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Abstract.    The state-based peridynamics is considered a nonlocal method in which the equations of motion 
utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As 
a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way 
as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in 
the state-based peridynamic formulation is presented. The new method is first formulated based on a convex 
kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex 
kernel approximation is further localized near the boundary to meet the condition that recovers the correct 
boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to 
reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are 
provided to demonstrate the effectiveness and accuracy of the proposed approach. 
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1. Introduction 
 

Modelling the material response subjected to environments and loads at multiple time and 
spatial scales is considered important for the next generation of materials modeling. In spite of 
great efforts in attempting to coarse-grain molecular dynamics (MD) or couple it to meso- and 
macro-scale models (Curtin and Miller 2003, Seleson and Gunzburger 2010), challenges (cf. e.g., 
de Pablo and Curtin 2007) remain at closing the gap between the range of validity of classical 
continuum model and the MD model. To bypass this difficulty as well as to overcome enormous 
computing power and length scales limitations in the multi-scale modelling, the developments of 
multi-resolution material models (McVeigh and Liu 2008, Belytschko et al. 2014), combined 
quasi-continuum and micro-continuum models (Parks et al. 2008, Zhang and Gunzburger 2010, 
Ren and Li 2013), weakly coupled multi-scale (Watanabe and Terada 2010) or 
single/mono-material models (Askari et al. 2008) become alternative attractive to the industrial 
community. The peridynamics (Silling 2000) is considered a type of single/mono-material models 
that provides the information about fine-scale kinematics for the multi-scale material failure 
analyses (see (Seleson et al. 2009, Chen and Gunzburger 2011) for a detailed introduction and 
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therein references).             
   Original peridynamic model, the so-called bond-based peridynamics (Silling 2000), was 
introduced to describe the formation of discontinuities. In contrast to the classical local and 
nonlocal theories (Chen et al. 2000, Bazant and Jirasek 2002), the peridynamic equation of motion 
is free of any spatial derivatives of displacement. The bond-based peridynamics assumes that each 
peridynamic bond responds independently of all the others, thus is restricted to a Poisson’s ratio of 
0.25 for isotropic linear elastic solids. To address this lack of generality, the state-based 
peridynamics (Siling et al. 2007) was introduced. The state-based peridynamics is a generalization 
of the bond-based peridynamic framework which allows the response of the material at a given 
point to depend on the collective deformation of all the bonds connected to that point. In other 
words, the force in a bond could depend on the net volume changes at the endpoints. The effect of 
this volume change, relative to the effect of the bond stretch, determines the Poisson’s ratio and 
releases the limitation in the bond-based peridynamic applications. Since the equations of motion 
in peridynamics utilize integral form as opposed to the partial differential equations in the classical 
continuum mechanics, the enforcement of boundary conditions (Zhou and Du 2010) in 
peridynamics cannot follow the standard way as in the classical continuum theory and demands 
special treatments. Representative approaches of the special boundary condition treatments for 
peridynamics include the introduction of ghost particles (Parks et al. 2008), modification of the 
particle volume integration near the boundary (Kilic and Madenci 2010), and its combination with 
the finite element method (Oterkus et al. 2012).           

Recently, a meshfree state-based peridynamic method (Bessa et al. 2013) was introduced to 
provide a link between the peridynamic and meshfree methods. It is concluded in their study that 
the discretization of state-based peridynamics leads directly to an approximation of the derivatives 
that can be obtained from the reproducing kernel particle method (RKPM) (Liu et al. 1995). 
Nevertheless, the conventional meshfree approximations such as the reproducing kernel (RK) 
approximation and the moving least-squared (MLS) approximation (Belytschko et al. 1994) do not 
verify the Kronecker-delta property on the boundary, thus further improvements for the 
enforcement of particle boundary conditions in the state-based peridynamics are needed. Convex 
kernel approximation (non-negative and exactly reproducing affine functions) (Wu and Koishi 
2009, Wu et al. 2011) is a new meshfree approximation utilized to improve the boundary condition 
enforcement as well as solution accuracy in meshfree method. Convex kernel approximations 
possess the Kronecker-delta property on the boundary and avoid any special treatment on the 
essential boundaries. Park et al. (2011) embarked on a detailed dispersion analysis and reported 
that convex kernel approximation exhibits smaller lagging phase and amplitude errors than 
conventional non-convex approximation such as the RK and MLS approximations in 
full-discretization of the wave equation. Several meshfree and meshfree-enriched finite element 
Galerkin formulations (Wu and Hu 2011, Wu et al. 2012) using convex kernel approximations 
have been presented recently for the analyses of immersed composite (Wu et al. 2013), rubber-like 
materials in large deformation (Wu and Koishi 2012), and multi-scale acoustic waves (Wu and Hu 
2013). 

The aim of this paper is to introduce alternative boundary condition enforcement utilizing a 
convex kernel approximation for the state-based peridynamics that provides a stable and accurate 
solution for problems in solid mechanics applications. The reminder of the paper is outlined as 
follows: In the next section, we provide an overview on the state-based peridynamic formulation. 
In section 3, a spatial discretization for the state-based peridynamic formulation is described. In 
section 4, a localized convex kernel approximation is introduced and employed in the boundary 
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condition treatment for the state-based peridynamics. The conservation of linear momentum and 
angular momentum of the new formulation is also examined in the same section. Section 5 gives 
the final discrete equations for the peridynamic computation. Three numerical examples are 
presented in section 6 to illustrate the accuracy and robustness of the approach. Final remarks are 
drawn in section 7. 

 
 

2. Overview on the state-based peridynamic formulation 
 
Let’s assume a body in the reference configuration occupies a region Ω0. The state-based 

peridynamic equation of motion is given in the following equation (Silling et al.) as 

        
     Ttt

dVttt

0 ,0   ,                         

,,,



  

X,Xb

XXXTXXXTXuX X



H


                (1)  

where u(X,t) is the displacement field. Eq. (1) is supplemented by initial conditions u(X,0)=u0(X) 
and   )(0, 0 XuXu   . The vector b(X,t) is the body force density field and ρ(X) is the mass density. 

 t,XT  is called the peridynamic force-vector state field. The angle brackets, , in the integral 

indicate the vector on which the state field operates. In state-based peridynamics, 
  3:  Ht, XXXT  defines the force density vector of the material point X exerting on 

the material point X within the “horizon region” Hδ. The “horizon region” Hδ 3 describes the 
family of X with respect to X and is defined by  

     0    :  δ0H 3 XXXXX                 (2) 

where δ is a radius of a open ball with center 3X and | · | denotes the Euclidean vector or 
spectral matrix norm. If we define a vector valued function f by 

      XXXTXXXTXXf  t,t,:,                   (3) 

which represents the density of pairwise forces in the peridynamic bond that connects material 
points X and X  , then we have the following anti-symmetric relationship for f that satisfies the 
Newton’s third law.  

   XXfXXf XX 3  ,,: ,                        (4) 

With this relationship, the peridynamic global balance of linear momentum is also assured 
(Silling et al. 2007).  

In order to apply the conventional constitutive model in continuum mechanics to the 
state-based peridynamics, a deformation state  t,XY  is defined (Silling et al. 2007) in the 
following equation to map the peridynamic bonds connected to X into their images. 

     ttt ,,:, XxXxXXXY                       (5) 

With Eq. (5), the relationship between the peridynamic force-vector state field  t,XT  and the 

deformation state near material point X is described by     tt ,, XYTXT  . As given by Silling et 
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al. (2007), the nonlocal deformation gradient, F , at a material point X is expressed by 

       1, 
 



   KXXXXYX-XXF




H XdVt               (6) 

where  XX   is the influence function in Hδ and denotes the dyadic product of two vectors. 

K is a nonlocal shape tensor which is symmetric and given by 

       XH
dV   XXXXXXK



                   (7) 

It is clear that the nonlocal shape tensor is positive definite if the influence function ω ≥ 0. The 
relation between the force vector   XXXT t, and the nonlocal deformation gradient F is 

conjugated through the following constitutive correspondence 

     XXKSFXXXXXT  1t ,                  (8) 

where TSS   is the non-local second Piola-Kirchhoff stress tensor obtained from a classic 
constitutive law as a function of nonlocal deformation gradient F . Now the bond force between 
particles can be characterized in terms of strain and stress tensors, and thus allows for the use of 
the constitutive in peridynamic computation. This constitutive correspondence yields a state-based 
peridynamic formulation which satisfies the balance of angular momentum as proven in (Silling et 
al. 2007).      

 
 

3. Spatial discretization 
 
A direct integration based on particle value and a neglect of body force term lead to a discrete 

system of the state-based peridynamic equation of motion given by  
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XXf

XXTXXT

XXKSFXXXXKSFXXuX J  

    (9) 

where the nonlocal deformation gradient F and nonlocal shape tensor K  are also integrated using 
same trapezoidal rule to obtain   

        1-
J

NP

I
JIJIJIIIJ V KXXXXYX-XXF 




1

             (10) 

         



NP

I
JIJIJIIIJ V

1

XXXXX-XXK                (11) 

The nonlocal shape tensor K  acts like the moment matrix (Liu et al. 1995) in RKPM. In 
first-order RKPM, the approximation of displacement field is reproduced linearly. Similarly, the 
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approximation of deformation gradient in state-based peridynamics exactly reproduces the 
constant strain field. In discrete form, the nonlocal shape tensor of Eq. (11) remains symmetric and 
positive definite. In order to compare with the classical continuum mechanics theory, we rewrite 
the state-based peridynamic equation of motion in the following form 
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I
IIIJ

T
IJJJI

T
J
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NP

I
IJIIIIJJIJJJJIJJ

VV

VVm

1

1

11

                 SFXBSFXB

XXKSFXXXXKSFXXu 
    (12) 

where B matrix is the nonlocal displacement gradient matrix which is defined by  
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XB                           (13) 

with 

                IJJIJJIJI
J

IXJ VKYYKXXb XXXX
XK

X 1222, det

1
         (14) 

                IJJIJJIJI
J

IYJ VKYYKXXb XXXX
XK

X 1121, det

1
        (15) 

It is noteworthy to mention that the B matrix contains displacement gradients defined within the 
“horizon region” Hδ in an averaged sense. Different from the conventional displacement gradient 
matrix in Galerkin approach, the B matrix in the state-based peridynamics contains no 
displacement derivatives.  

 
 

 
Fig. 1 Lagrangian mapping in peridynamics
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This unique property allows the state-based peridynamic formulation to hold everywhere in Ω0 
whether or not displacement discontinuities are present. In comparison to the smoothed 
displacement gradients in the weak form of Galerkin meshfree method using stabilized conforming 
nodal integration method (SCNI) (Chen et al. 2000), the B matrix in state-based peridynamics is 
evaluated point-wise in a strong form and does not meet the integration constraint (Chen et al. 
2000) for the pass of constant stress patch test. It is also noted that the pairwise forces that connect 
material points XI and XJ are opposite in direction but are not co-linear with their relative 
deformed position. Their magnitudes are not necessary equal, i.e.,     JIJIJI VV XXfXXf ,,  , 

unless the particle volumes are the same JI VV   which is the case of regular particle distribution 

and the evaluated points are away from the boundary. The relation of pairwise forces is illustrated 
in Fig. 1.  

 
 

4. Localization of particle boundary approximations 
  
The enforcement of boundary conditions in peridynamics is non-trivial. This is because the 

particle force obtained from a function of pair-wise difference in displacement and coordinates is 
expressed in a nonlocal manner as defined in Eq. (1). As a consequence, the boundary conditions 
also cannot be imposed directly. The numerical issue of particle boundary condition enforcement 
in peridynamics can be illustrated by considering the following one-dimensional case as shown in 
Fig. 2. The one-dimensional rod has a length L and is under a regular discretization with an 
equally-spaced particle distance X . The Young’s modulus of the rod is denoted by E. We assume 
the cross-sectional area A of the rod is one. We further assume that the rod is fixed at one end and 
is subjected to a small displacement d at the other end. The discrete form of the state-based 
peridynamic equation of motion in Eq. (12) for this one-dimensional problem can be approximated 
by 

      

JJJ

NP

1I
JIIIJIJJIJJJ

fff                 

VVSFXBSFXBuX






21

/                  (16) 

In Eq. (16), the nonlocal particle force density 
Jf  for particle J consists of two parts. The first 

part is denoted by  
NP

I
IJJJJ XBSFf 1  in which   NPIXB IJ 1,  resembles the concept of 

nonlocal gradient matrix (Chen et al. 2000) in Galerkin meshfree method for the analysis of strain 
localization problems. From this point of view, we can consider the state-based peridynamics is 
one kind of nonlocal methods for the regularization of strain localization problems. The second 

part of particle force density   J

NP

I
IIIJIJ VVSFXBf /

1

2 


 is a consistency term which is introduced 

to preserve the linear and angular momentum in multi-dimensional case. In the equivalent state, 
the analytical solution for the boundary particle force at X1 is cLEdAVff  /111 . We also 

assume the radius of influence function to be X 3 as used in most peridynamic examples. 
Using the fact that    IJJI XXXX   , a simple but tedious calculation can show that the 

discrete peridynamic equation for the boundary particle X1 becomes 
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where 

     



NP

I
JIJIIIJ XXX-XXVK

1

2                     (18) 

The result in Eq. (17) implies the boundary particle force computed by the standard state-based 
peridynamics does not reproduce the correct value. Apparently, the computed boundary particle 
force is numerically affected by the size and type of influence function. 

For this reason, special numerical treatments (Parks et al. 2008, Kilic and Madenci 2010, 
Oterkus et al. 2012) are needed in the state-based peridynamics for the boundary condition 
enforcements. In this study, an alternative approach that considers a localized boundary particle 
approximation is developed to enforce the boundary conditions for the state-based peridynamics. 
This is achieved by introducing a meshfree convex approximation that restores the 
Kronecker-delta property at the boundary particles, leading to a localization of the influence 
function near the boundary and resulting in the direct boundary condition enforcement. In this 
study, we employ the GMF (Wu and Hu 2011) method to obtain the convex kernel approximation. 
Giving a convex hull Convex( IZ ) of a particle set   3 NP1,I,Z II X  defined by 

  




 


NP

1I
IIIIII

NP

1I
IIII Z0,α1,Vα,αVαZConvex XX               (19) 

 
 

Fig. 2 One-dimensional linear bar under a uniform discretization and tension state 

7



 
 
 
 
 
 

C.T. Wu and Bo Ren 

the GMF method is introduced to construct a convex approximation of a given (smooth) function 
x(X) such that the influence function   lI ZConvex :  satisfies the following linear 

polynomial reproduction property 

           II

NP

I
I ZConvex X  XXX 



 ~
1

                 (20) 

where  XI~ denotes a modified influence function for particle I. The first-order convex kernel 
approximation is constructed using the inverse tangent basis function, and the cubic spline window 
function is chosen to be the weight function in GMF method. Fig. 3 shows the two-dimensional 
modified influence function of an internal particle where its value is zero on the boundary. More 
detailed information about the derivation of GMF method and the corresponding mathematical 
properties can be found in (Wu et al. 2011).  

With the introduction of new influence function, the modified gradient matrix evaluated at the 
boundary particle in one-dimension can be obtained by   
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where 

      0~,0~~

1

2  



NP

I
IKIKIK VXXX-XK                (22) 

 
 

Fig. 3 A two-dimensional modified influence function of an internal particle decays to zero on the 
boundary 
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Note the non-negative property of the modified influence function 0~  and thus the 

invertibility of K
~

is only verified in the convex kernel approximation and is not guaranteed in the 
conventional first-order RK or MLS approximations. Subsequently, one has 

   011
2

1 ,0 


XVSFXBf
NP

1K
KKKK

                    (23) 

Using the result in Eq. (23), the boundary particle force for X1 can be now expressed by 
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In general, we have    KK XXXX  11
~~   due to the convex approximation property. If 

we further assume that the modified influence function of boundary particle X1 only covers to the 
neighbor particle X2, then Eq. (24) becomes 
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which recovers the correct boundary particle force. In other words, the convex kernel 
approximation is further localized near the boundary particle X1 by resizing its influence function. 
With the localized convex kernel approximation, the enforcement of essential boundary condition 
and the prescribed particle force can be now directly applied to the peridynamic formulation in a 
standard way.  

 By localizing the particle boundary approximations in the standard nonlocal state-based 
peridynamics, it can be shown in the following that the discrete system remains to preserve the 
linear momentum in the multi-dimensional case. 
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Using the fact      
I

IJIJIX VdV 0XXTxxXXTxx
H

 (Silling et al. 2007), 

we proceed to show that the discrete system also satisfies the conservation of angular momentum. 
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The results in Eqs. (26) and (27) hold for any choice of radius δ of the modified influence 
function ~  for interior particles and remain valid in irregular particle distribution.      
 

 
5. Final discrete equations 

 
When constitutive equations based on the rate form are used in multi-dimensional case, the 

nonlocal strain rate is calculated via the nonlocal velocity gradient. The nonlocal strain rate can be 
divided into a symmetric and an anti-symmetric part by 

  xxε 
2

1                             (28) 

  xxW 
2

1                            (29) 

where  denotes the nonlocal gradient operator. The nonlocal gradient operator can be defined by 
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a nonlocal velocity gradient in the following discrete form given by 
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where the nonlocal deformation gradient F and nonlocal shape tensor K are computed by 
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When the frame-indifferent Jaumann stress-rate is utilized in the formulation of the rate 
constitutive laws, the non-local Cauchy stress is updated by  

  n
n1/2nnn1nn1n t  σWWσσσσ  2/1                (33) 

It is also suffices to integrate the semi-discrete Eq. (9) by the central difference integration 
algorithm. The solution to Eq. (9) at n-th time step can be expressed by 
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Once the particle accelerations are solved, the particle velocities and displacements are updated 
by  

nnn1/2n1/2n tt
UUU 

2
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                        (35) 

1/2n
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1                          (36) 
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1

1                         (37) 

The vector  NPuu uU ,,, 21   contains the particle displacements andU denotes the 

corresponding particle velocities. The non-local second Piola-Kirchhoff stress tensor and non-local 
Cauchy stress tensor can be related by the standard push-forward and pull-back operations. The 
numerical stability of the explicit method is guided by a critical time step which can be 
approximated by the transit time of a dilatational wave over the shortest length scale in the system 
(Park et al. 2011). For the non-damped system of equations, the following time increment (Silling 
and Askari 2005) is adopted in the peridynamic computation  
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The value of Ic  for particle I is taken to be 
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 (Oterkus et al. 2012) where δI is the 

radius of influence function for particle I, and K is the material bulk modulus. The numerical 
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parameter cf in Eq. (38) is a safety factor taken to be 0.5 in this paper. 
 
 

6. Numerical examples 
 
 In this section, three benchmark examples are analyzed to study the performance of the 

present boundary condition treatment for the state-based peridynamic method. A Gaussian function 
(Tupek et al. 2013) is adopted to define the influence function   in the standard state-based 
peridynamic method. No special boundary condition treatments are considered in the standard 
state-based peridynamic method. For the present method, the modified influence functions are 
constructed using the inverse tangent basis function, and the cubic spline window function is 
chosen to be the weight function in GMF method (Wu et al. 2011). The normalized radius of δ for 
the influence function is taken to be 3.0 which is the value normally used in the peridynamic 
computations for the macroscopic modeling. Finite element solution is also considered for the 
comparison. Dimensionless unit system is adopted in this paper for convenience. 

 
6.1 1-D Bar subject to an End displacement 
 
The one-dimensional bar in tension as shown in Fig. 4 is studied in this example. The bar has a 

length of 10.0 with cross-sectional area A = 1.0, density ρ = 0.01 and Young’s modulus E = 100. 
The 1-D bar is discretized into 41 equally-spaced particles for the peridynamic method. Same 1-D 
bar is also discretized uniformly into 80 linear finite elements. The finite element solution will 
service as a reference solution in this example. The bar is under a displacement-control at a low 
speed of 0.0001 unit length per second to mimic the quasi-static state in a tension test. 

The comparison results of particle displacements in 1-D bar are given in Fig. 5. As shown in 
Fig. 5, large displacement errors are observed in the standard state-based peridynamic solution 
without any special boundary condition treatments. The errors can be attributed to the low 
approximation order in the influence function and the inaccurate boundary condition enforcements 
in the standard peridynamic computation. On the other hand, the result of the present method 
shows good agreements with the reference solution generated by the FEM. 

Fig. 6 compares the stress results with three different methods. As shown in Fig. 6, the standard 
state-based peridynamics not only produces severe error near the boundaries but also exhibits an 
amplitude error in the stress distribution. In comparison with standard peridynamic method, the 
present method improves the stress field and does not experience the amplitude error. 

 
 

 

Fig. 4 A uniformly discretized 1-D bar subjected to displacement control in tension 
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Fig. 5 The comparison of displacement fields in 1-D bar
 

Fig. 6 The comparison of stress fields in 1-D bar
 
 
6.2. 1-D Bar subject to an Initial velocity 
 
In this example, same 1-D bar in example 6.1 is considered and subjected to a uniform velocity 

of 1.0 as shown in the Fig. 7. In this wave propagation problem, the time-displacement responses 
are evaluated at the center of the bar for three comparison methods. As shown in Fig. 8, the 
standard state-based peridynamic method experiences the amplitude error as well as the phase 
error without accurate boundary condition enforcements. In particular, the phase error in 
displacement field increases as time advances. Similarly, the amplitude error and phase error are 
observed in the time-stress responses of the standard state-based peridynamic solution as depicted 
in Fig. 9. On other hand, the time-displacement solution of present method matches the FEM 
solution very well as demonstrated in Fig 8. The difference of time-stress response between the 
present method and FEM method is also marginal as shown in Fig. 9. The results in Figs. 8 and 9 
indicate an improvement of accuracy in the state-based peridynamic solution using the proposed 
boundary condition treatment.     
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Fig. 7 A uniformly discretized 1-D bar subjected to initial velocity 

 
 

 
Fig. 8 The comparison of time-displacement responses in 1-D bar 

 
 

 
Fig. 9 The comparison of time-stress responses in 1-D bar
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6.3 2-D compression test  
 
A compression test of bounded elastic block is studied in this numerical example. The problem 

statement and boundary conditions of the example are given in Fig. 10. A discretization of 50 × 25 
uniformly distributed nodes is used in the analysis. Same discretization is used for the finite 
element method based on bi-linear formulation. The material properties of the metal block are 
taken to be Young’s modulus E = 100 and Poisson’s ratio v = 0.3. The density ρ = 100.0 is 
considered in this explicit dynamic analysis to have a larger time step. In this explicit dynamic 
analysis, the loading speed is taken to be very slow to mimic the quasi-static state. No artificial or 
bulk viscosity is considered in this analysis.  

As shown in Fig. 11, the standard peridynamics experiences numerical instability and causes 
solution divergence in the early stage. The numerical instability is profound near the boundary and 
is apparently caused by the inappropriate boundary condition enforcement in the standard 
peridynamics. This numerical difficulty is similar to the one in 1-D problem and can be improved 
by the introduction of localized first-order convex kernel approximations. The deformation 
obtained by the present method is depicted in Fig. 12(b) which agrees well with the finite element 
solution as shown in Fig. 12(a). In Figs. 12(a) and 12(b), the contour plots are illustrated in terms 
of effective displacement fields. The comparison of yy stress contours is given in Fig. 13. In Fig. 

13, the stress field in the finite element solution is reported at the element center while the stress 
field of the present method is plotted particle-wise. As shown in Fig. 13, the present method 
generates a reasonable stress distribution which is comparable to one in the finite element method. 
 

 

Fig. 10 The bounded elastic block model
 

 

Fig. 11 Early divergence in the standard peridynamics
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(a) FEM 

       
(b) Present method 

Fig. 12 Comparison of effective displacement contour between the FEM and the present method 
 

 
(a) FEM 

  
(b) Present method 

Fig. 13 Comparison of yy  stress contour 
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7. Conclusions 

 
A new approach for the enforcement of particle boundary conditions in the state-based 

peridynamic method is disclosed. This approach is based on a localization of particle boundary 
approximations in the nonlocal type of state-based peridynamic formulation to restore the 
Kronecker-delta property at the boundary particles. The localized convex kernel approximation is 
constructed by the GMF method and is shown to recover the correct boundary particle forces in a 
1-D constant stress test. With the new particle boundary condition enforcements, the present 
approach is able to improve the solution accuracy of the standard state-based peridynamic method 
as demonstrated in the benchmark examples. In particular, remarkable improvements are made to 
the analysis of wave-propagation problem in which no major phase and amplitude errors are 
observed in the time-displacement as well as the time-stress responses of present solution. This 
nice feature is favored to provide an accurate peridynamic simulation in the material failure 
analysis using a stress-based failure criterion. The application of the new approach to the material 
failure analysis will be presented separately in a forthcoming paper. The development of a 
blending scheme to concurrently couple peridynamics and classical elasticity for multi-scale 
analysis will also be addressed in the near future.    
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