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Abstract.  The present paper reports an analytical study of delamination fracture in the Mixed Mode Flexure 

(MMF) functionally graded beam with considering the material non-linearity. The mechanical behavior of 

MMF beam is modeled by using a non-linear stress-strain relation. It is assumed that the material is 

functionally graded along the beam height. Fracture behavior is analyzed by the J-integral approach. Non-

linear analytical solution is derived of the J-integral for a delamination located arbitrary along the beam 

height. The J-integral solution derived is verified by analyzing the strain energy release rate with considering 

the non-linear material behavior. The effects of material gradient, crack location along the beam height and 

material non-linearity on the fracture are evaluated. It is found that the J-integral value decreases with 

increasing the upper crack arm thickness. Concerning the influence of material gradient on the non-linear 

fracture, the analysis reveals that the J-integral value decreases with increasing the ratio of modulus of 

elasticity in the lower and upper edge of the beam. It is found also that non-linear material behavior leads to 

increase of the J-integral value. The present study contributes for the understanding of fracture in 

functionally graded beams that exhibit material non-linearity 
 

Keywords:  functionally graded materials; fracture; non-linear material behavior; beam theory 

 
 
1. Introduction 
 

Due to smooth spatial variation of material properties, functionally graded materials have a 

number of advantages over the homogeneous structural materials. For instance, one can achieve 

optimum performance of a component to external influence (mechanical loading, temperature 

difference, etc.) by tailoring the variation of material properties. Therefore, recently, the use of 

functionally graded materials has increased in many engineering applications (Koizumi 1993, 

Markworth et al. 1995, Suresh and Mortensen 1998, Hirai and Chen 1999, Lu et al. 2009, Gasik 

2010, Nemat-Allal et al. 2011, Ivanov and Stoyanov 2012, Ivanov and Draganov 2014, Ivanov et 

al. 2016, Bohidar et al. 2014). 

Fracture is one of the most common failure modes in functionally graded materials. The 

existence of cracks can drastically reduce the strength, stiffness and stability of a structure 
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composed by functionally graded material. Therefore, better understanding of the fracture 

behaviour is of great importance for the structural design and development of new functionally 

graded material systems. This fact is reflected by the significant number of papers published in the 

field of fracture mechanics of these novel materials (Pei and Asaro 1997, Tilbrook et al. 2005, 

Carpinteri and Pugno 2006, Upadhyay and Simha 2007, Zhang et al. 2013). 

Analytical investigations have been carried-out of semi-infinite cracks in a strip of functionally 

graded material by using the methods of linear-elastic fracture mechanics (Pei and Asaro 1997). 

The loading has been applied on the edge of the strip. Solutions for stress intensity factors have 

been obtained. The solutions derived have been extended for a strip of an orthotropic functionally 

graded material. Possibilities have been considered for development of a fracture criterion for 

functionally graded materials.  

Studies have been reviewed of the linear-elastic fracture behavior of functionally graded 

composite materials by Tilbrook, Moon and Hoffman (2005). Analyses have been presented of the 

stress intensity factors. Cracks oriented both parallel and perpendicular to the gradient direction 

have been investigated. Works in the field of fatigue fracture behavior have also been summarized.  

Linear-elastic fracture analyses have been performed of structures composed by functionally 

graded materials by Carpinteri and Pugno (2006). Functionally graded plates in tension and beams 

under three-point bending have been considered. Stress intensity factors have been investigated. 

An engineering method has been developed for evaluation of the strength of structures 

corresponding to the unstable brittle crack propagation. 

Fracture behavior has been studied of functionally graded linear-elastic beams loaded in three-

point bending (Upadhyay and Simha 2007). Equivalent homogeneous beams of variable dept have 

been suggested for evaluation of the stress intensity factor. The compliance method has been 

applied in the analysis. It has been shown that equivalent beams are quite efficient for engineering 

design analyses of cracked functionally graded linear-elastic structures.  

It can be summarized that fracture behavior of functionally graded beam structures has been 

analyzed mainly assuming linear-elastic stress-strain relation. However, in reality, the stress-strain 

relation can be non-linear. Therefore, the objective of present work is to perform a theoretical 

study of delamination fracture in the functionally graded MMF beam configuration assuming non-

linear material behavior. The J-integral approach is applied in the non-linear fracture analysis. The 

influence of material gradient and crack location along the beam height on the non-linear fracture 

is investigated. 

It should be noted that, in principle, fracture in beams can be analyzed by analytical methods or 

by finite element models. The analytical solutions are very useful for parametric investigations. 

Besides, the analytical solutions have lower computational cost in comparison with finite element 

models. Therefore, fracture behavior is analyzed analytically in the present paper. 

 

 

2. Non-linear fracture study 
 

The present article is concerned with theoretical study of non-linear fracture in the functionally 

graded MMF beam configuration shown schematically in Fig. 1. The beam is loaded by a 

transverse force, F, applied in the mid-span. There is a delamination crack of length a located 

arbitrary along the beam height (it should be noted that the present study is motivated also by the 

fact that functionally graded materials can be built up layer by layer (Bohidar et al. 2014), which is 

a premise for appearance of delamination cracks between layers). The upper and  
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Non-linear analysis of dealamination fracture in functionally graded beams 

 
Fig. 1 The MMF beam configuration 

 

 

lower crack arm thicknesses are h1 and h2, respectively (Fig. 1). The lower crack arm is stress free. 

The beam has a rectangular cross-section of width, b, and height, 2h.  

In the fracture analysis performed, the mechanical response of beam is described by the 

following non-linear stress-strain relation (Petrov 2014) 

21

21

ss
RRE    (1) 

where σ is the stress, ε is the strain, E is the modulus of elasticity, R1, R2, s1 and s2 are material 

properties. The stress-strain curve is symmetric with respect to tension and compression (Fig. 2). 

The present analysis is based on the small strain assumption (it should be noted that this 

assumption has been frequently used in fracture analyses of functionally graded materials (Pei and 

Asaro 1997, Carpinteri and Pugno 2006, Upadhyay and Simha 2007)). It is also assumed that the 

value of E varies linearly along the beam height from E0 in the upper edge to E1 in the lower edge 

of beam cross-section, i.e., the material is functionally graded along the beam height. Thus, E was 

written as 
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where the z3-axis originates from the beam cross-section centre and is directed downwards. 

The non-linear fracture behavior of functionally graded MMF beam configuration is analyzed 

with the help of J-integral approach (Anlas et al. 2000) 
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where Γ is a contour of integration going from the lower crack face to the upper crack face in the 

counter clockwise direction, u0 is the strain energy density, α is the angle between the outwards 

normal vector to the contour of integration and the crack direction, px and py are the components of 

stress vector, u and v are the components of displacement vector with respect to the crack tip 

coordinate system xy (x is directed along the crack), ds is a differential element along the contour, 

A is the area enclosed by that contour, q is a weight function with a value of unity at the crack tip,  
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Fig. 2 Non-linear stress-strain curve 

 

 

zero along the contour and arbitrary elsewhere. It should be specified that the partial derivative 

∂u0/∂x exists only if the material property is an explicit function of x (Anlas et al. 2000). 

It should be noted that the fracture analysis performed holds for non-linear elastic material 

behavior. However, the analysis is applicable also for elastic-plastic behavior, if the external load 

magnitude increases only, i.e., if the beam considered undergoes active deformation (Lubliner 

2006, Chakrabarty 2006).  

The J-integral is solved by using an integration contour that coincides with the beam cross-

sections behind and ahead of the crack tip as illustrated in Fig. 1. The lower crack arm is stress 

free. Thus, the J-integral value in the lower crack arm is zero. It is obvious that the J-integral has 

non-zero values in segments A2 and B of the integration contour (Fig. 1). Therefore, the J-integral 

value can be obtained by summation, i.e., 

BA JJJ 
2

 (4) 

where JA2 and JB are the J-integral values in segments A2 and B, respectively.  

The integration contour segment, A2, coincides with the upper crack arm cross-section behind 

the crack tip (Fig. 1). The cross-sectional bending moment in segment, A2, is obtained as 

a
F

M
2

  (5) 

The stress distribution in the upper crack arm cross-section is shown schematically in Fig. 3.  

The J-integral components in segment, A2, are written as 
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Fig. 3 Diagram of stresses in the upper crack arm cross-section 

 

 

xp 21

21

ss
RRE   , 0yp , (6) 

2dzds  , 1cos  , (7) 

where the z2-coordinate varies in the interval [−h2/2, h2/2]. The axis, z2, is shown in Fig. 3.  

The strain energy density, u0, is equal to the area enclosed by the stress-strain curve (refer to 

Fig. 4) 




du 
0

0  (8) 

After substitution of Eq. (1) in Eq. (8), the strain energy density is obtained as 
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It is assumed that the Bernoulli’s hypothesis for plane sections is applicable in the present  
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Fig. 4 Strain energy density, u0, and complimentary strain energy density, 
*

0u  

 

 

analysis, since the span to height ratio of beam considered is large. Therefore, the strains are 

distributed linearly along the beam height, i.e., 

 
2222 nzz   (10) 

where 2  and 
22nz are the curvature and neutral axis coordinate of upper crack ram cross-section 

behind the crack tip, respectively (the neutral axis shifts from the centroid, because the material is 

functionally graded transversally to the beam). It should be mentioned that the Bernoulli’s 

hypothesis for plane sections has been widely applied when analyzing fracture in functionally 

graded beams (Pei and Asaro 1997, Carpinteri and Pugno 2006, Upadhyay and Simha 2007). 

The following equations for equilibrium of cross-section, A2, are used to determine 2  and 
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where N  and M  are the axial force and the bending moment in the upper crack arm behind the 

crack tip, respectively (obviously, N=0 (Fig. 1)). The variation of E along the upper crack arm 
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cross-section height is written as (refer to Eq. (2)) 
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where 
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h
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  (14) 

is the value of E in the lower edge of the upper crack arm. 

After substitution of Eq. (1), Eq. (10) and Eq. (13) and solving the integrals, the equilibrium 

equations are written as 
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Obviously, at R1=R2=0, the non-linear stress-strain relation Eq. (1) transforms into the Hooke’s 

law. This means that at R1=R2=0 Eq. (16) should transform in the formula for curvature of linear-

elastic beam. Indeed, by substitution of R1=R2=0 and EEE L  10
 in Eq. (16), we obtain 

3

2
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12

Ebh

M
  (17) 

Eq. (17) coincides with the known expression for curvature of homogeneous linear-elastic 

beam. 

The MatLab computer program should be used to solve Eqs. (15) and (16) as an algebraic 

system with unknowns to 2  and 
22nz . 

The partial derivative in the first integral in Eq. (3) is expressed as 
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where 2  and 
22nz are determined from Eq. (15) and Eq. (16).  
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The partial derivative in the second integral in Eq. (3) is written as 

00 




x

u
 (19) 

since the strain energy density is not an explicit function of x (the material property E does not 

depend on x, because the material is functionally graded transversally to the beam only (refer to 

Eq. (2)). 

After substitution of Eqs. (6), (7), (9), (10), (13), (18) and (19) in Eq. (3), the J -integral 

solution in segment, A2, of the integration contour is written as 
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The integration in segment B is performed in a similar way (segment B coincides with the 

MMF beam cross-section ahead of the crack tip as shown in Fig. 1). The J-integral components are 

written as 

xp 21

21

ss
RRE   , 0yp , (21) 

3dzds  , 1cos  , (22) 
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where 
3  and 

33nz are the curvature and the neutral axis coordinate in the beam cross-section 

ahead of the crack tip. Eqs. (15) and (16) can be used to determine 
3  and 

33nz . For this purpose, 

2 , 2h , 
22nz  and 

LE1
 have to be replaced with 

3 , h2 , 
33nz  and 1E , respectively. Then Eqs. 

(15) and (16) should be solved with respect to 
3  and 

33nz by using the MatLab computer 

program. 

Eqs. (2), (9), (13), (19), (21), (22) and (23) are substituted in Eq. (3). The BJ  solution is 

obtained as 
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The J-integral final non-linear solution is found by substitution of Eq. (20) and Eq. (24) in Eq. 

(4). The formula obtained is cumbersome and is not shown here.  

It should be mentioned that by substitution of R1=R2=0, E0=E1=E and h1=h2=h in the J-integral 

non-linear solution derived, we obtain 

23

22

16

21

bEh

aF
J   (25) 

Eq. (25) coincides with the formula for strain energy release rate in the homogeneous linear-

elastic MMF configuration, when the crack is located in the beam mid-plane (Szekrenyes 2012). 

The J-integral non-linear solution derived in the present paper is verified by analyzing the 

strain energy release rate in the functionally graded MMF beam with considering the non-linear 

material behavior. For this purpose, a small crack length increase, Δa, is assumed (the external 

loading is kept constant). The crack area increase, ΔAa, is written as 

abAa   (26) 

The strain energy release rate associated with ΔAa is defined as 

a

ext

A

UW
G




  (27) 

where ΔWext and ΔU are the changes of external work and strain energy, respectively. The change 

of external work is expressed as 

UUWext  *
 (28) 

where ΔU
*
 is the change of complimentary strain energy. By combining of Eqs. (27) and (28), we 

obtain 

aA

U
G






*

 (29) 
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where 

***

ba UUU   (30) 

Here, 
*

bU  and 
*

aU  are the complimentary strain energies before and after the increase of crack, 

respectively. By substitution of Eqs. (26) and (30) in Eq. (29), we find 

ab

UU
G ba






**

 (31) 

The complimentary strain energy before the increase of crack is written as 






h

h

b dzuabU 3

*

0

*
 (32) 

where the complimentary strain energy density, 
*

0u , in Eq. (32) is equal to the area OQS that 

supplements the area OPQ enclosed by the stress-strain curve to a rectangle (Fig. 4). Thus, the 

complimentary strain energy density is obtained as 

0

*

0 uu   (33) 

where the stress, σ, and the strain energy density, u0, are determined by Eqs. (1) and (9), 

respectively.  

The complimentary strain energy after the increase of crack is calculated as 





2

2

2
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0
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2

2

h

h

a dzuabU  (34) 

By substitution of Eqs. (32) and (34) in Eq. (31), we derive 

G 
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2

2

2

*

0

2

2

h

h

dzu 
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h

h

dzu 3

*

0 . (35) 

By combining of Eqs. (1), (9), (23), (33) and Eq. (35), we derive the formula for strain energy 

release rate that is exact match of the J-integral non-linear solution. This fact is a verification of 

the non-linear fracture analysis performed the present paper. 

 
 

3. Influence of material gradient, crack location and material non-linearity on the 
fracture 
 

First, the influence is analyzed of material gradient and crack location along the beam height on 

the non-linear fracture behavior of functionally graded MMF configuration. For this purpose, 

calculations are performed by using the J-integral non-linear solution derived in the present paper.  
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Fig. 5 The J-integral value in non-dimensional form plotted against E1/E0 ratio for h1/2h=0.25, 0.5 and 

0.75 

 

 

The calculations are carried-out assuming that h=0.002 m, b=0.02 m, a=0.03 m and F=300 N. 

In these calculations, the material gradient and the crack position along the beam height are 

characterized by E1/E0 and h2/2h ratios, respectively (refer to Eq. (2) and Fig. 1). It should be 

specified that E0 is kept constant in the calculations (thus, E1 is varied in order to obtain various 

E1/E0 ratios). The J-integral values generated by the calculations are presented in non-dimension 

form by using the formula JN=J/(E0b). The effects of material gradient and crack location are 

illustrated in Fig. 5 where the J-integral value is plotted against E1/E0 ratio for h2/2h=0.25, 0.50 

and 0.75 at R1/E0=0.2, R2/E0=0.3, s1=0.7 and s2=0.8. The curves in Fig. 5 indicate that the J-

integral value decreases with increasing E1/E0 ratio. This finding is explained with increase of the 

MMF beam stiffness. Also, it can be observed in Fig. 5 that increase of h2/2h ratio leads to decease 

of the J-integral value. This finding is attributed to increase of the upper crack arm stiffness.  

It is interesting to investigate the influence of non-linear material behavior on the fracture in the 

functionally graded MMF beam. For this purpose, the J-integral values calculated by using the 

non-linear solution derived are plotted in non-dimensional form against the external load, F, for 

E1/E0=1.5, h2/2h=0.25, R1/E0=0.2 and R2/E0=0.3 as shown in Fig. 6. The J-integral values obtained 

assuming linear-elastic material behavior of the functionally graded beam are also plotted in Fig. 6 

for comparison (the linear-elastic J-integral solution is derived by substitution of R1=R2=0 in the 

non-linear solution). 

The curves shown in Fig. 6 indicate that the J-integral value increases, when the material non-

linearity is taken into account. Therefore, the non-linear material behavior has to be considered in 

fracture mechanics based safety design of functionally graded structural members.  

 
 
4. Conclusions 
 

Delamination fracture behavior of the MMF functionally graded beam is studied analytically  
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Fig. 6 The J-integral value in non-dimensional form plotted against the external load, F (curve 1-linear-

elastic material behavior, curve 2-non-linear material behavior) 

 
 
with taking into account the material non-linearity. It is assumed that the material is functionally 

graded transversally to the beam (linear variation of the modulus of elasticity along the beam 

height is considered). The mechanical behavior of MMF beam is modeled analytically by using a 

non-linear stress-strain relation. Fracture is analyzed by the J-integral approach. In order to derive 

the J-integral non-linear solution, the curvature and the neutral axis coordinate of beam are 

determined. The J-integral is solved analytically for a delamination crack located arbitrary along 

the beam height. In order to verify the solution obtained, the strain energy release rate is analyzed 

with considering the material non-linearity. The effects of material gradient, crack location and the 

material non-linearity on the fracture behavior are evaluated. It is found that the J-integral value 

decreases with increasing the upper crack arm thickness (the lower crack arm is stress free). This 

finding is attributed to increase of the upper crack arm bending stiffness. The analysis reveals that 

the J-integral value decreases with increasing the ratio of modulus of elasticity in the lower and 

upper edge of the functionally graded beam. Also, it is found that the non-linear material behavior 

leads to increase of the J-integral value (this finding indicates that the material non-linearity 

should be taken into account in fracture mechanics based safety design of functionally graded 

structural members). The results obtained can be applied for optimization of the functionally 

graded beam structure with respect to the fracture performance. The present study contributes for 

the understanding of fracture behavior of functionally graded beams exhibiting material non-

linearity. 
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