
 

 

 

 

 

 

 

 

Coupled Systems Mechanics, Vol. 4, No. 3(2015) 263-277 

DOI: http://dx.doi.org/10.12989/csm.2015.4.3.263                                             263 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=csm&subpage=7        ISSN: 2234-2184 (Print), 2234-2192 (Online) 
 
 

 

 
 
 
 

Elastodynamic analysis by a frequency-domain FEM-BEM 
iterative coupling procedure 

 

Delfim Soares Jr.
1, Kleber A. Gonçalves2a and José Claudio de Faria Telles2b 

 
1
Structural Engineering Department, Federal University of Juiz de Fora, CEP 36036-330, Juiz de Fora, Brazil 

2
Department of Civil Engineering, Federal University of Rio de Janeiro, CEP 21945-970, Rio de Janeiro, Brazil 

 
(Received November 6, 2014, Revised August 31, 2015, Accepted September 15, 2015) 

 
Abstract.  This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic 
problems where infinite-domain models and complex heterogeneous media are involved, rendering a 
configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) 
is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is 
recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused 
and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of 
the model is solved separately, and the variables at the common interfaces are iteratively updated, until 
convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression 
for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent 
discretizations to be efficiently employed for both finite and boundary element methods, without any 
requirement of matching nodes at the common interfaces. In addition, it leads to smaller and 
better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), 
which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate 
and efficient methodology. 
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1. Introduction 
 

The numerical simulation of arbitrarily shaped continuous bodies subjected to harmonic or 

transient loads remains, despite much effort and progress over the last decades, a challenging area 

of research. In most cases, discrete techniques, such as the finite element method (FEM) and the 

boundary element method (BEM) have been employed and continuously further developed with 

respect to accuracy and efficiency. Both methodologies can be formulated in the time domain or in 

the frequency domain, and each approach has relative benefits and limitations. The finite element 

method, for instance, is well suited for inhomogeneous and anisotropic materials as well as for 

dealing with the nonlinear behaviour of a body. For systems with infinite extension and regions of 

high stress concentration, however, the use of the boundary element method is by far more 
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advantageous.  

In fact, it did not take long until some researchers started to combine the FEM and the BEM in 

order to profit from their respective advantages, trying to evade their disadvantages, and nowadays 

several works dealing with FEM-BEM coupling are available (an overview is provided by Beskos 

2003, taking into account dynamic analyses). However, standard coupling procedures of 

FEM/BEM can lead to several problems with respect to efficiency, accuracy and flexibility. First, 

the coupled system of equations has a banded symmetric structure only in the FEM part, while in 

the BEM part it is non-symmetric and fully populated. Consequently, for its solution, the 

optimized solvers usually used by the FEM cannot be employed anymore, which leads to rather 

expensive calculations with respect to computer time. Second, quite different physical properties 

may be involved in the coupled model, resulting in bad-conditioned matrices when standard 

coupling procedures are considered. This may affect the accuracy of the methodology, providing 

misleading results. Third, the standard coupling methodology does not allow independent 

discretization for each sub-domain of the model, requiring matching nodes at common interfaces, 

which drastically affects the flexibility and versatility of the technique.  

In order to evade these drawbacks, iterative coupling procedures have been developed. Initially, 

static problems were studied considering iterative coupling approaches, and linear and nonlinear 

behaviour have been simulated (Lin et al. 1996, Elleithy et al. 2001, 2009, 2012, Jahromi et al. 

2009, Boumaiza and Aour 2014). Later on, dynamic problems were focused, and time domain 

analyses were initially implemented (Soares et al. 2004, Soares 2008, 2012). Recently, frequency 

domain iterative analyses have also been considered; but, in this case, most works are related to 

fluid-fluid or fluid-structure coupled models (Bendali et al. 2007, Soares and Godinho 2012, 

Godinho and Soares 2013). For an overview of recent advances in the iterative analysis of coupled 

models considering time and frequency domain approaches, the work of Soares and Godinho 2014 

is recommended. Other domain decomposition approaches are also available nowadays, based on 

different techniques, such as those presented by Bernardi et al. 1990 and Belgacem 1999 

(considering mortaring techniques), Gosselet and Rey 2006 (presenting a review of most 

employed approaches and their strong connections), Vion and Guezaine 2014 (presenting a 

preconditioner for non-overlapping Schwarz methods applied to the Helmholtz problem) etc.. 

Iterative coupling approaches allow BEM and FEM sub-domains to be analyzed separately, 

leading to smaller and better-conditioned systems of equations (different solvers, suitable for each 

sub-domain, may be employed). Moreover, a small number of iterations is required for the 

algorithm to converge and the matrices related to the smaller governing systems of equations do 

not need to be treated (inverted, triangularized etc.) at each iterative step, providing an efficient 

methodology. This coupling technique allows independent discretizations to be efficiently 

employed for the boundary and finite element sub-domains, without any requirement of matching 

nodes at the common interfaces. As a matter of fact, in the present work, constant boundary 

elements and linear finite elements are considered, and matching functional nodes are never 

provided in the common interfaces. It is important to observe, however, that frequency domain 

analyses usually give rise to ill-posed problems and, in these cases, the convergence of the iterative 

coupling algorithm can be either too slow or unachievable if no special procedure is taken into 

account. In order to deal with this ill-posed problem and ensure convergence of the iterative 

coupling algorithm, an optimal iterative procedure is adopted here, with optimal relaxation 

parameters being computed at each iterative step. Thus, an expression to compute optimal 

relaxation parameters, which is quite efficient and easy to implement, is provided and discussed, 

being its effectiveness illustrated at the end of the paper, where numerical examples are analyzed. 
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In the numerical examples, soil-structure interacting models are discussed, being the results of the 

proposed iterative coupling formulation compared to those of the standard coupling technique. As 

one will observe, the proposed technique is flexible, robust and efficient, allowing a quite effective 

coupling of the finite element and boundary element methods for frequency domain elastodynamic 

analyses. 

 
 
2. Governing equations 

 
The frequency domain elastic wave equation for homogenous media is given by 

𝜌(𝑐𝑑
2 − 𝑐𝑠

2)𝑢𝑗(𝑋, 𝜔),𝑗𝑖 + 𝜌𝑐𝑠
2𝑢𝑖(𝑋, 𝜔),𝑗𝑗 + (𝜔2𝜌 − 𝑖𝜔𝜈)𝑢𝑖(𝑋, 𝜔) + 𝑏𝑖(𝑋, 𝜔) = 0  (1) 

where 𝑢𝑖(𝑋, 𝜔) and 𝑏𝑖(𝑋, 𝜔) stand for the displacement and the body force distribution 

components, respectively. In Eq. (1), 𝑐𝑑 is the dilatational wave velocity and 𝑐𝑠 is the shear 

wave velocity, they are given by: 𝑐𝑑
2 = (𝜆 + 2𝜇)/𝜌 and 𝑐𝑠

2 = 𝜇/𝜌, where 𝜌  is the mass density 

and 𝜆  and 𝜇 are the Lamé’s constants. 𝜈 stands for viscous damping related parameters. Eq.  

(1) can be obtained from the combination of the following basic mechanical equations (proper to 

model heterogeneous media) 

𝜎𝑖𝑗(𝑋, 𝜔),𝑗 + (𝜌(𝑋)𝜔2 − 𝑖𝜔𝜈(𝑋))𝑢𝑖(𝑋, 𝜔) + 𝑏𝑖(𝑋, 𝜔) = 0 (2a) 

𝜎𝑖𝑗(𝑋, 𝜔) = 𝜆(𝑋)𝛿𝑖𝑗𝜀𝑘𝑘(𝑋, 𝜔) + 2𝜇(𝑋)𝜀𝑖𝑗(𝑋, 𝜔) (2b) 

𝜀𝑖𝑗(𝑋, 𝜔) = (1/2)(𝑢𝑖(𝑋, 𝜔),𝑗 + 𝑢𝑗(𝑋, 𝜔),𝑖) (2c) 

where 𝜎𝑖𝑗(𝑋, 𝜔) and 𝜀𝑖𝑗(𝑋, 𝜔) are, respectively, stress and strain tensor components, and 𝛿𝑖𝑗 is 

the Kronecker delta (𝛿𝑖𝑗  =  1, for 𝑖 = 𝑗 and 𝛿𝑖𝑗  =  0, for 𝑖𝑗) . Eq. (2(a)) is the momentum 

equilibrium equation; Eq. (2(b)) represents the constitutive law of the linear elastic model and Eq. 

(2(c)) stands for kinematical relations. The boundary conditions of the elastodynamic problem are 

given by 

𝑢𝑖(𝑋, 𝜔) = �̅�𝑖(𝑋, 𝜔) for 𝑋 ∈ Γ1 (3a) 

𝜏𝑖(𝑋, 𝜔) = 𝜎𝑖𝑗(𝑋, 𝜔)𝑛𝑗(𝑋) = �̅�𝑖(𝑋, 𝜔) for 𝑋 ∈ Γ2 (3b) 

where the prescribed values are indicated by over bars, 𝜏𝑖(𝑋, 𝜔) denotes the traction vector along 

the boundary and 𝑛𝑗(𝑋) stands for the components of the unit outward normal vector.  

 

 

3. Boundary element modeling 

 
The BEM integral equation related to the elastodynamic model is given by 

𝑐𝑖𝑗(𝜉)𝑢𝑗(𝜉, 𝜔) = ∫ 𝑢𝑖𝑗
∗ (𝑋; 𝜉, 𝜔)𝜏𝑗(𝑋, 𝜔) 𝑑𝛤

𝛤

− ∫ 𝜏𝑖𝑗
∗ (𝑋; 𝜉, 𝜔) 𝑢𝑗(𝑋) 𝑑𝛤 +

𝛤

𝜍𝑖(𝑋; 𝜉, 𝜔) 

(4) 
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where 𝑐𝑖𝑗(𝜉) depends on geometric aspects, 𝜍𝑖(𝑋; 𝜉, 𝜔) stands for possible domain integral 

contributions (such as body sources) and the terms 𝑢𝑖𝑗
∗ (𝑋; 𝜉, 𝜔) and 𝜏𝑖𝑗

∗ (𝑋; 𝜉, 𝜔) represent the 

fundamental displacement and traction, respectively (X is the field point and ξ is the source point). 

For a two-dimensional approach, the fundamental solutions can be found at Dominguez (1993).  

By introducing spatial approximations for the variables of the model into the integral Eq. (4), 

the following system of equations can be obtained, once proper numerical treatment is considered 

(Dominguez 1993) 

𝑪𝑼(𝜔) = 𝑮(𝜔)𝑻(𝜔) − 𝑯(𝜔)𝑼(𝜔) + 𝑺(𝜔)                    (5) 

where 𝑪, 𝑮  and 𝑯  are influence matrices, 𝑺  is a vector related to domain integrals and 𝑼 

and 𝑻 are displacement and traction vectors, respectively, at frequency 𝜔. After considering the 

boundary conditions of the problem (translating all the known variables to the right-hand-side of 

Eq. (5), and the unknown fields to the left-hand-side), the BEM responses for the elastic model can 

be computed for the given frequency 𝜔. 

 

 
4. Finite element modelling 

 
The integral weak-form of the governing equations at section 2 can be written as 

−𝜔2 ∫ 𝜌(𝑋)𝑢𝑖(𝑋, 𝜔)𝑤𝑖𝑘(𝑋)𝑑𝛺

𝛺

+ 𝑖𝜔 ∫ 𝜈(𝑋)𝑢𝑖(𝑋, 𝜔)𝑤𝑖𝑘(𝑋)𝑑𝛺

𝛺

+
 

+ ∫ 𝜎𝑖𝑗(𝑋, 𝜔)𝑤𝑖𝑘(𝑋),𝑗𝑑𝛺

𝛺

+ ∫ 𝑏𝑖(𝑋, 𝜔)𝑤𝑖𝑘(𝑋)𝑑𝛺

𝛺

− ∫ 𝜏𝑖(𝑋, 𝜔)𝑤𝑖𝑘(𝑋)𝑑𝛤 = 0

𝛤2

 

(6) 

where 𝑤𝑖𝑘(𝑋) stands for a weight function, which is assumed to have null values in the essential 

boundary (i.e., 𝑤𝑖𝑘(𝑋) = 0 for 𝑋 𝜖 𝛤1).  

By introducing spatial approximations for the variables of the model into the integral Eq. (6), 

and by adopting these approximations to define the specified weight functions (Galerkin Method), 

the following system of equations can be obtained, once proper numerical treatment is considered 

(Bathe 1996, Hughes 2000) 

−𝜔2𝑴𝑼(𝑤) + 𝑖𝜔𝑪𝑼(𝜔) + 𝑲𝑼(𝜔) = 𝑭(𝜔) (7) 

where 𝑴, 𝑪 and 𝑲 stand for the mass, damping and stiffness matrix of the model, respectively, 

and 𝑼 and 𝑭 stand for the nodal displacement and force vector, respectively. Matrices 𝑴, 𝑪 

and 𝑲 are computed taking into account the first, second and third terms in Eq. (6), respectively, 

whereas vector 𝑭 is computed taking into account the last two terms in the l.h.s. of Eq. (6) (for 

the stiffness matrix computation, Eqs. (2(b)) and (2(c)) are employed to relate the stress tensor 

with the displacement vector). After considering the boundary conditions of the problem, the FEM 

responses for the elastodynamic model can be computed for the given frequency 𝜔, taking into 

account Eq. (7). 
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5. Coupling procedures 

 
In order to enable the coupling between the BEM and the FEM sub-domains of the model, an 

iterative procedure is employed here, which performs a successive update of the relevant variables 

at the common interfaces. The proposed approach is based on the imposition of prescribed 

displacement at the BEM sub-domain and of prescribed nodal forces at the FEM sub-domain. 

Since the two sub-domains are analysed separately, the relevant systems of equations are formed 

independently, before the iterative process starts, and are kept constant for each frequency along 

the iterative process. The separate treatment of the two sub-domains allows independent 

discretizations to be used on both parts, without any special requirement of matching nodes along 

the common interfaces. Thus, the coupling algorithm can be presented for a generic case, in which 

the interface nodes may not match, allowing exploiting this benefit of the iterative coupling 

formulation. 

To ensure and/or to speed up convergence, a relaxation parameter λ is introduced in the 

iterative coupling algorithm. The effectiveness of the iterative process is strongly related to the 

selection of this relaxation parameter, since an inappropriate selection for λ can significantly 

increase the number of iterations in the analysis or, even worse, make convergence unfeasible. At 

the end of the section, an optimal relaxation parameter is calculated, taking into account the 

coupled BEM-FEM frequency-domain formulation. 

 
5.1 Iterative coupling procedures 

 
Initially, in the 𝑘𝑡ℎ iterative step of the FEM-BEM coupling, the FEM sub-domain is analysed 

and the structure displacements at the common interfaces 𝑼𝑓 𝐼
(𝑘)

(𝜔) (subscript 𝐼 indicates the 

common interface, whereas f and b indicates finite and boundary element sub-domains, 

respectively) are computed, as described in section 4. In this case, 𝑼𝑓 𝐼
(𝑘)

(𝜔) is evaluated taking 

into account prescribed nodal forces at the common interfaces 𝑭𝐼
(𝑘)

𝑓 , which are provided from the 

previous iterative step (in the first iterative step, null prescribed nodal forces are considered). Once 

𝑼𝑓 𝐼
(𝑘)

(𝜔) is computed, it is applied to evaluate the essential boundary conditions that are 

prescribed at the common interfaces of the BEM sub-domains. More precisely, 𝑼𝑓 𝐼
(𝑘)

(𝜔) is used 

to compute BEM displacements, as indicated below 

𝑼𝑏 𝐼
(𝑘+𝜆)(𝜔) = ∫ 𝜹𝑇(𝑋 − 𝑋𝑏

Γ𝐼

) 𝑵(𝑋)𝑑Γ 𝑼𝑓 𝐼
(𝑘)

(𝜔)𝑓  

(8)
 

where 𝜹 stands for a matrix representation of the Dirac's Delta function, employed here just to 

properly indicate the computation of the variables at the BEM nodes 𝑋𝑏 , and 𝑵(𝑋) stands for 

the BEM or FEM interpolation functions, according to the subscript 𝑏 or 𝑓, respectively. 

To better describe the proposed FEM-BEM coupling methodology, Fig. 1 illustrates its 

application for the case of constant boundary elements and linear triangular finite elements.  

As previously discussed, in this work, relaxation parameters are considered in order to ensure 

and/or to speed up the convergence of the iterative process. Thus, the displacements 𝑼𝑏 𝐼
(𝑘+𝜆)

 that 

are calculated by Eq. (8) are actualized as follow 
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Fig. 1 Detail of a portion of the FEM-BEM interface when linear triangular finite elements and constant 

boundary are used. In the figure, 𝑗 − 1, 𝑗 and 𝑗 + 1 are FEM interface nodes, while 𝑖 and 𝑖 + 1 

are BEM nodes. Displacements at BEM node 𝑖  can be computed by interpolation of FEM 

displacements at nodes 𝑗 − 1 and 𝑗  (Eq. (8)); FEM nodal force in j can be calculated by 

integration of the traction along boundaries Γ𝑗−1,𝑗 and Γ𝑗,𝑗+1, using Eq. (10) and considering FEM 

linear and BEM piecewise constant shape functions along these boundaries 
 

 

 

𝑼𝑏 𝐼
(𝑘+1)

(𝜔) = (𝜆) 𝑼𝑏 𝐼
(𝑘+𝜆)

(𝜔) + (1 − 𝜆) 𝑼𝑏 𝐼
(𝑘)

(𝜔)  (9) 

where λ stands for the relaxation parameter. 

Once the BEM displacements at the common interfaces are computed, the BEM sub-domains 

can be analyzed, as described in section 3. As a consequence, the BEM tractions at the common 

interfaces are evaluated 𝑻𝐼
(𝑘+1)

𝑏 , allowing the computation of the natural boundary conditions 

that are prescribed at the FEM sub-domains at the next iterative step. This is carried out as 

indicated below 

𝑭𝐼
(𝑘+1)

𝑓 (𝜔) = ∫ 𝑵𝑓
𝑇(𝑋) 𝑵𝑏 (𝑋)𝑑Γ 𝑻𝐼

(𝑘+1)(𝜔)𝑏

Γ𝐼

 
(10) 

Once 𝑭𝐼
(𝑘+1)

𝑓 (𝜔) is computed, the algorithm goes on to the next iterative step, repeating all 

the above described procedures, until convergence is achieved.  

As it is illustrated in section 6, a proper selection for λ at each iterative step is extremely 

important for the effectiveness of the iterative coupling procedure. In order to obtain an easy to 

implement, efficient and effective expression for the relaxation parameter computation, in the next 

sub-section optimal λ values are deduced.   

 
5.2 Optimal relaxation parameter  
 

In order to evaluate an optimal relaxation parameter, the following square error functional is 

minimized here 

BEM 
model

FEM 
model

Common interface

i

i+1

j

j-1

j+1
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𝑓(𝜆) = ‖ 𝑼𝑏 𝐼
(𝑘+1)

(𝜆) − 𝑼𝑏 𝐼
(𝑘)

(𝜆)‖
2
                       (11) 

where 𝑼𝐼𝑏  stands for the BEM prescribed values at the common interfaces. 

Taking into account the relaxation of the prescribed values for the (k+1) and (k) iterations, Eqs. 

(12(a)) and (12(b)) may be written, based on the definition in Eq. (9) 

𝑼𝑏 𝐼
(𝑘+1)

= (𝜆) 𝑼𝑏 𝐼
(𝑘+𝜆)

+ (1 − 𝜆) 𝑼𝑏 𝐼
(𝑘)

                     (12a) 

𝑼𝑏 𝐼
(𝑘)

= (𝜆) 𝑼𝑏 𝐼
(𝑘+𝜆−1)

+ (1 − 𝜆) 𝑼𝑏 𝐼
(𝑘−1)

                    (12b) 

Substituting Eqs. (12) into Eq. (11) yields 

𝑓(𝜆) = ||(𝜆)𝑾(𝑘+𝜆) + (1 − 𝜆) 𝑾(𝑘)||
2

=                     (13) 

= (𝜆2) ||𝑾(𝑘+𝜆)||
2
+ 2𝜆(1 − 𝜆)(𝑾(𝑘+𝜆),𝑾(𝑘)) + (1 − 𝜆) 2 ||𝑾(𝑘)||

2
 

where the inner product definition is employed (e.g.,(𝑾,𝑾) = ‖𝑾‖2) and new variables, as 

defined in Eq. (14), are considered. 

𝑾(𝑘+𝜆) = 𝑼𝑏 𝐼
(𝑘+𝜆)

− 𝑼𝑏 𝐼
(𝑘+𝜆−1)

 (14) 

To find the optimal 𝜆 that minimizes the functional 𝑓(𝜆), Eq. (13) is differentiated with 

respect to 𝜆 and the result is set to zero, as described below 

𝜆 ‖𝑾(𝑘+𝜆)‖
2
+ (1 − 2𝜆) (𝑾(𝑘+𝜆) ,𝑾(𝑘)) + (𝜆 − 1) ‖𝑾(𝑘)‖

2
= 0 (15) 

Re-arranging the terms in Eq. (15), yields 

𝜆 =
(𝑾(𝑘) ,𝑾(𝑘) − 𝑾(𝑘+𝜆))

‖𝑾(𝑘) − 𝑾(𝑘+𝜆)‖
2  

 

(16) 

which is an easy to implement expression that provides an optimal value for the relaxation 

parameter 𝜆, at each iterative step. This expression requires a low computational cost, when 

compared to other alternatives that can be found in the literature (see, for instance, Elleithy et al. 

2001). 

Additionally, one should keep in mind that the computed relaxation parameter is a complex 

number, since the problem is formulated in the frequency domain. This complex number 

computation could be ranged (e.g., imposing |𝜆| ≤ 1), but the authors have observed that faster 

convergence is usually achieved in the iterative process if a non-restricted relaxation parameter 

selection, provided by Eq. (16), is considered. Moreover, although the authors found that the 

iterative process is relatively insensitive to the value of the relaxation parameter used for the first 

step, in all the cases discussed here, a real value of 𝜆 = 0.5 is considered. 

 
 

6. Numerical analysis 
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In order to illustrate the performance and potentialities of the discussed techniques, two 

application examples are considered here, corresponding to a circular ring-shaped structure 

involved by an infinite soil domain. Different material properties, as well as prescribed 

load/displacement configurations, are considered in the analyses. 

 
6.1 Ring-shaped structure inside an infinite elastic domain  

 
Consider a circular homogeneous ring-shaped elastic inclusion, inside a homogeneous and 

infinite elastic environment (see Fig. 2(a)). The external environment has a density of 7,85 ×
103 kg/m3, Young's modulus of 20,58 × 1010 N/m2 and Poisson's ratio of 0.2 (no damping is 

considered). This elastic material allows dilatational and shear waves to travel at 5397,17 m/s 

and 3305,08 m/s, respectively. The circular inclusion has an external radius of 3.0 m and an 

internal radius of 2.0 m and is made of the same elastic material of the external domain.  
The external environment is discretized by boundary elements distributed uniformly along the 

common interface (straight boundary elements with constant interpolation functions are adopted); 

the ring structure is modelled by using linear triangular finite elements. Fundamental harmonic 

displacements are prescribed at the internal cavity of the ring structure, which are acquired by 

considering a horizontal Dirac’s delta force acting at the centre of the cavity. Thus, the analytical 

solution for the problem is known and it is provided by the model's fundamental solutions. 

First, the external environment is modelled using 40 boundary elements, while a total of 210 

elements (40 nodes at the interface) are considered at the finite element mesh. The corresponding 

FEM and BEM discretizations are illustrated in Figs. 2(b) and 2(c), respectively. 

Fig. 3 illustrates the displacements computed at point A (see Fig. 2(a)), taking into account the 

proposed iterative coupling procedure, considering a frequency range from 100 to 5000 Hz. 

Analytical answers and results computed taking into account a standard FEM-BEM direct 

coupling methodology are also depicted in Fig. 3, for comparison. As one can observe, the results 

provided by these different approaches are in good agreement. It is important to highlight that the 

coupled FEM-BEM results get closer to the analytical answers as the discretization of the model is 

refined.  

 

 

 
  

(a) Sketch of the model (b) FEM discretization (c) BEM discretization 

Fig. 2 Model’s sketch and discretization 

 

 

270



 

 

 

 

 

 

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure 

 

  
(a) Real part (b) Imaginary part 

Fig. 3 Vertical displacements at point A 

 

 

 
Table 1 Discretizations for the BEM and FEM sub-domains 

BEM 

straight constant elements 

FEM 

triangular linear elements 

Mesh 1: 20 elements Mesh 1: 162 elements (20 elements at the interface) 

Mesh 2: 40 elements Mesh 2: 210 elements (40 elements at the interface) 

Mesh 3: 80 elements Mesh 3: 726 elements (80 elements at the interface) 

Mesh 4: 160 elements Mesh 4: 3436 elements (160 elements at the interface) 

 

 

As a matter of fact, the convergence of the proposed technique is analyzed next, taking into 

account independent discretizations (and, as a consequence, no matching nodes at the common 

interface) for the FEM and the BEM. In order to do so, 4 discretizations for the BEM sub-domain 

and 4 discretizations for the FEM sub-domain are focused, as described in Table 1 (as one may 

observe, meshes 2 are those depicted in Fig. 2). These different discretizations are combined 

among each other and the errors that arise (taking into account the analytical answer of the model) 

are depicted in Fig. 4. Three combinations are considered here, the first one considers the FEM 

mesh 4 (i.e., 160 nodes on the FEM common interface) combined with all the focused BEM 

meshes. This combination is referred here as "FEM 160 / BEM". The second combination 

considers the BEM mesh 4 (i.e., 160 nodes on the BEM common interface) combined with all the 

focused FEM meshes. This combination is referred here as "BEM 160 / FEM". Finally, standard 

node-to-node combinations (i.e., considering matching geometrical nodes at the common interface) 

of the BEM and FEM meshes are also considered, and this combination is referred here as "node / 

node". 
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The relative errors depicted in Fig. 4 are computed as follows  

 

 = √
  ∑  (|    

𝑖 |) − (|    
𝑖 |) 2  

𝑖 1

∑ (|    
𝑖 |)

2  
𝑖 1

 

(17) 

where   
𝑖  stands for the computed numerical displacement at point A and frequency 𝑖,   

𝑖  

stands for the analytical answer at the same point and frequency, and nf is the total number of 

frequencies considered in the analysis. 

As one can observe in Fig. 4(a), convergence is achieved, even considering non-matching 

nodes at the common interface. As it can be further observed in Fig. 4a, the "BEM 160 / FEM" and 

the "node / node" curves are very close, indicating that, in this case, a small amount of boundary 

elements are sufficient to properly discretize the model. On the other hand, better results are 

obtained considering the "FEM 160 / BEM" combination, which was expected, since refined FEM 

discretizations can better represent the prescribed boundary conditions of the model, providing 

more accurate analyses.   

In Fig. 4(b), the computed errors are plotted against the CPU times of the analyses. As one can 

observe, considering matching nodes at the common interface, the iterative coupling procedure is 

usually more efficient than the standard direct coupling procedure (i.e., for a given CPU time of 

analysis, more accurate results can be obtained by the iterative procedure; or, for a given accuracy 

level, faster analyses can be provided by the iterative procedure). Moreover, as described in Fig. 

4(a), once proper discretizations are considered for each sub-domain of the model, even more 

efficient analyses may be achieved, highlighting the importance of a coupling procedure that 

allows flexible and independent discretizations of the involved sub-domains, taking into account 

non-matching nodes at the common interfaces.  

In order to further analyze the performance of the iterative coupling algorithm, the evolution of 

the optimal relaxation parameter and the convergence of the iterative process are briefly illustrated 

in Fig. 5. In Fig. 5(a), the total amounts of iterative steps necessary for convergence are depicted, 

for each frequency, considering the spatial discretizations illustrated in Fig. 2. 

 

 

  
(a) Convergence analysis (error x discretization) (b) Efficiency analysis (error x CPU time) 

Fig. 4 Error analysis 
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(a) Convergence of the iterative procedure (b) Evolution of the optimal relaxation parameter 

Fig. 5 Convergence and optimal relaxation parameter evolution 

 

 

For comparison, results are also depicted considering a constant relaxation parameter value of 

0.5. As one can observe, for higher frequencies (above 2500 Hz), convergence is not achieved if λ 

= 0.5 is adopted, highlighting the importance of Eq (16) for the effectiveness of the iterative 

coupling analysis. Moreover, for a constant value λ = 1.0, convergence is never achieved 

considering the entire adopted frequency range, further illustrating the importance of relaxation 

parameters in the iterative coupling technique. In Fig. 5(b), the evolution of the optimally 

computed relaxation parameters (Eq. (16)) are illustrated, taking into account 𝜔 = 5000 Hz. As 

one can observe, its evolution is quite complex since it is based on residuals computed at 

consecutive iterative steps. 

 

6.2 Concrete tunnel surrounded by soil  
 

Consider, once again, a circular homogeneous ring-shaped elastic structure, inside a 

homogeneous and infinite soil environment. The external environment is analysed considering two 

types of materials. First, rock is considered (rigid soil), with density of 1900 kg/m3, Lamé 

constant μ =  2.5 × 1010 N/m2 and Poisson's ratio of 0.35 (no damping). In the sequence, clay 

is considered (soft soil), with density of 1300 kg/m3, Lamé constant μ =  1.85 × 105 N/m2 

and Poisson's ratio of 0.35 (no damping). The first material allows dilatational and shear waves 

to travel at 7550.99 m/s and 3627.38 m/s, respectively; while the second material allows 

velocities of 24.83 𝑚/𝑠 (dilatational) and 11.93 𝑚/𝑠 (shear). The tunnel structure is made of 

concrete and has an external radius of 3.0 m and an internal radius of 2.0 m. It has a density of 

2500 kg/m3, μ =  1.0417 × 1010 N/m2 and Poisson's ratio of 0.2 (no damping). The structure 

is loaded as indicated in Fig. 6(a), i.e., the load is applied at the bottom of the concrete ring 

internal cavity, with constant amplitude of 850 kN/m. The corresponding FEM and BEM 

discretizations are illustrated in Figs. 2(b) and 2(c), respectively. In Figs. 6(b) and 6(c), the 

computed deformation of the tunnel (rock external environment) is illustrated, considering 

𝜔 = 500 Hz. 

 

 

273



 

 

 

 

 

 

Delfim Soares Jr., Kleber A. Gonçalves and José Claudio de Faria Telles 

 

 
  

(a) Sketch of the model (b) real part (c) imaginary part 

Fig. 6 Model’s sketch and scaled deformation of the tunnel for ω= 500Hz 

 

 

Fig. 7 illustrates the displacements computed at point A (see Fig. 6(a)), taking into account the 

proposed iterative and a standard direct FEM-BEM coupling procedure, considering a frequency 

range from 10 to 500 Hz. As one can observe, the results provided by these different approaches 

are once again in good agreement, indicating that the iterative solution is converging to the right 

solution.  

 

 

  
(a) Real part (rigid soil) (b) Imaginary part (rigid soil) 

  
(c) Real part (soft soil) (d) Imaginary part (soft soil) 

Fig. 7 Vertical displacements at point A 
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(a) Convergence of the iterative procedure 

(rigid soil) 
(b) Evolution of the optimal relaxation parameter 

(rigid soil) 

  

(c) Convergence of the iterative procedure 

(soft soil) 
(d) Evolution of the optimal relaxation parameter 

(soft soil) 

Fig. 8 Convergence and optimal relaxation parameter evolution 
 

 

In Figs. 8(a) and 8(c), the total amounts of iterative steps necessary for convergence are 

depicted, taking into account the selected frequency range. As one can note, for all tested 

frequencies, convergence occurred with a relatively small amount of iterations, with no more than 

25 iterations being necessary at any of the tested frequencies. It is important to highlight that, for 

the present application, for λ = 0.5 and λ = 1.0, convergence is never achieved considering the 

entire adopted frequency range, further illustrating the importance of optimal relaxation 

parameters in the iterative coupling technique. In Fig. 8b and 8d, the evolution of the optimally 

computed relaxation parameters (Eq. (16)) are illustrated for the rigid and soft soil, respectively, 

taking into account 𝜔 = 430 Hz. 
 

 

7. Conclusions 

 
A FEM-BEM iterative coupling algorithm was discussed here to analyze elastodynamic models, 

taking into account frequency domain formulations. In order to deal with this ill-posed problem, 

optimal relaxation parameters were introduced into the iterative coupling analyses, enabling 
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convergence at a relative low number of iterative steps. An efficient and easy to implement 

expression to compute the optimal relaxation parameters was discussed and tested, providing an 

effective and robust iterative coupling procedure.  

The use of iterative coupling approaches enables the separated analysis of different 

sub-domains, leading to better conditioned, smaller and easier to deal with systems of equations, 

as well as independent definitions of nodal points along distinct sub-domains, allowing 

non-matching nodes on common interfaces to be easily considered. In section 6 several results 

were presented, illustrating the versatility and effectiveness of the proposed procedure.  

As a matter of fact, the present methodology represents an important step forward in the 

analyses of wave propagation in frequency domain problems considering iterative coupling 

procedures, which are well-known ill-posed problems, specially taking into account sub-domains 

governed by different physical properties and discretized by different numerical techniques. 
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