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Abstract.   This study aims at observing the coupling behaviours between suspended ceilings and partition walls in 
terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar 
dimensions of 6.0 m × 3.6 m were tested with two types of panels: acoustic lay-in and metal clip-on panels. They 
were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations 
of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven 
ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results 
indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the 
wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of 
panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the 
failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once 
when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the 
seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these 
accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is 
noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are 
parameters that exacerbate the CPC’s seismic response so that their actual capacity may be dramatically decreased, 
leading to important losses even in moderate seismic events. 
 

Keywords:    suspended ceiling systems; partition walls; seismic performance; operational and functional 
components; shake table tests; nonstructural components; OFC 

 
 
1. Introduction 
 

The seismic hazards of nonstructural building components (also known as operational and 
functional components, OFCs) have often been underestimated in design. OFCs are seismically 
vulnerable and they can be damaged even when the seismic excitations are of low to medium 
intensities (Jaimes et al. 2013 and Filiatrault et al. 2011). This was demonstrated once again in a 
recent moderate earthquake of magnitude 6.1 in Ren-AI, Taiwan on March 27, 2013: very few 
structural failures have been reported but there was severe damage to vulnerable OFCs such as 
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Seismic interactions between suspended ceilings and nonstructural partition walls 

longitudinal and transverse directions, using diagonal steel stud members identical to the members 
of wall framing, as the specimen installation details applied in the study by Retamales et al. (2013). 
In construction practice, nevertheless, suspension ceiling systems are usually installed in large 
open areas, and then the installation of partition walls follows, dividing the large areas into several 
smaller spaces, as shown in Fig. 1 for example in an office building environment. Also, most of 
these light-weight partition walls are designed to be dismountable and easily re-organized, so a 
rigid anchorage of the partitions to the building structure will conflict with this feature. Therefore, 
rather than bracing the partition to structural floors, installers usually joint the top of partition 
walls to suspended ceiling grids. Since this type of partition walls have not been extended to the 
structural floor above, rather than being inter-story drift sensitive as conventional drywall 
partitions (Retamales et al. 2013, Lee et al. 2007, McMullin and Merrick 2007), they are 
considered as acceleration sensitive (Huang et al. 2010, Filiatrault et al. 2004). To better 
understand the implications of this installation practice on seismic risk, this study aims at 
observing the interactions between suspended ceilings and partition walls to investigate their 
global seismic behaviour and performances using full-scale shake table tests. 

In this experimental program, two groups of suspension ceiling systems with planar dimensions 
of 6.0 m × 3.6 m were tested with two types of panels: classical acoustical lay-in ceilings (ALC) 
and metal clip-on panels (MCP). Each group was subcategorized into seismic-braced, seismic-
unbraced, and non-seismic installations. Also, two configurations of partition wall specimens were 
tested, with C-shape and I-shape in the planar layout and 2.7 m in height. In total, seven ceiling-
partition-coupling (CPC) specimens were tested utilizing a uni-directional seismic simulator in the 
Structural Laboratory at École Polytechnique de Montréal, Canada. The goal of the study was not 
to conduct the seismic qualification/certification (Retamales et al. 2011 and ICC-ES 2010) of the 
CPC systems, but rather to study their overall behaviour under seismic excitations of different 
intensities. The seismic inputs in this study were generated from numerical SAP models, based on 
the top floor responses of two existing Montreal buildings subjected to several earthquake base 
motions matching the seismic hazards in Montreal and Vancouver as stipulated in the National 
Building Code of Canada, as well as a near-fault motion record of the 1999 ChiChi Earthquake 
(Magnitude 7.3 on September 21, 1999) in Taiwan (Shin and Teng 2001, Loh and Tsay 2001). Test 
results include damage patterns, seismic responses as well as dynamic characteristics. Besides, the 
loss percentage of panels and the seismic capacity of each tested CPC system were also 
investigated. It is noteworthy that these capacities were estimated according to the specific ceiling 
area tested with one-dimensional inputs applied in the principal directions. For practical 
applications, the effects of three-dimensional excitations, size of the surface area, and the loading 
conditions of the ceiling are important parameters, which were verified in the study of Ryu et al. 
(2013). These parameters are known to exacerbate the CPC’s seismic response so the actual 
capacity of similar specimens in their normal environment may be dramatically decreased, 
potentially leading to important losses even in moderate seismic events. 
 
 
2. Experimental study 
 

2.1 General testing layout   
 

The tests were conducted utilizing a 3.4 m × 3.4 m seismic simulator. In order to support the 
CPC specimens, an extension testing platform of 4.3 m × 6.7 m was built and connected to the 
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(a) Plan view (b) Elevation view 

Fig. 2 The shake table and testing platform 

 

 
 

(a) Front view of the CPC specimen (b) Partition-wall specimen installation 

Fig. 3 The testing Ceiling Partition Coupling (CPC) specimens 

 

 

shake table, as shown in Figs. 2(a) and (b). In Fig. 2(b), the extended testing platform is attached at 

both the top and bottom to the A-frames directly mounted on the shake table. The acceleration 

inputs of the shake table can therefore be transmitted to the testing platform during the tests. Since 

the testing set-up configuration does not allow studying inter-story drift effects, only acceleration 

effects are considered and discussed in this study. The dimension of the I-shape wall specimen is 

5.0 m in width and 2.7 m in height, connected to a planar 6.0 m × 3.6 m suspension ceiling 

specimen installed above it, as shown in Fig. 3(a). Fig. (b) illustrates the installation stages for the 

I-shape partition wall specimen, including: layout on the floor, setup of the top and bottom railings, 

and installation of the wall panels. 

 

2.2 Tested specimens 
 

In total, seven ceiling-partition-coupling (CPC) specimens were tested, as listed in Table 1. The 

C-shape partition wall specimen was to simulate a typical 3.0mx4.0mx3.0m office space, while the 

I-shape specimens were tested to represent the longer partition walls of corridors in common 

practice. 

6
.7

m

4.3m

3.4m

3
.4

m

Extended Testing Platform
Shake Table

3
.5

m

5.0m

2
.7

m

6.7m

Suspension Ceiling Specimen

Wall Specimen

332



practic
Table 1

Spec

Notes 
 Seism
 Non

Ame
requ

 Mate
 
 

In T
hanger
ceiling
catego

 
 

 
 
 

 

 

A 
installa
with m
seismi
withsta
suspen
al. (20

Seismic

ce. 
1 The tested C

cimen No. 

1-1 

2-1 

2-2 

2-3 

3-1 

3-2 

3-3 

mic: Installati
n-seismic: Inst
erica, i.e. T-g
uirements appl
erial of the wa

Table 1, the n
r metal wires
g systems sha
ories D, E and

Only heavy
The suppor
gap of three
The main te
The main ru
At the perim
distance of 
Stabilizer b
edges to pre
Lateral brac

schematic c
ations of the

moulding atta
c ceilings: 
and strong e
nsion ceiling 
013). 

c interactions 

CPC specimens

Ceiling instal

Seismic-Unb

Seismic-Bra

Seismic-Unb

Non-Seism

Seismic-Bra

Seismic-Unb

Non-Seism

ion of the susp
tallation of th
grid suspende
lied. 
all panels: Me

non-seismic 
s without any
all be install
d F, and som

y-duty main t
rt ledge of th
e quarters of 
ees shall be a
unners shall 
meter of the 
8 inches (20

bars shall be
event the spr
cing systems

comparison 
e suspension 
achments, sta
these measu

earthquakes.
systems test

between susp

s 

llation 
Wall 

(k

braced 50

aced 20

braced 20

mic 20

aced 20

braced 20

mic 20

pension ceilin
he suspension 
ed to floor str

edium-density 

installation o
y seismic co
ed in accord

me important 
tees as define
he wall mou
an inch (19 

attached to th
be suspende
ceiling, the c

03 mm) from
e used within
read of the cr
s are required

among the
ceiling syste

abilizer bars 
ures can im

More detai
ted without t

 
 
 
 
 
 

pended ceiling

l mass 
kg) 

Ceili

00 
Metal

00 
Aco
Ce

00 

00 

00 
Metal

00 

00 

ng specimens i
ceiling speci

ructure above

y fibreboard (1

of suspensio
onsideration. 
dance with th
requirement
ed in ASTM 

ulding shall b
mm) shall be

he wall on tw
d at a maxim
cross and the

m the walls. 
n 24 inches 
ross-tees.  
d for all ceili

e seismic-br
ems is show
and with a l

mprove the 
ils about the
the presence 

gs and nonstru

ing panel type

l Clip-on Pane
(MCP) 

oustical Lay-in
eilings (ALC)

l Clip-on Pane
(MCP) 

in accordance 
imens followi
e using metal

1000 kg/m3, th

n ceiling ref
For the seis

he ASTM E5
s are summa
C635 shall b

be of at least
e held. 

wo adjacent s
mum spacing
e main runne

(610 mm) o

ng areas grea

aced, seism
wn in Fig. 4. 
larger amoun
seismic res

e characteris
of wall part

uctural partitio

es Wal

els 

n 

els 

with ASTM E
ing the comm
lic hanger wi

hickness: 1.5 i

fers to the gen
mic installat
580 requirem
arized as follo
be used. 
t two-inch (5

sides.  
of 48 inches

ers shall be h

of the walls 

ater than 100

mic-unbraced,
The seismic 

nt of hanger w
istance of c
stics and sei
itions can be

on walls 

ll configuratio

E580. 
mon practice i

ires with no 

in. (38 mm)) 

neral practic
tion, the susp

ments for the
ows: 

50 mm) long

s (1220 mm)
hung at a ma

at the two f

00 ft2 (93 m2

, and non-
c system is in
wires than th
ceiling syste
ismic behav
e found in H

on 

 

n North 
specific 

ce using 
pension 
 design 

g and a 

).  
aximum 

floating 

). 

seismic 
nstalled 
he non-
ems to 

viour of 
uang et 

333



Fig. 4

 
 

2.3 
 

Sch
suspen
measur
directi
installe
platfor
sensor
 

2.4 
 

As 
models
 
 

(a) Seism

(c) Seismi
 Schematic re
suspension c

Instrumenta

hematic illus
nsion ceiling
re the motio
on (East-We
ed to measu
rm were also
rs. 

Shake table

mentioned 
s, based on t

(a) 

SCSC4

So
u
th

Wen-Chun H

mic-braced in

ic-unbraced i
epresentation o
eiling systems

ation  

strations of t
g (Fig. 5(a)),
ns of the ma

est). Fig. 5(b)
ure the respo
o monitored

e input motio

in the intro
the top floor

The ceiling g

Fi

SC1SC2C3

Huang, Ghysla

 
nstallation 

installation 
of the seismic
s 

the instrume
, four accele

ain grid lines
) shows that 
onse motion
. The arrow

ons 

oduction, the
r responses o

grid level 

ig. 5 Instrume

Accelero

Displac
meter

N
o
rth

 
 
 
 
 
 

aine McClure 

c-braced, seism

entation used
erometers an
s, SC1, SC2, 

three accele
ns of the par
ws in the figu

e seismic inp
of two existi

entation of the

ometer

ement    

and Nahidah 

(b) No

mic unbraced

d in the tests
nd four disp
SC3, and SC

erometers an
rtition walls;
ure indicate 

puts were g
ing Montreal

(b

 CPC specime

: 

: 

: 

: 

Hussainzada 

on-seismic ins

(d) Legend
, and non-seis

s are shown
placement m
C4, aligned i
d six displac
; the motion
the measurin

generated fro
l buildings s

b) The partit

ens 

Moulding Attach

Hanger Wire

Stabilizer Bar

Lateral Bracing S

 

 
stallation 

 
d 
smic installati

n in Fig. 5. F
meters were u

in the main s
cement meter
ns of the ex
ing direction

om numerica
subjected to 

 
tion wall 

hment

System

ions of

For the 
used to 
shaking 
rs were 

xtension 
n of the 

al SAP 
several  

334



 
 
 
 
 
 

Seismic interactions between suspended ceilings and nonstructural partition walls 

Table 2 The seismic horizontal inputs to the shake table 

Input 
sequence 

Seismic input designation
Target peak 

acceleration (g) 
Peak acceleration achieved on the 

testing platform floor (g) 
1 A_M10%_E70_300 0.11 0.14 

2 B_M10%_E70_200 0.26 0.25 

3 A_V10%_W72_100 0.35 0.26 

4 B_V10%_W60_50 0.55 0.76 

5 A_ChiChi_T76_50 0.46 0.52 

6 B_ChiChi_T76_50 0.40 0.45 

7 A_M2%_E70_100 0.53 0.49 

8 A_V2%_W72_70 0.67 0.50 

9 B_M2%_E70_70 0.74 0.86 

10 B_V2%_W65_50 1.04 1.23 

11 A_ChiChi_T76_15 1.38 2.67 
Notes 
 A indicates top floor response of Building A 
 B indicates top floor response of Building B 
 M: Montreal, V: Vancouver, %: Percentage probability of exceedance in 50 years 
 For example, A_M10%_E70_300 indicates: Top floor acceleration response of Building A under Eastern 

Canada earthquake input with magnitude MW 7.0 at 300 km from the epicenter. 
 
 
earthquake motions that match the seismic hazards in Montreal and Vancouver as stipulated in the 
National Building Code of Canada (Atkinson and Beresnev 1998), as well as a near-fault motion 
record of the 1999 ChiChi Earthquake in Taiwan. Their main characteristics are as listed in Table 2. 
Building A and Building B are two existing reinforced concrete shear wall (RCSW) buildings in 
Montreal, Canada with 27 and 14 stories in heights, respectively. 

In Table 2, the achieved acceleration peaks of the testing platform illustrate that with the same 
exceedance probability in 50 years, the western Canadian (Vancouver) seismic events have higher 
intensity than in eastern Canada (Montreal). Moreover, the top floor acceleration responses of 
Building B are larger than those of Building A under the same excitation level, because the taller 
Building A has a longer fundamental period (2.17 s vs. 0.71 s) and is therefore less sensitive to the 
frequency content of the seismic inputs selected. In Fig. 6, the calculated horizontal acceleration 
amplification factors of the floors from the SAP2000 numerical models of both buildings are 
plotted. The reliability of the two simulation models have been verified by comparing and 
calibrating their lowest natural frequencies to the values extracted from ambient vibration tests on 
the real buildings in Montreal, Canada (Gilles and McClure 2008). Figs. 6(a) and (b) show that 
Building A experiences higher mode vibrations, while Building B has more violent response (more 
amplification) when subjected to the same seismic events. Therefore, when the CPC specimens 
were subjected to the Building A events, resonances were more likely to occur due to their richer 
frequency content within the range of the building frequencies.  

Fig. 7 compares the FFT spectra of the targeted and achieved accelerations. It is seen that the 
dominant frequency contents of both building events are below 10 Hz, and in this range the 
achieved accelerations on the floor of the testing platform agreed with the target acceleration 
inputs except for the achieved building B events had slight overshooting at 9 Hz. 
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(a) Building A (b) Building B 

Fig. 6 Variation of the calculated maximum acceleration amplification factors along building height for
selected input motions 

 

(a) The targeted acceleration inputs (b) Achieved accelerations on the testing platform 

Fig. 7 FFT spectra of the targeted and achieved acceleration inputs on the floor of the testing platform 
 
 
3. Testing results 
 

3.1 Specimen installation procedures 
 

Fig. 8 illustrates the sequence of the installation procedure and details of partition wall 
specimens. As a first step, the corner posts and railings of the wall were attached to the ceiling 
grids by angle brackets and screws, as shown in Figs. 8(a) and (b). The completed perimeter 
framework of the walls is shown in Fig. 8(c). Several plastic brackets - the main components 
holding the wall panels, were then installed inside the top and bottom railings, as shown in Fig. 
8(d). These plastic brackets are attached to the floor and ceiling grid runners, with two bolts along 
their longitudinal axis to adjust the level of the wall panels. After the wall panels are put in place, 
they are fastened by screws at their upper L-shape part. In Fig. 8(e), the first panel of the wall was 
being placed, and Fig. 8(f) shows the completed I-shape partition wall installation. 
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Seismic interactions between suspended ceilings and nonstructural partition walls 

then extracted using Discrete Fourier Transform analysis of the acceleration records. From the 
results shown in Fig. 14, the NFs of the ceiling systems (ceiling main grid SC2 is selected as 
representative of the whole system) were ranging between 12.0 Hz -14.0 Hz and the seismic 
installation only increase the values slightly. For ALC specimens, it is clear that the behaviour of  
 
 

(a) S_B_ALC (b) NS_ALC 

(c) S_B_MCP (d) NS_MCP 

Fig. 14 FFT spectra of the ceiling main grid SC2 and the partition wall of the tested specimens 
 

 
(a) S_B_ALC (b) NS_ALC 

 
(c) S_B_MCP (d) NS_MCP 

Fig. 15 Comparison of the FRF of the ceiling main grids with respect to testing platform floor under low 
to moderate excitations 
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the non-seismic specimens was dominated by frictional damping because the response amplitude 
of the system is low and their NFs are blurred with a wide bandwidth in the FFT spectra. For 
Metal MCP specimens, the WN input was too weak to generate inertial forces that could overcome 
the inherent frictional damping of the clip-on mechanism, even for the non-seismic specimens. 
Nevertheless, the NFs of the wall specimens were sensitive to different methods of ceiling 
installation and panel types: For instance, the NF of the non-seismic ALC I-shape wall specimen 
was not sharp but approximately 4.0 Hz, and for the seismic-braced MCP, it increased to 5.9 Hz. 

In contrast with the low intensity WN input, the frequency response functions (FRF) of the 
ceiling grids with respect to the floor of the testing platform are shown in Fig. 15, for inputs with 
low to moderate intensities. Fig 15(b) shows that for the non-linear ALC specimens, the system’s 
inherent frictional forces had been overcome during testing and the dominant frequencies of the 
ceiling grids had then been lowered to below 5 Hz. For the MCP specimens, their dominant 
frequencies had not changed significantly even if the clip-on mechanism has provided stiffer 
resistance. However, greater excitations also caused higher acceleration responses of the non-
seismic installations for MCP specimens.   
 

4.2 Seismic response of the tested CPC specimens 
   
In this section, the seismic response of the ceiling grids is discussed in terms of their 

accelerations and displacements for the SC2 main runner line (see Fig. 5), deemed representative 
of the whole.  

In Fig. 16, the Building B events were more violent than those of Building A, causing larger 
acceleration responses. However, at the input level of 0.5 g, Building A events induced larger 
accelerations. This phenomenon is explained by the richer frequency content of Building A floor 
response and therefore the increased likelihood of resonances with the specimens. The acceleration 
response of the different ceiling installations is similar below 4.0 g. Larger accelerations (above 
8.0 g) were measured for the non-seismic specimens due to the effect of pounding impact (shock) 
of the swaying ceiling on the perimeter moulding. 

Fig. 17 shows the displacement response of the seismic-braced and non-seismic ALC 
specimens. It confirms that the displacements of the seismic system were effectively limited to less 
than 10mm, especially at SC2 (with less than 5 mm) in the vicinity of the bracing system. For the 
non-seismic systems, the measured displacements were larger, up to 15mm. 

 
 

(a) Building A inputs (b) Building B inputs 

Fig. 16 Acceleration response of ceiling gridline SC2 of the tested specimens 
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Seismic interactions between suspended ceilings and nonstructural partition walls 

(a) Building A inputs to seismic-braced ALC with 
I-shape wall 

(b) Building B inputs to seismic-braced ALC with 
I-shape wall 

(c) Building A inputs to non-seismi ALC with I-
shape wall 

(d) Building B inputs to non-seismi ALC with I-
shape wall 

Fig. 17 Displacement response of the tested ceiling grids
 
 

Fig. 18 also compares the SC2 grid line displacement response of various tested specimens 
under different input acceleration levels achieved on the floor platform. It is seen that the Building 
B events generated higher input accelerations and therefore caused larger displacements than 
Building A events. However, the displacement response to Building A inputs was dramatically  
increased above 0.5 g, which is explained by the richer frequency content of the inputs, as 
previously discussed. Also, when the input levels increased to above 0.5 g, the inherent frictional 
resistances of the specimen were mostly overcome by inertia forces and the displacement response  
increased accordingly. Overall, when all the tested systems are compared at all acceleration input 
levels, the seismic-braced MCP specimen had the lowest displacement response (i.e., it was the 
stiffest) and the non-seismic ALC specimen had the largest (i.e., the specimen was the most 
flexible), as expected. 

The seismic response of the tested I-shape wall specimens is shown in Fig. 19. In most cases, 
both the acceleration and displacement responses were increased with the input level, and, 
similarly to the ceiling grids, the wall specimens of the non-seismic systems responded more 
violently than the walls in other systems. The maximum values reached for Building B inputs were 
above 4.0 g and 50 mm. Besides, there is one special case shown in Fig. 19(b) where the 
acceleration responses of the seismic-braced MCP specimen were significantly higher than that of 
other specimens under the effects of Building B inputs. This is explained by a tuning (resonance) 
between the NF of the seismic-braced MCP wall (5.9 Hz as shown in Fig. 14(c)), and the high 
energy content of the Building B inputs near 6.0 Hz (input spectra were derived but not shown due 
to space limitations). This also confirms that this partition wall specimen belongs to the  
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(a) Building A inputs (b) Building B inputs 

Fig. 18 Displacement response of ceiling gridline SC2 of the tested specimens 
 

  
(a) Acceleration response to Building A inputs (b) Acceleration response to Building B inputs

  
(c) Displacement response to Building A inputs (d) Displacement response to Building B inputs

Fig. 19 The maximum dynamic response measured for I-shape wall specimens 
 
 
acceleration-sensitive OFCs when considering its out-of-plane response and the frequency 
components of the floor excitations can cause significant dynamic amplifications of the response if 
local resonances (tuning) occur. 
 

4.3 Damage patterns and distribution of the tested CPC specimens 
 
The damage patterns observed in the tested specimens are summarized in Fig. 20, including 

damages of ceiling grid and joints (Figs. 20(a) to (c)), distortion of wall top railing (Fig. 20(d)), as 
well as panel failure (Figs. 20(e) and (f)). 

0

2

4

6

8

10

12

14

16

18

20

0.00 0.50 1.00 1.50R
es

p
on

se
 D

is
p

la
ce

m
en

t 
of

 S
C

2 
(m

m
)

Input Acceleration (g)

S-B_ALC

S-UB_ALC

N-S_ALC

S-B_MCP

S-UB_MCP

N-S_MCP

0

2

4

6

8

10

12

14

16

18

20

0.00 0.50 1.00 1.50R
es

p
on

se
 D

is
p

la
ce

m
en

t 
of

 S
C

2 
(m

m
)

Input Acceleration (g)

S-B_ALC

S-UB_ALC

N-S_ALC

S-B_MCP

S-UB_MCP

N-S_MCP

0

1

2

3

4

5

6

0.00 0.50 1.00 1.50A
cc

el
er

at
io

n
 R

es
p

po
n

se
 o

f 
th

e 
ce

nt
er

 
of

 t
h

e 
w

al
l (

g)

Input Acceleration (g)

S-B_ALC

S-UB_ALC

N-S_ALC

S-B_MCP

S-UB_MCP

N-S_MCP

0

1

2

3

4

5

6

0.00 0.50 1.00 1.50

A
cc

el
er

at
io

n 
R

es
p

on
se

 o
f 

th
e 

ce
n

te
r 

of
 t

he
 w

al
l (

g)

Input Acceleration (g)

S-B_ALC

S-UB_ALC

N-S_ALC

S-B_MCP

S-UB_MCP

N-S_MCP

0

10

20

30

40

50

60

0.00 0.50 1.00 1.50D
is

p
la

ce
m

en
t 

R
es

p
on

se
 o

f 
th

e 
ce

nt
er

 
of

 t
he

 w
al

l (
m

m
)

Input Acceleration (g)

S-B_ALC

S-UB_ALC

N-S_ALC

S-B_MCP

S-UB_MCP

N-S_MCP

0

10

20

30

40

50

60

0.00 0.50 1.00 1.50D
is

p
la

ce
m

en
t 

R
es

p
on

se
 o

f 
th

e 
ce

nt
er

 
of

 t
he

 w
al

l (
m

m
)

Input Acceleration (g)

S-B_ALC

S-UB_ALC

N-S_ALC

S-B_MCP

S-UB_MCP

N-S_MCP

344



(d) 

 

 
 

Ove
for the
railing
and di
20% p

S-B_A
Panel 

S-B_M
Panel 

Seismic

(a) Grid bu

Wall top rai

Fig. 

erall, more g
e MCP provi
g was most s
splacement r
anel falling w

ALC
 fall: 2%

MCP
 fall: 5%

c interactions 

 
uckled 

 

iling twisted 

Fig. 20 Ce

21 Summary 

grid and join
ides addition
evere in the 
responses. A
when the cei

S-
Pa

S-
Pa

between susp

(b) G

(e) 

eiling damage

of ceiling dam

nt damages w
nal horizonta
non-seismic

As for panel f
iling systems

-UB_ALC
anel fall: 23%

-UB_MCP
anel fall: 7%

 
 
 
 
 
 

pended ceiling

Grid joints da

Panels disloc

e patterns of th

 
mage distribut

were observe
al stiffness to
c ALC specim
failures, both
s were install

gs and nonstru

 
amaged 

 

cated 

he tested CPC

tion of the test

d on the AL
o the suspen
mens as they
h the ALC a
led without l

N-S_ALC
Panel fall: 13

N-S_MCP
Panel fall: 32

uctural partitio

(c) Gr

(f) 

specimens 

ted CPC speci

LC specimens
nsion grid sy
y experience
and MCP gro
lateral bracin

3%

2%

on walls 

rid distorted 

Panel fell 

imens 

s than on the
ystems. Twis
ed high accel
oups had mo
ng. 

Pane

Joint d

Grid d

Panel di

 

 

 

 
 
 

e MCP, 
sted top 
leration 

ore than 

el fall

damage

damage

islocation

345



 
 
 
 
 
 

Wen-Chun Huang, Ghyslaine McClure and Nahidah Hussainzada 

A summary of the damage distribution of the tested CPC specimens is shown in Fig. 21. The 
braced seismic ceiling system can limit the percentage of ceiling-panel falling to less than 5%. The 
unbraced seismic ceiling system could not be as effective due to its dynamic interaction with the 
partition wall, irrespective of the use of lay-in (ALC) or clip-on (MCP) ceilings. The MCP ceiling 
system can concentrate and limit grid joint damage in the vicinity of the wall partition while the 
ALC ceiling system shows more distributed damage propagation away from the wall partition. 
Furthermore, the failure of non-seismic ALC was localized within the interval between grids SC1 
and SC2, indicating that the non-seismic ALC specimen did not respond as an integral system. Of 
course, such observations are limited to the tested specimens and cannot be generalized to all 
similar systems because the actual response is strongly dependent on the geometric characteristics 
of the tested layouts (surface area, connection details, workmanship) and the input excitations 
(intensity and direction). Interactive and propagating damage patterns are expected to be much 
more complex in real situations. 

 
 

5. Conclusions 
 

In this study, seven ceiling-partition-coupling (CPC) specimens were constructed and tested on 
a shake table platform. Several Canadian design earthquakes and some records from the 1999 
ChiChi Earthquake in Taiwan, including one near-fault event, were selected to generate the inputs 
to the testing platform. In the experimental program, the uni-directional input excitation was 
perpendicular to the longitudinal direction of the suspension ceiling systems and the I-shape wall 
specimens. The salient findings of the study are as follows: 
 
• For seismic suspension ceiling systems: 

1. Panel loss could be controlled to less than 5% provided the ceiling bracing system with 
compression strut was installed. This ceiling bracing can help improve the overall 
performance of the ceiling/wall partition system and reduce damage of the ceiling system. 

2. The metal clip-on panel (MCP) group performed better than the acoustical lay-in ceiling 
system (ALC) in terms of the reduced seismic response, as the butt-edge detail improved 
the robustness of the system. 

3. The seismic-unbraced system could not withstand the strong excitation of 
A_ChiChi_T7615, as ceiling bracing is needed to carry such a large near-fault earthquake 
force. 

 
• For non-seismic suspension ceiling systems: 

1. The ceiling damage of the non-seismic ALC group was concentrated within a certain 
interval between two main ceiling grid lines next to the wall partition, as there was no 
possible seismic load path to the whole system. 

2. The seismic response of the non-seismic specimens was higher than that of the seismic 
systems due to the lack of lateral restraint, causing severe damage to both the ceiling 
grids and the wall top railings. 

3. Although the non-seismic MCP specimen was with the clip-on devices, it also 
experienced high percentage of panel loss when subjected to extremely strong excitation 
(near-fault ChiChi building floor response). 
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Seismic interactions between suspended ceilings and nonstructural partition walls 

• In this study, the seismic capacities of the CPC specimens could be up to 1.23 g. For the 
seismic-braced systems, it could reach 2.67 g. However, these accelerations were unidirectional 
and achieved at the platform floor level. For practical situations, three-dimensional inputs and 
area size effects should be considered, which would likely reduce the CPC capacities. 

• Testing inputs of Building B seismic events are more violent than Building A, causing greater 
seismic responses of the CPC specimens. However, localized resonance could occur with the 
Building A inputs due to their rich frequency content. 
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