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Abstract.  This paper presents a simple procedure to obtain a substitute, homogenized mechanical response 
of single layer graphene sheet. The procedure is based on the judicious combination of molecular mechanics 
simulation results and homogenization method. Moreover, a series of virtual experiments are performed on 
the representative graphene lattice. Following these results, the constitutive model development is based on 
the well-established continuum mechanics framework, that is, the non-linear membrane theory which 
includes the hyperelastic model in terms of principal stretches. A proof-of-concept and performance is 
shown on a simple model problem where the hyperelastic strain energy density function is chosen in 
polynomial form. 
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1. Introduction 
 

Nanoscale systems and processes based on graphene Novoselov et al. (2005), Singh et al. 

(2011) are becoming more viable for engineering applications, however, our ability to model their 

performance remains limited. The main challenge is that parts of graphene-based devices modelled 

with discreet models (such as molecular mechanics (MM) and molecular dynamics (MD)) 

typically contain extremely large number of particles, even though the actual physical dimension 

may be quite small. For instance, a simple square shaped Single Layer Graphene Sheet (SLGS) 

with the side length of approximately 500 nm has already nearly one million of carbon atoms. 

Following explicitly the trajectory for large number of degrees of freedom easily becomes 

intractable. Thus we reach for a substitute, continuum model which models the average 

mechanical behaviour of atomic system. 

Averaged continuum properties of graphene in the context of infinitesimal deformation is the 

subject of research for nearly 10 past years (e.g., see Caillerie et al. 2006, Reddy et al. 2006, 

Huang et al. 2006, Zhao et al. 2009, Georgantzinos et al. 2010). However, there is a large 

discrepancy in the results obtained by means of the different simulation methods and experimental 
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studies (e.g. see Reddy et al. 2006, Huang et al. 2006). We reported also in Marenić et al. (2013) 

an overview of the mechanisms causing the result scattering which can be summarized as: 

formulation differences (which concerns MM, MD, ab initio methods, continuum mechanics); 

choice of interatomic potential driving the atomic system (Tersoff-Brenner Tersoff 1986, Brenner 

1990) usually, also Morse Morse (1929), AMBER and second generation REBO Brenner et al. 

2002); uncertainty of the thickness (yet known as Yakobson's paradox) Huang et al. (2006); and 

also size effect, relaxation (minimisation of the energy due to coordination), chirality, and edge 

passivation Lu et al. (2011). In Marenić et al. (2013), we also pointed out the influence of the 

boundary conditions on the (linear-elastic) stiffness of SLGS, which is related to the homogenized 

stiffness bounds as introduced in Huet (1990) and latter discussed in Markovic and 

Ibrahimbegovic (2004). 

We tend here to give a combined MM and continuum approach for the study of the in plane 

mechanical behaviour of SLGS under large deformations. In other words we present equivalent 

continuum modelling of large deformations of graphene, which goes beyond what linear theory 

can handle. We note here that continuum models of nano-structures are extremely simplified, 

however they bring insight as well as quantitative information on the relevant physical phenomena. 

Thus, these models seam optimal for the current and potential future applications of graphene 

materials, such as, e.g., reinforcement agents to strengthen composites or structural parts. Recently, 

graphene has attracted both academic and industrial interest in graphene-based polymer 

nanocomposites because it can produce a dramatic improvement in properties at very low filler 

content. Thus it can be used either in graphene-based nano-electro-mechanical systems (NEMS) 

devices Geim and Novoselov (2007), or graphene-conducting polymer nanocomposites (see Hu et 

al. 2014, Stankovich et al. 2006, Gmez et al. 2011). Micro-mechanical models are conveniently 

used to predict macroscopic properties of conventional reinforced polymer composites, which 

behave as heterogeneous material (Mori and Tanaka 1973) on the scale somewhat higher than the 

nano length scale. However, when the multi-scale model has a goal to predict properties of 

nano-reinforced composites, a detailed knowledge of the response on the scale of the 

nano-structure is required (see an example of the multiscale approach for the nano-clay reinforced 

polymer Bedoui and Cauvin 2012, Gelineau et al. 2015). Similarly for the graphene-based 

nanocomposites, and mentioned application, the mechanical response of graphene under different 

loading programs, boundary conditions and large strain regime is crucial, and should still be better 

understood. Experimental investigation (see e.g. Lee et al. 2008) and first-principles calculations 

show that graphene undergo very large deformations, with highly nonlinear behavior and still 

remain elastic, with stable bonds and intact bond topology. This fact allows us to adapt and use a 

finite strain elastic model for the large range of phenomena and motivates us to benefit from 

somewhat simplified nonlinear membrane theory. The main difficulty in constructing the solutions 

for the problems of the deformable body subjected to large deformations concerns the choice of 

the suitable formulation like Lagrangian, Eulerian, updated Lagrangian, etc. Choosing a particular 

formulation implies the corresponding choice of the reference frame and the properly invariant 

measure of large strain Ibrahimbegovic (2009), Wriggers (2008), Belytschko et al. (2000). There 

are generally two ways of dealing with this problem. First considers the theoretical development 

placed in the framework of differential manifolds Abraham and Marsden (1987) which enables the 

switch between configurations by means of the metric tensor. However, the conceptual clarity of 

the theoretical formulation of the finite deformation elasticity set on a differential manifold does 

not imply simplicity with respect to numerical implementation, mainly due to locking. In Arroyo 

and Belytschko (2002) a general methodology to develop hyper-elastic membrane models for 
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single-atomic-layered films is presented with an extension of the Cauchy-Born (CB) rule Ericksen 

(1984) Zanzotto (1996), Ericksen (2008) based on the exponential map. The exponential map is 

added in the formulation as an extension of CB rule to account for the curvature of the lattice 

vectors. Thus, they are using curvilinear coordinates and give general formulation capable to treat 

even buckling problems of carbon nano tubes. In this paper we are performing virtual experiments 

(MM simulation) on the representative sample of the graphene lattice and thus we are not making 

any assumption regarding the kinematics of the atoms (CB hypothesis does not have to be 

fulfilled). These virtual experiments are used to fit energy potential. Similar procedure is 

performed in e.g., Reddy et al. 2006, Lu and Huang (2009), Cadelano et al. 2009, Lu et al. 2011, 

where only uniaxial tests are performed giving an elastic potential with respect to nominal strain. 

In Cadelano et al. 2009 continuum elasticity theory and tight-binding atomistic simulations are 

combined to determine the constitutive nonlinear stress-strain relation, and the corresponding 

nonlinear elastic moduli for graphene. We show here biaxial tests and, moreover, we seek to adopt 

the nonlinear membrane theory which includes, as a special case, the hyperelastic model in terms 

of principal stretches. The latter was often used to characterise rubber-like materials, see 

Ibrahimbegovic and Gruttmann (1993) with finite element formulation of elastic membrane shells 

with co-axial energy-conjugate pairs of stress and strain measures. The main advantage of the 

formulation in Ibrahimbegovic and Gruttmann (1993) pertains to the finite element analysis of 

elastic membranes. The problem of the finite deformation of elastic membranes can be solved 

relaying on the Cartesian structure without going to a more general setting of manifolds (note that 

this is not possible for the elastoplastic membranes Ibrahimbegovic 1994). As a first step, we 

present the modelling of the in plane large deformation of SLGS, however the proposed theory can 

be extended to membranes whose reference and current configurations can be arbitrary 

space-curved surfaces. Thus, the development of homogenized constitutive model is based on the 

well-established continuum mechanics framework. The main novelty concerns the specific 

application to graphene with the finite element implementation being straightforward when relying 

upon previous works on large deformation model for rubber-like materials. The series of virtual 

tests can be costly, but needs to be performed only once. Moreover, the developed model is fully 

capable to reproduce the linear elastic behaviour in small strain regime as well as the nonlinear 

that occurs in large strain regime. 

The outline of the paper is as follows. We will address the problem of analysis of finite 

deformation of general, space-curved, elastic membranes in the next section. In the section 2 we 

present the virtual experiments performed on the SLGS and the development of the substitute 

continuum model in terms of principal stretches. In the section 3 we elaborate on the performance 

of the developed model, and give a closing remarks and future research in the section 5. 

 

 

2. Continuum elastic membrane in finite deformations 
 

2.1 Generalities and motivation 
 

We will first briefly revisit continuum model problem in large displacements and solution 

strategy. Let the position of each point be denoted with X and x = 𝝋(𝐗) in reference ( ) and 

current ( ) configuration, respectively, where 𝝋(𝐗)  denotes the motion as a point 

transformation. For each point 𝐗 we define the displacement vector u(X) = x – X. When the 

SLGS is submitted to large deformations the difference between the initial configuration at the 
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beginning of the load program and the deformed configuration, can no longer be ignored as for 

the case of small deformations, characterized by small strain tensor, 𝝐. There is a large variety 

(theoretically infinite) of possible choices for stress and strain tensors available for the continuum 

large strain problem formulation as presented in most of the textbooks covering the subject (see e.g., 

Ibrahimbegovic 2009, Wriggers 2008). For the continuum large strain problem the constitutive 

model formulation depends on the choice of the particular work-conjugate pair. Usually first 

Piola-Kirchhoff stress and deformation gradient (P, F) or second Piola-Kirchhoff stress and 

Green-Lagrange strain (S, E) are chosen to express internal work. We now construct the weak form 

of the continuum boundary value problem in Ω  for the case of large displacements. This 

immediately introduces a solution strategy by weakening the way of satisfying the equilibrium, i.e. 

it is satisfied only in average sense.  Therefore, we assume that Dirichlet boundary conditions 

𝐮 = 𝐮̅ are prescribed on the part Γu of the boundary Γ.  The nanostructure system treated as 

surrogate continuum is subjected to tractions 𝐭 ̅ on the part Γσ of the boundary and to a volume 

forces 𝐛 in 𝛺. We choose a virtual displacement field v as infinitesimal and kinematically 

admissible with respect to Dirichlet boundary conditions, thus each component 𝑣𝑖 takes a zero 

value on the Γu i.e. 𝑉0 ∶=  *𝑣𝑖: Ω ↦  ℝ |,𝑣𝑖-Γ𝑢𝑖
=  0+ . We also suppose that the virtual 

displacement is supperposed on the deformed configuration and parameterized by the coordinates 

in the deformed configuration (Ω𝜑). For the real displacement vector field 𝐮 the components ui 

are defined within 𝑉 ∶=  *𝑢𝑖: Ω ↦  ℝ |,𝑢𝑖-Γ𝑢𝑖
=  𝑢𝑖̅+. The weak form of equilibrium at large 

displacements in material description (Ω) states 

                   (1) 

where Γ is the virtual Green-Lagrange strain given as the directional derivative of the 

Green-Lagrange strain measure. 

The constitutive model formulation depends on the choice of the particular work-conjugate pair, 

however the unique form of the constitutive relation can be written for the hyperelastic material 

model in terms of the strain energy potential, W(·). Energy potential is a unique choice, since all 

possibilities of the stress and strain measures are only different material representations of the same 

work. The generalised approach for establishing the well-posed form of the strain energy is given in 

terms of the polyconvexity conditions. The role of the polyconvexity conditions is to ensure that the 

large strain remains accompanied by large stress. Moreover, the polyconvexity conditions impose 

that the strain energy remains a convex function which can be written as 

                   (2) 

where a1 and a2 are functions representing certain intrinsic measure of deformation and 0 < α < 1. 

Besides the polyconvexity conditions applicable only to hyperelastic materials, there is a number of 

invariance restrictions on the general elastic response, which any constitutive model ought to respect. 

In order to describe the elastic response that satisfies the invariance requirements, the strain energy 

potential is usually expressed as a function of principal invariants 

                              (3) 

where the principal invariants of the right (C = F
T
F) and left (B = FF

T) Cauchy-Green 

deformation tensors are given as 
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             (4) 

 

2.2 Constitutive law in terms of principal stretches for large deformation of graphene 
 

An elegant alternative to (3) is the strain energy potential defined in terms of the principal 

stretches λi, i = 1, 2, 3. These values correspond to the principal values of the stretch tensors, right 

U or left V. This derives from the standard eigenvalue problem which can be written either in 

material (a) or in spatial (b) description 

                 (5) 

Note that the computed principal (eigen) values λi from the Eq. (5) remain the same in both 

descriptions, but the corresponding eigenvectors 𝐧𝑖 and 𝐦𝑖  change. By solving these eigenvalue 

problems, we can obtain spectral decomposition of the deformation gradient, rotation tensor 

                (6) 

and both stretch tensors 

               (7) 

Note that these results hold for the principal vectors that form the ortho-normal principal frames, 

i.e., 𝐧𝑖 ⋅ 𝑰𝐧𝑗 = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗  is the Kronecker delta. We further discuss the spectral 

decomposition of the Cauchy-Green tensors, related to the choice of the class of constitutive 

equations. Considering (6a) and its transpose 

                          (8) 

the spectral decomposition for both Cauchy-Green tensors is given as 

                (9) 

With these results in hand we can easily express the principal invariants from (4) in terms of the 

principal stretches 

        (10) 

Thus, any isotropic hyperelastic response that satisfies material invariance restriction can be 

expressed in terms of strain energy potential as a function of principal stretches.  Thus, starting 

from the strain energy potential written as a function of principle invariants (3), we can express using 

(10) strain energy as a function of principal stretches 
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                      (11) 

For the elastic material behaviour the unit principal stretch corresponds to the case of no 

deformation which is accompanied by the zero value of strain energy 

                        (12) 

Formulating the strain energy potential as in (11) makes it simple to check the polyconvexity 

conditions described above. These conditions enforce that large stresses should accompany large 

values of strains which is written in terms of principal stretches as 

              (13) 

The last result states that polyconvexity conditions require the strain energy convexity with 

respect to each principal stretch. Non-convexity is responsible for many phenomena like the 

development of dislocations and phase changes, however we are not dealing with these issues in 

this work. 

We turn now to 2D case formulation that describes the SLGS sheet. Thus, putting graphene 

sheet in the plane 𝑥1𝑥2, we are neglecting the out of plane stretch 𝜆3, following the usual 

hypothesis for the membrane theory. Since the sheet is made of a single atomic layer and the 

out-of-plane strains and stresses might be difficult to interpret, we restrict the considerations to the 

in-plane 2D continuum mechanics (this assumption is made by majority of authors dealing with 

graphene, see e.g., Volokh, (2012)). Considering the mentioned assumption the strain energy 

density (SED) in (11) becomes 𝑊(𝜆1, 𝜆2). We further present the procedure to calculate second 

Piola-Kirchhoff stress (S) and tangent elasticity (ℂ) tensors from the strain potential written in 

terms of the principal stretches. This computation is still performed in the conventional manner as 

                  (14) 

However, the computation of the stress and tangent elasticity tensors from the material model 

given by 𝑊(𝜆1, 𝜆2) is not performed directly, but rather using a simple chain rule. Thus, an 

important role is played by the auxiliary result pertaining to change of the principal stretch 𝜆𝑖 with 

respect to the change of the deformation. This result can be obtained by applying the Gateaux 

derivative formalism to the corresponding eigenvalue problem leading to 

                             (15) 

With this result in hand, we can calculate the second Piola-Kirchhoff stress tensor from the SED 

potential written in terms of principal stretches 

                         (16) 

Comparing Eqs. (16) and (9(a)) one can notice that the second Piola-Kirchhoff stress tensor is 

coaxial with the right Cauchy-Green tensor. Existence of the coaxial energy-conjugate pair enables 

the solution of the problem of finite deformation membrane relaying on the Cartesian structure. 

The second Piola-Kirchhoff stress tensor can be further decomposed as 
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                            (17) 

where 𝐧i represents the same eigenvectors as in (9(a)), and the term si denotes the principal 

stresses which can be written as 

                             (18) 

Next, we turn to the calculation of the elastic tangent modulus. This is done in the same manner, 

i.e., by performing a next step of directional derivative computation, which gives 

                (19) 

The first and the second terms on the right hand side in (19) correspond to material (ℂ𝑚𝑎𝑡) and 

geometric (ℂ𝑔𝑒𝑜) part of the tangent elasticity tensor, respectively. Using the auxiliary result in 

(15) we obtain the expression for the material part of the tangent elasticity tensor 

                (20) 

Note that the material part of the tangent elasticity tensor is usually given in terms of its reduced 

form 𝐷𝑖𝑗 in principal axes; see Ibrahimbegovic and Gruttmann (1993). The derivation of explicit 

form of the geometric part of the tangent elasticity tensor starts from the spectral decomposition of 

the right Cauchy-Green strain tensor (9) and considers a systematic usage of the auxiliary result in 

(15). Due to brevity we omitted this derivation and we give the final expression of the elastic 

tangent modulus in tensor notation 

(21) 

=  
1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘). where  

The constitutive law in terms of principal stretches for large deformation of membrane (used 

here for the SLGS), namely the expression (18) and (21), are used directly in the finite element 

solution procedure. The details about the 2D elastic membrane finite element can be found in most 

of the books dealing with nonlinear solid mechanics, and will not be discussed herein. For the 

completeness, we summarize the main steps needed in the finite element approximation, which for 

the presented constitutive law in terms of principal stretches boils down simply to the matrix form 

of the results obtained for principal stresses and elasticity, see Appendix A. 

 

 

3. Development of constitutive law from virtual experiments on molecular model of 
graphene 
 

3.1 Molecular model 
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In Section 2, a continuum model problem in large displacements is presented. Likewise, we 

introduce here briefly the molecular model problem. We consider a reference domain Ω𝑎 ∈  ℝ3 

which is occupied by N atoms placed within graphene nanostructure. A major feature of the 

structure of graphene is the hexagon pattern that repeats itself periodically in space. As a result of 

the periodicity, each atom is bonded to three neighbouring atoms. Such structure is mainly due to 

the process of sp2 hybridization during which one s−orbital and two p−orbitals combine to form 

three hybrid sp2−orbitals at 120◦ to each other within a plane Atkins and De Paula (2006), Ruoff et 

al. (2003). This covalent bond, often referred to as the σ−bond, is a strong chemical bond and 

plays an important role in the impressive mechanical properties of graphene, while the 

out-of-plane bond (the π−bond) that is relatively weak contributes to the interaction between the 

layers of graphene. 

Let 𝐗𝑖  and 𝐱𝑖  denote, respectively, the position vectors in the reference and the current 

configurations of atom 𝑖, where 𝑖 = 1, … , 𝑁. The corresponding displacement vector of atom 𝑖 is 

given by 𝐝𝑖 = 𝐱𝑖 − 𝐗𝑖. The boundary conditions are imposed atom-wise in a quasi-static manner, 

such that either the displacement 𝐝𝑖̅ or the external point force 𝐟𝑖 is given. The total energy (Etot) 

stored in the atomic structure is given by 

                    (22) 

where U denotes the energy stored in the atomic bonds, as presented in sequel, and the second 

term on the right-hand side represents the external energy. The state of equilibrium of the atomistic 

system requires the variation of the total energy to be equal to zero 

                     (23) 

where 𝛿𝐱𝑖 represents the kinematically admissible virtual motion. Linearizing (23) and writing 

the result in matrix notation leads to 

                          (24) 

where Δ𝐝(𝑘) is the displacement increment corresponding to the k-th load increment, whereas 

𝐊(𝑘) and 𝐅(𝑘) are global stiffness and the residual vector, respectively. The latter can explicitly 

be defined as 

                      (25) 

Unlike conventional FE method for continuum mechanics, we derive and assemble the stiffness 

and residual matrices by looping over all atoms. Due to the non-linear nature of the interatomic 

potentials and geometrically nonlinear kinematics, an incremental-iterative solver is used. For each 

load increment, several Newton iterations are performed, until convergence criteria are met. After 

each iteration (k) the atomic positions are updated as 

                          (26) 
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Fig. 1 Scheme of the lattice sample with symmetry BCs used for biaxial tensile tests a). The envelope of the 

sample is composed of lines L1 to L4 which coincides with boundary atoms. The overlay plot of the 

undeformed (red) and deformed (grey) shapes of the small graphene lattice sample for the case 

𝜆̅1 = 1, 𝜆̅2 = 1.15 b). A zoom on the bulk atom 𝑖 is shown with the bond length and angle given in the 

undeformed (r0, θ0) and deformed (rij, θikl) configurations 
 

 

The initial iteration k = 0 starts at the initial configuration of the atomic system, with the 

position vector, 𝐱𝑖
(0) = 𝐗𝑖. 

Looking at the Eq. (25) it is obvious that the heart of molecular model lays in the internal 

energy governed by the interatomic potential. For the molecular simulation of a graphene sheet, a 

Morse potential Morse (1929) is used, more precisely we use its modified version following 

Belytschko et al. (2002). The modified Morse potential is a sum of pair and angular parts given as 

                        (27) 

The first term is a function of the chosen atom distance 𝑟 to its first neighbour, whereas the 

second depends upon angle 𝜃 between particular atom bonds (see Fig. 1 (b)) in sequel). For the 

modified Morse potential, the bond energy terms are given as 

                    (28) 

                  (29) 

where the constants of the potential according to Belytschko et al. (2002) are: 𝐷𝑒  =  6.03105 ×
 10−19 Nm, 𝛽 = 2.625 × 1010m−1, kθ = 0.9×10−18 Nm rad−2, ksext = 0.754 rad−4, the initial value 

of the bond length r0 = 1.39 × 10−10 m and the bond angle θ0 = 2π/3 rad. The numerical 

implementation of MM model based on modified Morse potential, i.e., the forming of the residual 

force and tangent stiffness matrices, and the assembly procedure are given in more detail in 

Marenić et al. (2013). A general procedure for carbon structures is shown in Wackerfuss (2009), 

where the molecular model is plugged within the formalism of the finite element method. 
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3.2 Virtual experiments on representative lattice 
 

We show subsequently the biaxial tensile tests performed on the graphene lattice sample using 

the presented molecular model implemented in the inhouse MATLAB code. The scheme of the 

representative lattice element with the symmetry boundary conditions is illustrated in Fig. 1 (a). 

The square envelope representing the boundary of the graphene sheet is composed of lines L1 to L4. 

Atoms which are on the lower and left lines L1 and L3 of the sample are pinned with u2 = 0 and u1 

= 0, respectively. The boundary atoms which belong to the upper and right lines, L1 and L4, have a 

given displacement to produce the stretch 𝜆̅. Overlay plot of the undeformed and deformed lattice 

sample is shown in Fig. 1 (b) for the case where 𝜆̅1 = 1 and 𝜆̅2 = 1.15 (deformed shape is given 

with scale factor, and really small lattice sample is shown due to visibility). Geometrical potential 

parameters related to the initial, undeformed geometry of the lattice (r0, θ0) are shown in the zoom 

on the bulk atom 𝑖. Given deformation maps the atom 𝑖 and his neighborhood to deformed 

configuration (𝑟0 → 𝑟𝑖𝑗 , 𝜃0 → 𝜃𝑖𝑘𝑙), as schematically shown on the right of Fig. 1 (b). 

 

3.3 Equivalent continuum 
 

In order to construct equivalent continuum potential 𝑊𝑓𝑖𝑡(𝜆1, 𝜆2)  we determine the 

equilibrium potential energy of atomistic system. Note that the boundary atoms have two 

neighboring atoms instead of three for the bulk ones (on the right side of Fig. 1 (b)) bulk atom i 

together with its neighbors j, k, l is shown). Thus, the equilibrium energy density of the finite size 

lattice sample depends on the ratio of boundary and bulk atoms. The smaller the ratio the smaller 

is the number of the boundary with respect to bulk atoms, and the energy density converges to the 

infinite lattice (where all atoms have full neighborhood). This convergence tendency is visible, e.g., 

on Fig. 10 (b)) in Marenić et al. (2013). Our approach which considers the development of the 

surrogate continuum model based on the virtual test on representative graphene samples works 

well for both really small and/or narrow lattice (e.g., graphene nano-ribbons Xu (2009) for 

nano-electro-mechanical systems) as well as for the larger ones. We compute the equilibrium 

potential energy of atomistic system for the series of loading cases. These loading cases are 

designed to form the uniform grid in the space of 𝜆1, 𝜆2 in the range 

                     (30) 

resulting with the cloud of points 𝑊(𝜆1, 𝜆2), shown as dots in Fig. 2. Note that in the above 

equation the given values of stretch 𝜆̅ ≥ 1, which corresponds only to in-plane tension. The 

compressive stresses even the ones transmitted by the substrate causes out of plane buckling of the 

SLGS, see Zhang and Arroyo (2013), which is not considered in this work. The energy distribution 

for the series of loading cases is further used to perform a least squares, polynomial surface fitting 

(see Fig. 2) with SED potential given as 

                       (31) 

where i and j are the degree in 𝜆1 and in 𝜆2, respectively. The total degree of the polynomial is 

the maximum of i and j.  Note that the total degree of the polynomial cannot exceed the 

maximum of i and j.  Hence if i = j = 5, for instance, the coefficients aij = 0 if i + j > 5. As 

mentioned above for the initial iteration we have 𝐱𝑖
(0) = 𝐗𝑖, that is the 𝑟 = 𝑟0 and 𝜃 = 𝜃0, and 
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considering our choice of the modified Morse potential and Eqs. (28) and (29), the value of SED 

turns to be zero for the unit stretch. No other constraints were introduced in the model fit. 

Using fitted, polynomial potential (31), and following the Eqs. (16) to (18) we can calculate the 

stress components. We present in Fig. 3 surface plots (closed form, polynomials obtained by 

energy fit) of the nonzero stress components. Note that stress components are conveniently written 

in terms of the stress vector, as shown in appendix A. In addition, using spectral decomposition (17 

) one computes directly principal stresses using (18). In our consideration, this further simplifies 

stress vector to two components. Knowing principal stresses and directions, finite element 

implementation further relays to the internal force vector, and tangent elasticity matrix 

computation. Stress vector (in terms of principal stresses) is directly plugged into membrane finite 

element equations, for details see appendix, Eqs. (37) and (38). 

 

 

 

Fig. 2 The surface plot of the strain energy density polynomial surface fit 𝑊𝑓𝑖𝑡(𝜆1, 𝜆2).  The fit is obtained 

by means of series of biaxial tests performed by molecular mechanics simulation (𝑊̂(𝜆1, 𝜆2)) 

represented with circular markers on the grid 0 ≤ 𝜆̅𝑖 ≤ 1.15, i = 1, 2 

 

 

 

Fig. 3 Surface plot of the nonzero stress components vs. principal stretches. 
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Fig. 4 Surface plot of the components of reduced tangent elastic modulus. The values are given in 

GPa. 

 

 

From the plots in Fig. 3 we can note that the maximum stress does not correspond to the maximum 

biaxial stretches, that is, to the case when 𝜆𝑖 =  𝜆̅. This phenomena is related to the given 

hexagonal lattice structure, chosen interatomic potential, as well as the finite deformation regime 

and will be further analyzed and explained in sequel. 

Analogously to the stress, using fitted potential and following (20) we present the surface plots 

of the components of material part of the tangent elasticity tensor using its reduced form Dij, on the 

Fig. 4, with D12 = D21 due to symmetry. 

 

 

4. Analysis and verification of the constitutive model 
 

We seek first to explain the effect illustrated in Fig. 3, related to the fact that the stress is not 

maximum for the maximum biaxial stretch. Thus, we present a variation of the stress component 

S11 with 𝜆1, taking the prestretch in the perpendicular direction (𝜆2) as a parameter, see left plot on 

the Fig. 5. We can observe that for larger deformation (roughly 𝜆1 > 10%), value of the S11 

decreases for higher pre-stretch (𝜆2). We can also note this effect by plotting S11 vs. 𝜆2 with the 
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parameter 𝜆1, as depicted in the right plot in the Figure 5, where we clearly see the decrease of S11 

with evolving stretch in direction 2, for higher pre-stretch in direction 1. Needless to say, this 

effect is fully captured in the developed homogenised, continuum model, i.e., the stress decrease is 

noticeable in terms of the tangent elastic modulus. Namely, the component D12 of the tangent 

elastic modulus (shown on the bottom plot in Fig. 4) which governs the relation between S11 and 

strain in direction 2, becomes negative for large deformation. An analogous effect can be seen for 

the stress component S22, thus these plots are not shown. 

In order to further explain this effect of stress decrease, we turn to the study of the 

nanostructure of graphene. Moreover, we imposed biaxial, so-called half snail loading program 

depicted in Fig. 6 (a) and we trace the corresponding lattice deformation. Given loading program 

considers stretching in the first half of the loading time in direction 2 (up to 𝜆2 =  𝜆2,𝑚𝑎𝑥) while 

holding the lattice sample with 𝜆1 = 1. Second half of the loading program considers holding the 

stretch 𝜆2 =  𝜆2,𝑚𝑎𝑥 while loading in direction 1. Note that the stretches we did in our virtual 

experiments did not go more than about 15% in each principal direction. This value is related to 

the chosen interatomic potential, more precisely to its pair part. Namely, the derivative of the pair 

part (28) with respect to the pair bond separation 𝑟 gives a pair force 𝐹𝑝(𝑟). This function has a 

peak value after which the force diminishes with further bond separation. There are two reasons 

why we are not taking this in our consideration. The first one pertains to the choice of interatomic 

potential which is not suitable for the bond fracture modeling. The second is related to the 

implemented Newton iterative algorithm which is not suitable when the effect similar to material 

softening occurs. During the loading program we follow the deformation in C−C bonds by 

selecting the bulk atom i and his neighbours j and k (see Fig. 6(b))), omitting l due to symmetry. 

We note that the choice of the atom we trace is free, given that it is far enough from the boundary. 

The bond separation (∆r) evolving with the loading (given as pseudo-time) is shown on Fig. 6(c)).  

 

 

 

Fig. 5 The stress-stretch plots showing the component S11 versus: stretch λ1 with parameter λ2 (left plot), and 

stretch λ2 with parameter λ1 (right plot). The parameter is in the range λi = 1,...,𝜆̅, where the 

lower-most stress curve corresponds to the value of the paremeter λi = 1, while the upper-most 

corresponds to λi = 𝜆̅ 
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We observe that for the first half of the load program with stretch in direction 2, both ∆rij and ∆rik 

are increasing. However, in the second part of the load program the bond separation ∆rij passes a 

peak value. This effect is related to the interplay of the pair and angular parts of the used modified 

Morse potential, as well as to the geometric nonlinearity, i.e., the large rotations of the bonds. The 

latter is causing the influence of the angular term of the modified Morse potential (29) to 

overcome the influence of the pair part (given in (28)). Finally, this causes the global response of 

the nanostructure defined in terms of stress-stretch diagram to show the stress decrease in large 

deformation regime which is noticed in the developed continuum model. 

Next, in Fig. 7 we show the cross-sections from the Fig. 4 (similarly like it was done for the 

stresses in Fig. 5). This gives the evolution of the components of reduced tangent elastic modulus. 

Namely, we show D11 versus 𝜆1 with the pre-stretch 𝜆2 as a parameter, and likewise, D22 versus 

𝜆2 with the parameter 𝜆1. The thick lines with markers (in Fig. 7) denote the evolution of Dii 

without pre-stretch. That is, dashed line with circular markers represents the 𝐷11(𝜆1) for 𝜆2 = 1. 

Analogously, full line with square markers shows 𝐷22(𝜆2) for 𝜆1 = 1. Any material description 

of an elastic constitutive law for large deformations should reduce to Hooke’s law for the case of 

small deformation. Thus we proceed with the constitutive model verification using results from the 

literature. We perform this verification by comparison with the limiting case of small deformations 

considered in Marenić et al. (2013). The numerical values of the initial stiffness obtained from the 

fitted continuum model are as follows 

                        (32) 

We note that this corresponds to the results presented in Marenić et al. (2013) considering the 

case E|’V’. Moreover, plotting the evolution of the components of reduced tangent elastic modulus 

with the increasing (corresponding) pre-stretch we end up with a band which is depicted for the 

whole range 𝜆𝑖 = 1 … 𝜆̅ in Fig. 7. We note also that the increase of the pre-stretch causes the 

decrease of stiffness. 

 

 
Fig. 6 Load program showing the given displacements (upper and right edges) with respect to the pseudo 

time (a), and (b) the bulk atom i with its neighbourhood. The given load program causes the lattice 

deformation as presented in (c). Due to symmetry, the bond separation ∆ril is equal as ∆rij, and is thus 

omitted 
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Fig. 7 Evolution of the diagonal components of the reduced tangent elastic modulus with the associated 

stretches. The thick lines with markers denote the evolution of Dii without pre-stretch 

 

 

5. Conclusions 
 

We have shown the continuum formulation of the in plane behaviour of graphene based on the 

hyperelastic potential given in terms of the principal stretches. The developed model is based on 

the well-established continuum mechanics framework, and fully capable to reproduce the linear 

elastic behaviour in small strain regime as well as the stress release caused by intrinsic geometric 

non-linearity of the interatomic bonds that occurs in large strain regime. Moreover, this 

formulation fits perfectly to the finite element implementation of the elastic membranes based on 

the Cartesian structure, i.e., co-axial energy-conjugate pairs of stress and strain. 

The procedure performed here concerns virtual experiments performed on the graphene 

samples. Thus, this approach should work for lattices of other two-dimensional materials like e.g. 

boron nitride Novoselov et al. (2005), Topsakal and Ciraci (2010) which may have more complex 

lattice. The latter yields at the bottom line more complicated deformation mechanism on the lattice 

level and may preclude the Cauchy-Born rule, as a common link between atomistic and continuum 

scales, to be valid. Thus we plan to confront our large strain surrogate continuum model based on 

the numerical homogenization procedure with the Cauchy-Born based approach. In addition, we 

presented here only the modeling of the in plane large deformation of single layer graphene sheet, 

however, the extension to axisymmetric (like the Carbon Nano Tube) or arbitrary curved 

membrane is possible (see e.g. Ibrahimbegovic 1994), and will be concerned in future research. 
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Appendix Finite element implementation 
 

The details about the 2D plane elastic membrane finite element can be found in most of the 

books dealing with nonlinear solid mechanics e.g., Ibrahimbegovic (2009), Wriggers (2008), 

Belytschko et al. (2000) and will not be discussed in detail. We rather illustrate the main steps 

needed in the finite element approximation, i.e., we recast in matrix form the results obtained for 

the constitutive law in terms of principal stretches. First, we define the coordinate representation of 

the principal vectors in the two-dimensional setting under consideration as 

                    (33) 

where the angle α denotes the angle between the first principal direction and axis 𝑥1. Using the 

component form of the (9) the value of α is 

                       (34) 

Next, we choose to order the second Piola-Kirchhoff stress and Green-Lagrange strain tensor 

components in a vector as S → sT = [S11, S22, S12], E → eT = [E11, E22, 2E12], respectively (so that 

their inner product is preserved). The latter enables to recast the stress spectral decomposition from 

Eq. (17) as 

                 (35) 

 

In the above equation the matrix T is created by ordering the tensor product of eigenvectors (33) in 

vector notation 

         (36) 

and putting them as the columns in T (analogously for the 𝐧𝟐 ⊗ 𝐧𝟐). Note that the last result for 

the stress vector(s) can further be directly used for the calculation of the internal force vector of the 

finite element 

                         (37) 

where 𝑎 =  1, . . . , 𝑛node denotes the node, i = 1, 2 the degree of freedom (ndof), index p = ndof(a − 

1) + i, and matrix B stands for the derivatives of the shape functions. 

It is also convenient to write tangent elasticity tensor, given in (19), that connects stress and 

strain through ℂ = 𝜕𝑬/𝜕𝑺 in a matrix form, using the transformation matrix T from (35), and Dij 

from (20) 
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                     (38) 

 

In the above equation auxiliary term gT  = [−sin2α  sin2α  cos2α] is used to express the 

geometric part of the tangent elasticity tensor in more compact form. We note further, that the 

element tangent stiffness matrix 𝑲𝑒 also consists of a material and of a geometric part, and is for 

the 2D plane elastic membrane finite element given as 

                (39) 

where a, b = 1,…, nnode denote the node, i, j = 1, 2 the degree of freedom, and indexes p, and q are 

p = ndof(a − 1) + i and q = ndof(b − 1) + j.  The geometric part of the tangent stiffness appears only 

in large displacement problems, and it depends directly on current stress values through 

         (40) 

where Na represents element shape function. 
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