

1 + γ
(u̇2N − u̇2N−1)J

′
2N−1/2(u2N − u2N−1)

=− γ

1 + γ
(u̇−2N +

1

γ
u̇−2N+1)J

′
−2N+1/2(u−2N+1 − u−2N )

+
γ

1 + γ
(u̇2N +

1

γ
u̇2N+1)J

′
−2N+1/2(u2N − u2N−1)

=− CL(t)

√
2γ

1 + γ
(u−2N+1 − u−2N )J ′

−2N+1/2(u−2N+1 − u−2N )

− CR(t)

√
2γ

1 + γ
(u2N − u2N−1)J

′
−2N+1/2(u2N − u2N−1).

(24)

Because the diatomic chain itself is stable, the atomic motion is always in a potential well. The
inter-atomic forces and displacement difference have inverse signs. This means{

− (u−2N+1 − u−2N )J ′
−2N+1/2(u−2N+1 − u−2N ) < 0,

− (u2N − u2N−1)J
′
−2N+1/2(u2N − u2N−1) < 0.

(25)

So
dEnonlinear(t)

dt
< 0. (26)
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MBC1 (21) is stable for the nonlinear diatomic chain.
We remark that even the sound speeds CL(t) and CR(t) are chosen in other forms, stability still

holds.

5. Stability of MBC1 for square lattice

Dimensionless linearized equations of square lattice shown in Fig. 8 are

üj,k = uj+1,k + uj,k+1 + uj−1,k + uj,k−1 − 4uj,k, j, k ∈ Z. (27)

For the bottom boundary (Figure 9), MBC1 was proposed in Wang (2013)

u̇j,0 + u̇j,1 = 2(uj,1 − uj,0), j ∈ Z. (28)

To investigate stability, we consider a finite system with MBC1 as follows
üj,k = uj+1,k + uj,k+1 + uj−1,k + uj,k−1 − 4uj,k, j = 1, 2, ...M − 1, k = 1, 2, ..., N − 1,

u̇j,0 + u̇j,1 = 2(uj,1 − uj,0), u̇j,N + u̇j,N−1 = 2(uj,N−1 − uj,N ), j = 1, 2, ...M − 1,

u̇0,k + u̇1,k = 2(u1,k − u0,k), u̇M,k + u̇M−1,k = 2(uM−1,k − uM,k), k = 1, 2, ..., N − 1.
(29)
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Let energy function be

Esquare(t) =
1

2

M−1∑
j=1

N−1∑
k=1

[
u̇2j,k +

1

2
(uj+1,k − uj,k)

2 +
1

2
(uj−1,k − uj,k)

2

+
1

2
(uj,k+1 − uj,k)

2 +
1

2
(uj,k−1 − uj,k)

2

]
.

(30)

It is positive, and

dEsquare

dt
=

M−1∑
j=1

N−1∑
k=1

u̇j,k(uj+1,k + uj−1,k + uj,k+1 + uj,k−1 − 4uj,k)

− 1

2

M−1∑
j=1

N−1∑
k=1

u̇j,k(uj+1,k + uj−1,k + uj,k+1 + uj,k−1 − 4uj,k)

+
1

2

M∑
j=2

N−1∑
k=1

u̇j,k(uj,k − uj−1,k) +
1

2

M−2∑
j=0

N−1∑
k=1

u̇j,k(uj,k − uj+1,k)

+
1

2

M−1∑
j=1

N∑
k=2

u̇j,k(uj,k − uj,k−1) +
1

2

M−1∑
j=1

N−2∑
k=0

u̇j,k(uj,k − uj,k+1)

=
1

2

N−1∑
k=1

[u̇M,k(uM,k − uM−1,k)− u̇1,k(u1,k − u0,k)

−u̇M−1,k(uM−1,k − uM,k) + u̇0,k(u0,k − u1,k)]

+
1

2

M−1∑
j=1

[u̇j,N (uj,N − uj,N−1)− u̇j,1(uj,1 − uj,0)

−u̇j,N−1(uj,N−1 − uj,N ) + u̇j,0(uj,0 − uj,1)]

=− 1

2

N−1∑
k=1

[(u̇0,k + u̇1,k)(u1,k − u0,k) + (u̇M,k + u̇M−1,k)(uM−1,k − uM,k)]

− 1

2

M−1∑
j=1

[(u̇j,0 + u̇j,1)(uj,1 − uj,0) + (u̇j,N + u̇j,N−1)(uj,N−1 − uj,N )]

=−
N−1∑
k=1

[
(u1,k − u0,k)

2 + (uM−1,k − uM,k)
2
]

−
M−1∑
j=1

[
(uj,1 − uj,0)

2 + (uj,N−1 − uj,N )2
]
⩽ 0.

(31)

So the MBC1 is stable for two-dimensional square lattice.
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6. Discussions

Stability of a boundary condition for atomic chains is an important issue, but is difficult to establish
in general. There are extensive studies for continuous systems, such as the von Neumann analysis
for finite difference method of the Cauchy problem for general linear systems. However, they can
not be readily extended to discrete systems. For a finite and discrete system, eigenvalue analysis and
Lyapunov method may be used to investigate stability. Eigenvalue analysis works for linear systems.
Eigenvalues change with the number of equations, and accuracy can be an issue particularly when the
order is high unless one has analytical expressions. Lyapunov method may be used to study stability
for both linear and nonlinear systems, yet the Lyapunov function is difficult to construct in general.
Here we obtain such functions only for several particular cases.

In this paper, the stability for MBCs in finite domain is established. The stability of MBC1 for
linear diatomic chain under different choices of boundary atoms is proved by constructing energy
function (Lyapunov function). Numerical tests verify our theoretical results. Then we generalize the
form of the energy function to prove the stability for a nonlinear diatomic chain. In addition, for two
dimensional square lattice, MBC1 is proved stable as well.

In this paper, we only considered nearest neighboring interaction. Challenges are well expected
for chains with non-nearest neighboring interaction. Furthermore, there is yet no general way for
constructing the energy functions. Studies along this line are desirable.
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