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Abstract.  In this work, we extend the previously developed split kinetic energy (dubbed KEP) method by 

Mineo and Chao (2012) by modifying the mass parameter to include the negative mass. We first show how 

to separate the total system into the subsystems with 3 attractive delta potentials by using the KEP method. 

For repulsive delta potentials, we introduce “negative” mass terms. Two cases are demonstrated using the 

“negative” mass terms for repulsive delta potential problems in quantum mechanics. Our work shows that 

the KEP solution scheme can be used to obtain not only the exact energies but also the exact wavefunctions 

very precisely. 
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1. Introduction 
 

Zero-range potentials have been used for many decades to simplify the true complicated 

interactions among quantum particles and fields (Demkov and Ostrovski 1988, Yakovlev and 

Gradusdov 2013, Holden et al. 2005). In particular, delta functional potentials, due to their 

mathematical utilities, have shown to be very useful to help gaining physical pictures for quantum 

strong-coupling systems (Fermi 1936, Dirac 1958, Mineo and Chao 2012). However, in actual 

applications of such simplifications in solving quantum eigenvalue problems, two difficulties 

remain. First, for systems with many delta potentials, the resulting secular equations are very 

complicated transcendental algebraic equations with a high possibility of degeneracy. Therefore, 

independent eigenvectors are not always easily found. Second, if there are repulsive type potentials 

involved, such as strong Coulomb repulsion modeled by repulsive delta functions, the solution 

scheme by traditional methods often becomes very tedious and unstable. To solve these problems, 

in this paper we apply the recently developed kinetic energy partition method by Mineo and Chao  

(2012, 2014) to solve the many-delta-potential eigenvalue problems and two systems with 

repulsive delta potentials. For the latter type problems, we will use “negative” mass terms to treat 

properly the repulsive interactions. We will show that not only the eigenenergies, but also the 

eigenfunctions can be obtained very efficiently and precisely by using the KEP method. 
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2. Theory  
 

2.1 Partition with positive mass terms 
 

In this section we introduce the basic KEP method with positive mass terms. The Hamiltonian 

of a system where one particle of mass m is under the action of N interaction potentials is written 

as 

1 2

1

ˆ ˆ ˆ+ +
N

N i

i

H T V V V T V


      (1) 

where T̂ is the kinetic energy operator 

2ˆˆ
2

p
T

m
  (2) 

and Vi, i=1,2,3…,N
 
are the potentials. We separate the kinetic energy into N terms 

1 2
ˆ ˆ ˆ ˆ+ + NT T T T   (3) 

where 

2ˆˆ
2

i

i

p
T

m
  (4) 

with 

1

1 1N

i im m

  (5) 

With this partition, the total Hamiltonian can be written as 

1 2

1

ˆ ˆ ˆ ˆ ˆ+ +
N

N i

i

H H H H H


    (6) 

where the subsystem Hamiltonians are 

ˆ ˆ
i i iH T V   (7) 

The corresponding Schrӧdinger equation for the i-th subsystem is  

ˆ
i i i iH E   (8) 

where i=1,2,3…,N is the respective subsystem quantum number. We now assume the total wave-

function is represented by a linear combination of subsystem wave-function 

1 1 2 2

1

N

N N i i

i

C C C C   


       (9) 
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where Ci is the expansion coefficient. The Schrӧdinger equation of the total system is  

Ĥ E    (10) 

Substituting Eq. (6) and Eq. (9) into the total Schrodinger Eq. (10), we obtain 

1 1 1

ˆ
N N N

i j j j j

i j j

H C E C 
  

    
    

    
    (11) 

Multiplying 
*

k
 
with Eq. (11) and integrating over the coordinate space, we have 

   
1

ˆ 0
N N N

k k j k i j j k k j

j i k j k

C E E C H C E E   
  

       (12) 

Notice that 

ˆ ˆj j

i j i j

i i

m m
H H V V

m m

   
     
   

 (13) 

Therefore, Eq. (12) can be rewritten as 

   
1 1

0
N N N N N

j

k k j kij j j kj j k kj

j i k j i k j ki

m
C E E C C E C E E

m
  

    

 
      

 
    (14) 

where the variable ξkij and ηkj  

j
kij k i j j

i

m
V V

m
  

 
  

 
 (15) 

kj k j  

 

(16) 

Simplifying Eq. (14), we obtain 

1

1 0
N N N N N

jk
k k j kij j k j kj

i k j i k j k i ki i

mm
C E E C C E E E

m m
 

    

        
             

           
     (17) 

Eq. (17) is the KEP coupling equation by solving which we can obtain the KEP energy. 

 

2.2 Partition with negative mass terms 
 

Consider a two-potential system. The Hamiltonian of the system can be written as 

1 2
ˆ ˆH T V V    (18) 

We can split the kinetic energy as 

2

1

ˆˆ
2

p
T s

m
  (19) 
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 
2

2

ˆˆ 1
2

p
T s

m
 

 
(20) 

where s is an adjustable parameter. We then distribute the kinetic energy term to each potential and 

combine them to form a subsystem. 

2

1 1 1 1

ˆˆ ˆ
2

p
H T V s V

m
     (21) 

 
2

2 2 2 2

ˆˆ ˆ 1
2

p
H T V s V

m
    

 
(22) 

Accordingly, the total Hamiltonian is  

1 2
ˆ ˆ ˆH H H   (23) 

The Schrodinger equations of the two subsystems can be represented as 

1 1 1 1
ˆ

n n nH E   (24) 

2 2 2 2
ˆ

k k kH E 
 

(25) 

where n and k are the corresponding system’s quantum numbers of the ranges n=1,2,3…,N
 
and 

k=1,2,3…,K, respectively. We use the linear combination for the total wavefunction 

1 1 2 2

1 1

N K

n n k k

n k

C C 
 

     (26) 

The two sets of the coefficients C1n and C2k can be obtained by imposing the boundary 

conditions and the normalization condition. The total Schrodinger equation is  

Ĥ E    (27) 

Substituting Eq. (23) and Eq. (26) into Eq. (27) we obtain 

 1 2 1 1 2 2 1 1 2 2

1 1 1 1

ˆ ˆ
N K N K

n n k k n n k k

n k n k

H H C C E C C   
   

   
      

   
     (28) 

Multiplying 
*

1m
 
and 

*

2l
 
respectively with Eq. (28) and integrating over the coordinate space,  

we have 

   1 1 1 1 2 1 2 2 1 1 2

1 1

ˆ 0
N K

m m n m n k k m m k

n k

C E E C H C E E E   
 

        (29) 

   2 2 2 2 1 2 1 1 2 2 1

1 1

ˆ 0
K N

l l k l k n n l l n

k n

C E E C H C E E E   
 

      
 

(30) 
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Notice that 

1 2 1 2
ˆ ˆ

1 1

s s
H H V V

s s

   
     

    
 (31) 

2 1 2 1

1 1ˆ ˆs s
H H V V

s s

    
     
     

(32) 

Therefore, the coupled Eq. (29) and Eq. (30) can be written as 

 1
1 1 1 2 1 1 2 2 1 1 2

1 1

1
0

N K
m

m n m n k k m m k

n k

E s
C E C V V C E E E

s s
   

 

   
        

  
   (33) 

 2
2 2 2 1 2 2 1 1 2 2 1

1 1

0
1 1

K N
l

l k l k n n l l n

k n

E s
C E C V V C E E E

s s
   

 

   
        

   
 

 

(34) 

Eq. (33) and Eq. (34) are the KEP coupling equations. If we assign the parameter s=-1, we 

obtain the “negative” mass term that can apply to quantum systems with repulsive potentials. 

 

 

3. Models with various delta potentials 
 

3.1 Triple delta function 
 

In this section, we will show how to apply the KEP method to solving the quantum problems 

with three delta potentials. The subsystem Hamiltonian can be written as three parts 

2 2 2

1 1 2 2 3 3

1 2 3

ˆ ˆ ˆˆ ˆ ˆ, ,
2 2 2

p p p
H V H V H V

m m m
       (35) 

Where V1=−λδ(x+a), V2=−λδ(x) and V3=−λδ(x−a) are the delta potentials with the same well 

depth λ at position x=0, a , respectively. The subsystem ground state energies are easily obtained, 

respectively,  

22 2

31 2
1 2 32 2 2

, ,
2 2 2

mm m
E E E

 
       (36) 

The subsystems masses m1, m2 and m3 are selected to be the same m1=m2=m3=3m. The 

subsystem’s wave-functions are 

 
 

 1

k x a

k x a

ke x a
x

ke x a




 

  
 

 

 (37) 

 2

0

0

kx

kx

ke x
x

ke x




 
 

  

(38) 
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Fig. 1 The triple delta energy solution: Comparison of the KEP energy and the exact energy as the 

parameter of the well depth λ varies from 0.10 to 0.30. Here we introduce the dimensionless units 

m=h=a=1 

 

 

 
( )

3
( )

k x a

k x a

ke x a
x

ke x a




 

 
 

  

(39) 

where the wave number k is 

 
2

3m
k


  (40) 

Applying the KEP coupling equation, i.e., Eq. (17), we obtain the algebraic equations 

     

     

     

1 1 121 131 2 1 2 12 132 3 1 3 13 123

1 2 1 21 231 2 2 212 232 3 2 3 23 213

1 3 1 31 321 2 3 2 32 312 3 3 313 323

3 2 2 0

2 3 2 0

3 0

C E E C E E E C E E E

C E E E C E E C E E E

C E E E C E E E C E E

     

     

     

                  


                  


                  

 (41) 

Because the coefficients C1, C2 and C3 cannot all be zero, we solve the determinant equation to 

obtain the KEP energies 

   

   

   

1 121 131 1 2 12 132 1 3 13 123

2 1 21 231 2 212 232 2 3 23 213

3 1 31 321 3 2 32 312 3 313 323

3 2 2

2 3 2

3

E E E E E E E E

E E E E E E E E

E E E E E E E E

     

     

     

        

        

        

 (42) 

We then compare the KEP results with the exact energies as shown in Fig. 1. In Fig. 1 the KEP 

energy for the triple delta potentials systems is less than 5% error from the exact result. 

Total wave-function can be formed by three subsystem’s ground state wave-functions 

1 1 2 2 3 3C C C       (43) 
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Fig. 2 The triple delta wavefunction solution: Comparison of the KEP result and the exact 

wavefunction for λ=0.1 utilizing the dimensionless units as in Fig. 1 

 

 

Using the normalization condition of wave-function and the coupling KEP equation Eq. (41), 

we can obtain the expansion coefficients. In Fig. 2 the KEP wave-functions are compared with the 

exact wave-functions to a high level of consistency and the error is only 0.03% error. This means 

the KEP energy solution as well as the KEP wave-functions are very precise in reproducing the 

exact solutions. 

 

3.2 Repulsive delta potentials 
 

In this section, we illustrate the solution procedure for the antisymmetric delta potentials, using 

the negative mass scheme. The subsystem Hamiltonian can be respectively written as 

2

1 1

ˆˆ
2

p
H s V

m
   (44) 

 
2

2 2

ˆˆ 1
2

p
H s V

m
  

 

(45) 

where V1(x)=λδ(x−a) and V2(x)=−λδ(x+a) are antisymmetric delta potentials. Consider the 

Schrodinger equation with 1Ĥ
 

     
2 2

1 1 122 /

d
x a x E x

m s dx
  

 
    
 

 (46) 

Because s<0, Eq. (46) can be rewritten as 

     
2 2

1 1 12
-

2 /

d
x a x E x

m s dx
  

 
     
 

 (47) 
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Clearly, the eigenenergy and eigenfunction of Eq. (47) are 

 
 

 

1

1

2
11

1 12

1

,
2

k x a

k x a

k e x am
E x

k e x a




 



 
  



 (48) 

where 

1 /m m s  (49) 

2

1 12 /k mE
 

(50) 

Similarly, the Schrӧdinger equation for 2Ĥ
 

 
     

2 2

2 2 222 / 1

d
x x E x

m s dx
  

 
     

 (51) 

The energy and wavefunction of Eq. (51) are 

 
 

 

2

2

2
22

2 22

2

,
2

k x a

k x a

k e x am
E x

k e x a




 



 
   



 (52) 

where 

 2 / 1m m s   (53) 

2

2 22 /k mE
 

(54) 

Using the KEP negative mass partition method, Eq. (33) and Eq. (34), with one basis set from 

each subsystem the KEP coupling equations are 

 1 1 1 2 1 2

1
0C E E C E E E

s
 

 
      

 
 (55) 

 1 1 2 2 2 2

1
0

1
C E E E C E E

s
 

 
      

   

(56) 

The necessary matrix elements can be calculated analytically 

1 1 2 1 1

1s
V V

s
  

 
   

 
 (57) 

2 2 1 2 2
1

s
V V

s
  

 
   

   

(58) 
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Fig. 3 The repulsive delta energy solution: Comparison of the KEP and the exact results, by varying the 

parameter λ 

 

 

and 

1 2    (59) 

The KEP solution can be written as 

 

2 2

1 2 1 2

2

1 1
2 2

1

2 1

KEP

E E D
s s

E

   




    
             


 

(60) 

with 

   
2

22 2 2 21 2
1 2 1 2 1 2 1 2

1 1
2 2 4 1

1 1

E E
D E E E E

s s s s
       

        
                   

          
 (61) 

In Fig. 3, we show the comparison of the KEP energy with the exact result. We see the overall 

trend is very similar and the largest error is 14%. Although the error seems to be large, this is a 

pretty new and novel approach which offers a perspective and may shed light on the even bigger 

question of how to use the negative mass idea in quantum mechanics. 

 

3.3 Delta potential in the box 
 

Now, we consider a distinctive delta potential confined in a one-dimensional (1D) box, where 

the box width is a and the range is –a<x<x. Using the same method as shown in Section 2.2, the 

subsystem Hamiltonians can be written as 

2

1 1

ˆˆ
2

p
H s V

m
   (62) 
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 
2

2 2

ˆˆ 1
2

p
H s V

m
  

 

(63) 

where V1(x)=λδ(x) and V2 is the infinite well potential. The energies and wave-functions of the two 

subsystems are well known 

 
2

1
1 12

0
,

2 0

kx

kx

ke xm
E x

ke x




 
  


 (64) 

   
22

2 2

2

1
, sin

2 2 2
E x x a

m a aa

 


   
     

   
 

(65) 

where 

1 /m m s  (66) 

 2 / 1m m s 
 

(67) 

22 /k mE
 

(68) 

The KEP energy can be obtained by Eq. (60) 

 

2 2

1 2 1 2

2

1 1
2 2

1

2 1

KEP

E E D
s s

E

   




    
             


 

(69) 

As shown in Fig. 4 the KEP solution is very close to the exact energy and the error for the KEP 

energy is less than 1%. These results demonstrate the utility of using the “negative” mass in 

quantum mechanics. Subsequently, the total wave-function can be formed by the two subsystem’s 

ground state wave-functions 

1 1 2 2C C     (70) 

Normalizing Eq. (70), together with Eq. (33) we can solve the coefficient C1 
and C2  

1 2

1 12 1

1

2 1
C




   
 (71) 

2 1 1 1 2

1 12 1

1

2 1
C C


   

   
 

(72) 

where 1  is  
] 
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A split kinetic energy solution scheme applied to various delta potentials… 

 

Fig. 4 The delta potential in 1D box energy solution: Comparison of the KEP and the exact results, by 

varying the parameter λ 

 

 

Fig. 5 The delta potential in 1D box wavefunction solution: Comparison of the KEP and the exact 

wavefunctions for λ=0.1 utilizing the dimensionless units as in Fig. 4  

 

 

 
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1

1 2 12

E E
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



 
  

 
 (73) 

The KEP wave-function can then be rewritten as 

 1 1 22

1 12 1

1

2 1
 


  

   
 (74) 

In Fig. 5 the KEP wavefunction and the exact result are compared. In this case, no matter what 

is the value for the delta potential parameter λ, the KEP energy and wavefunction are precisely 

close to the exact solutions in which the wavefunction error is only 0.01%. 
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4. Conclusions 
 

In summary, we demonstrate in this paper how to apply the KEP method to solving quantum 

eigenvalue problems with many delta potentials. For the cases studied in this paper, the KEP 

method obtains the energy and wavefunction precisely. It is an extremely useful idea that using the 

negative mass can cope with quantum problems with repulsive interactions. We are able to 

conclude that the KEP scheme to solve the quantum delta potentials is very successful. Admittedly, 

at the present time the negative mass has not been observed in the real world; however, the KEP 

method can apply to separated subsystems with Dirac delta potentials and yield accurate exact 

solutions with the help of negative mass terms. 
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