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Abstract.  The problem considered in this theoretical paper is the delamination of a multilayered inhomogeneous 
beam structure that has viscoelastic behaviour under angle of twist, horizontal and vertical displacements which vary 
smoothly with time according to prescribed laws. The cross-section of the beam is a rectangle. The layers are made of 
different materials which are smoothly inhomogeneous along the length of the beam. The beam under consideration 
represents statically undetermined structure since it is clamped in its two ends. The problem of the strain energy 
release rate is solved. For this purpose, the strain energy stored in the beam structure is analyzed. In order to verify the 
solution obtained, the strain energy release rate is found also analyzing the time-dependent compliances of the beam 
under prescribed angle of twist and displacements. A parametric investigation is carried-out by applying the solution 
obtained. Special attention is paid to the effect of the parameters which control the variation of the angle of twist and 
the displacements with time on the strain energy release rate. 
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1. Introduction 
 

Finding of effective solutions in structural design frequently is linked with use of modern 
engineering materials like, for example, the continuously inhomogeneous materials. The properties 
of these materials vary smoothly along one or more coordinates in the solid. The strong interest in 

continuously inhomogeneous materials has been stimulated by the quick development of the 
functionally graded materials in the recent decades (Al-Shablle et al. 2022, Butcher et al. 1999, 
Calim, 2020, Emad Kadum et al. 2021, Gasik 2010, Han et al. 2001, Hedia et al. 2014, Hirai and 
Chen 1999, Mahamood and Akinlabi 2017). The functionally graded materials can be classified as 
continuously inhomogeneous composites (El-Galy et al. 2019, Calim and Cuma 2022, Calim and 
Cuma 2023, Saiyathibrahim et al. 2016, Shrikantha and Gangadharan 2014). A functionally 
graded material has two or more constituent materials which are continuously mixed during the 

manufacturing process (Nemat-Allal et al. 2011, Toudehdehghan et al. 2017). The continuous 
variation of the microstructure and material properties in a functionally graded structural member 
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is controlled technologically in order to get maximum benefit from the material inhomogeneity 

(Hung et al. 2023, Hung et al. 2023, Markworth et al. 1995, Miyamoto et al. 1999). Recently, the 

application of functionally graded materials in structures and machinery in various areas of 

engineering has been constantly increasing (Nguen et al. 2023, Njim et al. 2021). The practice 

indicates that the development of such important branches of engineering as aeronautics, nuclear 

reactors, microelectronics, etc. owes much to use of continuously inhomogeneous (functionally 

graded) materials.  

One of the inhomogeneous structural materials which have attracted the attention of engineers 

and researchers in various spheres of modern engineering are the multilayered materials. A 

multilayered material is a system of adhesively bonded layers. Usually, the layers are made of 

different materials and have different thicknesses. The basic idea of multilayered systems is to 

combine the properties of different materials and, in this way, to obtain a new inhomogeneous 

material with superior properties for a particular engineering application. The engineering practise 

indicates that the concept of multilayered materials represents an important tool in the rational 

design of a wide range of structures. The application of multilayered materials is a solution for 

various structural problems (for instance, reducing the weight of structures) in mechanical and 

civil engineering. Although the multilayered materials and structures are very modern and 

effective, they have some disadvantages which decrease in a high degree the beneficial effects of 

combining of layers of different materials in one structure. For example, multilayered structural 

members and components are very prone to separation of layers or delamination (Dolgov 2005, 

Dolgov 2016, Hutchinson and Suo 1991, Rizov 2020, 2021, Rizov and Altenbach 2022, Rizov 

2022). In fact, the delamination is one of the basic factors for reducing the load-carrying capacity 

of multilayered structures. The delamination threatens integrity and reliability of multilayered 

systems and represents one of major reasons for the structural failure of multilayered engineering 

constructions. Thus, the safety and reliability of multilayered systems is very much dependent on 

their delamination behaviour. This fact indicates that if one wants to have a rational structural 

design approach, it would be necessary to analyze carefully different scenarios for delamintion of 

the multilayered engineering structure under various loading conditions and external effects.    

This theoretical paper is concerned with delamination analysis of a multilayered 

inhomogeneous beam structure with viscoelastic behaviour under angle of twist, horizontal and 

vertical displacements which vary smoothly with time according to prescribed laws. The layers are 

continuously inhomogeneous along the beam length. The cross-section of the beam is a rectangle. 

The beam is clamped in its both ends. Under prescribed angle of twist and displacements, the 

beam represents a statically undetermined structure having four degrees of indeterminacy. The 

main objective is to derive the strain energy release rate for the delamination. For this purpose, the 

strain energy stored in the beam is considered. The strain energy release rate is found also by 

analyzing the compliances of the beam for verification. This paper is an attempt to extent our 

knowledge of the multilayered inhomogeneous beam delamination problem by considering a 

statically undetermined viscoelastic member of rectangular cross-section subjected to combination 

of angle of twist, vertical and horizontal displacements. In this relation, it should be mentioned that 

previous delamination analyses under combined loadings deal mainly with beams of circular 

cross-section (Rizov 2018), while delamination studies of multilayered inhomogeneous 

viscoelastic beams of rectangular cross-section are focussed usually on beams under pure bending 

or pure torsion (Rizov 2020, 2023). Thus, this paper fills a gap in the delamination studies because 

the multilayered inhomogeneous beams used in the engineering practice in most of the cases have 

rectangular cross-section. Besides, the torsion of the multilayered beams in the engineering  
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Multilayered inhomogeneous beam under prescribed angle of twist and displacements… 

 
Fig. 1 Multilayered inhomogeneous viscoelastic beam structure with a delamination under prescribed angle 

of twist, 𝜙𝐻5, and displacements, 𝑢𝐻5 and 𝑣𝐻5 

 

 

practice frequently is in combination with bending. Both issues (rectangular cross-section and 

combined external loads) are addressed in this paper.                   

 

 

2. Theoretical model and analysis     
    

The beam depicted in Fig. 1 consists of adhesively bonded viscoelastic layers with different 

thickness and material properties.  

The layers exhibit continuous material inhomogeneity along the length of the beam. Besides, 

the number of layers is arbitrary. The cross-section of the beam is a rectangle of width, 𝑏, and 

thickness, ℎ. The beam length is 𝑙. A delamination crack of length, 𝑎1 + 𝑎2, is situated in the beam 

as depicted in Fig. 1. The thicknesses of the lower and upper crack arms are ℎ𝐵  and ℎ𝐷 , 

respectively. A notch is cut-out in the lower crack arm (Fig. 1). Thus, the lower crack arm is free 

of stresses. The beam is loaded in section, 𝐻5, by external horizontal and vertical concentrated 

forces so as the horizontal and the vertical displacements, 𝑢𝐻5  and 𝑣𝐻5 , vary exponentially with 

time, 𝑡  

    𝑢𝐻5 = 𝜃1𝑒
𝛽𝑡 − 𝜃1,                                                              (1) 

   𝑣𝐻5 = 𝜃2𝑒
𝛽𝑡 − 𝜃2,                                                              (2) 

where 𝜃1, 𝜃2 and 𝛽 are parameters controlling the variation of these displacements. Besides, the 

beam is loaded in torsion in section, 𝐻5. The angle of twist, 𝜙𝐻5 , of this section varies with time 

according to the following exponential law 

                                          𝜙𝐻5 = 𝜃3𝑒
𝛽𝑡 − 𝜃3.                                                              (3) 
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Fig. 2 Viscoelastic mechanical model 

 

 

Here, 𝜃3 is a parameter that controls the variation of the angle of twist.  

The viscoelastic behaviour of the j-th layer of the beam under torsion is treated by using the 

viscoelastic mechanical model depicted in Fig. 2. The shear moduli of the two springs are denoted 

by 𝐺1𝑗 and 𝐺2𝑗 (Fig. 2). The coefficient of viscosity of the dashpot is 𝜂𝑗 (Fig. 2). The model in Fig. 

2 is under shear strain, 𝛾𝑗, that varies exponentially with time 

         𝛾𝑗 = 𝛿𝑗𝑒
𝛽⥂𝑡 − 𝛿𝑗,                                                              (4) 

where 𝛿𝑗 is a parameter. The stress-strain-time relationship of the viscoelastic model in Fig. 2 is 

derived in the following way.  

First, the shear strain in the spring with shear modulus, 𝐺2𝑗, and in the dashpot is denoted by 

𝛾2𝑗. The shear strain in the spring with modulus of elasticity, 𝐺1𝑗, is 𝛾1𝑗. It is obvious that  

      𝛾1𝑗 + 𝛾2𝑗 = 𝛾𝑗.                                                               (5) 

The shear stresses in the two springs and in the dashpot are denoted by 𝜏1𝑗 , 𝜏2𝑗  and 𝜏𝜂𝑗 , 

respectively. These shear stresses are expressed as 

      𝜏1𝑗 = 𝐺1𝑗𝛾1𝑗,                                                                 (6) 

        𝜏2𝑗 = 𝐺2𝑗𝛾2𝑗,                                                                 (7) 

       𝜏𝜂𝑗 = 𝜂⥂𝑗�̇�2𝑗,                                                                 (8) 

where �̇�2𝑗 is the first derivative of 𝛾2𝑗 with respect to time. The equation of equilibrium of the 

model is written as 

    𝜏2𝑗 + 𝜏𝜂𝑗 = 𝜏1𝑗.                                                             (9) 

By combining of (4)-(9), one obtains the following differential equation 

    �̇�2𝑗 + 𝜓1𝑗𝛾2𝑗 =
𝐺1𝑗

𝜂𝑗
(𝛿𝑗𝑒

𝛽𝑡 − 𝛿𝑗),                                               (10) 

where 

      𝜓1𝑗 =
𝐺1𝑗+𝐺2𝑗

𝜂𝑗
.                                                           (11) 

The solution of (11) is derived as 
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Multilayered inhomogeneous beam under prescribed angle of twist and displacements… 

                                        𝛾2𝑗 = 𝛾2𝑗ℎ𝑚𝑔 + 𝛾2𝑗𝑛ℎ𝑚𝑔,                                                    (12) 

where 𝛾2𝑗ℎ𝑚𝑔  is the solution of the homogeneous equation, 𝛾2𝑗𝑛ℎ𝑚𝑔  is a particular solution of 

(10). The solution of the homogeneous equation is found as 

                                          𝛾2𝑗ℎ𝑚𝑔 = 𝐶𝐶𝑒
−𝜓1𝑗𝑡,                                                        (13) 

where 𝐶𝐶  is an integration constant. The particular solution is written in the form 

      𝛾𝑗𝑛ℎ𝑚𝑔 = 𝜔1𝑗𝑒
𝜔2𝑗𝑡 + 𝜔3𝑗.                                                   (15) 

After substituting of (15) in (10), the quantities, 𝜔1𝑗, 𝜔2𝑗 and 𝜔3𝑗, are determined as 

              𝜔1𝑗 =
𝐺1𝑗𝛿𝑗

𝜂𝑗(𝛽⥂+𝜓1𝑗)
,                                                         (16)  

              𝜔2𝑗 = 𝛽,                                                                 (17) 

                    𝜔3𝑗 = −
𝐺1𝑗𝛿𝑗

𝜓1𝑗𝜂𝑗
.                                                             (18) 

The initial condition (at 𝑡 = 0) for determination of 𝐶𝐶  is written as 

                         𝛾2𝑗(0) = 0.                                                              (19) 

By combining of (10), (12), (13), (15) and (19), one derives 

                    𝐶𝐶 = −𝜔1𝑗 − 𝜔3𝑗.                                                        (20) 

Finally, 𝛾2𝑗 is obtained as 

                                𝛾2𝑗 = 𝜔1𝑗(𝑒
𝛽⥂𝑡 − 𝑒−𝜓1𝑗𝑡) + 𝜔3𝑗(1 − 𝑒−𝜓1𝑗𝑡).                                  (21) 

From (5), one determines 

                                             𝛾1𝑗 = 𝛾𝑗 − 𝛾2𝑗.                                                             (22) 

By substituting of (21) and (22) in (6), one derives 

                    𝜏1𝑗 = 𝐺1𝑗 [ 𝛾𝑗 −𝜔1𝑗(𝑒
𝛽⥂𝑡 − 𝑒−𝜓1𝑗𝑡) − 𝜔3𝑗(1 − 𝑒−𝜓1𝑗𝑡) ].                      (23) 

The time-dependent shear modulus, 𝐺*𝑗, of the viscoelastic model is defined as  

                                            𝐺*𝑗 =
𝜏1𝑗

𝛾⥂𝑗
.                                                                  (24) 

By substituting of (4), (16), (18) and (23) in (24), one obtains 

              𝐺*𝑗 =
𝐺1𝑗[ 𝑒𝛽𝑡−1−

𝐺1𝑗

𝜂𝑗(𝛽+𝜓1𝑗)
(𝑒𝛽⥂𝑡−𝑒

−𝜓1𝑗𝑡)+
𝐺1𝑗

𝜓1𝑗𝜂𝑗
(1−𝑒

−𝜓1𝑗𝑡) ]

𝑒𝛽𝑡−1
,                            (25) 

where 𝑗 = 1,2, . . . , 𝑛, Here, 𝑛 is the number of layers in the beam in Fig. 1. In fact, expression (25) 

represents the time-dependent shear modulus of the j-th layer of the beam under torsion.  

Since the layers of the beam are continuously inhomogeneous along the length, the material 

properties, 𝐺1𝑗, 𝐺2𝑗 and 𝜂𝑗, are distributed continuously in longitudinal direction. This distribution 

is described as 
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                                       𝐺1𝑗 = 𝐺1𝐷𝑗𝑒
𝜌1𝑗

𝑙1+𝑥

𝑙 ,                                                          (26) 

                                       𝐺2𝑗 = 𝐺2𝐷𝑗𝑒
𝜌2𝑗

𝑙1+𝑥

𝑙 ,                                                         (27) 

                                         𝜂𝑗 = 𝜂𝐷𝑗𝑒
𝜌3𝑗

𝑙1+𝑥

𝑙 ,                                                           (28) 

where 

                                         −𝑙1 ≤ 𝑥 ≤ 𝑙 − 𝑙1.                                                           (29) 

In formulae (26)-(29), 𝐺1𝐷𝑗, 𝐺2𝐷𝑗 and 𝜂𝐷𝑗 are the values of 𝐺1𝑗, 𝐺2𝑗 and 𝜂𝑗 at the left-hand end 

of the beam, 𝜌1𝑗 , 𝜌2𝑗  and 𝜌3𝑗  are parameters which control the distributions of 𝐺1𝑗 , 𝐺2𝑗  and 𝜂𝑗 , 

respectively. Axis, 𝑥, is shown in Fig. 1.  

The model depicted in Fig. 2 is used also to describe the viscoelastic behaviour of the j-th layer 

of the beam under axial forces and bending moments. Therefore, the time-dependent modulus of 

elasticity, 𝐸*𝑗, of the j-th layer is obtained by applying (25). For this purpose, 𝐺1𝑗, 𝐺2𝑗 and 𝜂𝑗 are 

replaced with 𝐸1𝑗, 𝐸2𝑗 and 𝜂𝐵𝑗 in (11) and (25). Here, 𝐸1𝑗, 𝐸2𝑗 and 𝜂𝐵𝑗 are the moduli of elasticity 

of the two springs and the coefficient of viscosity of the dashpot of the viscoelastic model. The 

distribution of 𝐸1𝑗 , 𝐸2𝑗  and 𝜂𝐵𝑗  along the length is described by using (26), (27) and (28), 

respectively. For this purpose, 𝐺1𝐷𝑗, 𝐺2𝐷𝑗, 𝜂𝐷𝑗, 𝜌1𝑗, 𝜌2𝑗 and 𝜌3𝑗 are replaced by 𝐸1𝐷𝑗, 𝐸2𝐷𝑗, 𝜂𝐵𝐷𝑗, 

𝜑1𝑗, 𝜑2𝑗 and 𝜑3𝑗, respectively.  

The beam in (Fig. 1) is clamped at its two ends. Under the prescribed displacements and angle 

of twist (refer to (1), (2) and (3)), the beam has four degrees of static indeterminacy. 

The static indeterminacy has to be resolved before to derive solution of the strain energy 

release rate for the delamination.  

The horizontal and vertical reactions, 𝑅𝐻 and 𝑅𝑉, and the bending and torsion moments, 𝑀𝑀 

and 𝑇𝑀, in the left-hand clamping are treated as redundant unknowns. The theorem of Menabrea is 

applied to resolve the indeterminacy 

                                              
∂𝑈

∂𝑅𝐻
= 0,                                                                        (30) 

                                              
∂𝑈

∂𝑅𝑉
= 0,                                                                        (31) 

                                              
∂𝑈

∂𝑀𝑀
= 0,                                                                       (32) 

                                               
∂𝑈

∂𝑇𝑀
= 0,                                                                       (33) 

where the strain energy, 𝑈, in the beam structure is found as 

                                        𝑈 = 𝑈1 + 𝑈2 + 𝑈3 + 𝑈4.                                                          (34) 

Here, 𝑈1 , 𝑈3  and 𝑈4  are the strain energies in beam portions, 𝐻1𝐻2 , 𝐻4𝐻5  and 𝐻5𝐻6 , 

respectively. The strain energy in the upper crack arm (in beam portion, 𝐻2𝐻4) is denoted by 𝑈2. 

The strain energy is calculated in the coordinate system, 𝑥𝑦. The strain energy, 𝑈1, is determined 

as 

  𝑈1 = ∑  ∫
−𝑎1
−𝑙1

𝑗=𝑛
𝑗=1 [ ∬

(𝐴𝑗)
(𝑢01𝜏𝑗 + 𝑢01𝜎𝑗)𝑑𝐴 ] 𝑑𝑥.                          (35)  
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where 𝑢01𝜏𝑗 is the strain energy density due the torsion, 𝑢01𝜎𝑗 is the strain energy density due the 

bending moment and axial force in the j-th layer of the beam, 𝐴𝑗 is the cross-section of the layer. It 

should be specified that the beam has a high length to thickness ratio. Therefore, the shear stresses 

due to shear forces are not considered. The strain energy density, 𝑢01𝜏𝑗, is found as 

                                             𝑢01𝜏𝑗 =
𝜏𝑗
2

2𝐺*𝑗
.                                                                 (36) 

The distribution of the shear stress, 𝜏𝑗, in the cross-section of the j-th layer due to torsion is 

obtained by applying the formula for shear stresses in a multilayered beam loaded in torsion 

(Chobanian 1997) 

𝜏𝑗 =
𝑇𝑀

𝑆1
{ [ ∑∞

𝑘=1,3,... (𝑃𝑘,𝑗𝑐ℎ𝛼𝑘𝑦 + 𝑄𝑘,𝑗𝑠ℎ𝛼𝑘𝑦)𝛼𝑘𝑠ℎ𝛼𝑘𝑧 ]2 +  

                + [ ∑∞
𝑘=1,3,... (𝑃𝑘,𝑗𝑠ℎ𝛼𝑘𝑦 + 𝑄𝑘,𝑗𝑐ℎ𝛼𝑘𝑦 +

8𝐺*𝑗𝑏
2

𝑘3𝜋3
)𝛼𝑘 𝑐𝑜𝑠 𝛼𝑘 𝑧 ]

2

}

1

2
.            (37) 

Axis, 𝑧, is directed along the beam width at the lower surface of the beam. The quantity, 𝛼𝑘, is 

calculated as (Chobanian 1997) 

    𝛼𝑘 =
𝑘𝜋

𝑏
,                                                                      (38) 

The quantities, 𝑃𝑘,𝑗 and 𝑄𝑘,𝑗, are calculated through recurrent formulae (Chobanian 1997)   

𝑃𝑘,𝑗 =
2

(𝑔𝑗,𝑗+1−1)𝑠ℎ2𝛼𝑘ℎ𝑗
[ 𝑄𝑘,𝑗+1𝑔𝑗,𝑗+1 + 𝑄𝐾,𝑗( 𝑠ℎ2𝛼𝑘ℎ𝑗 − 𝑔𝑗,𝑗+1𝑐ℎ

2𝛼𝑘ℎ𝑗 ) +  

                                    +𝑔𝑗,𝑗+1(𝑟𝑘,𝑗+1 − 𝑟𝑘,𝑗)𝑐ℎ
⥂𝛼𝑘ℎ𝑗) ],                                             (39) 

𝑃𝑘,𝑗+1 =
2

(𝑔𝑗,𝑗+1−1)𝑠ℎ2𝛼𝑘ℎ𝑗
[ ⥂ 𝑄𝐾,𝑗+1( 𝑐ℎ2𝛼𝑘ℎ𝑗 − 𝑔𝑗,𝑗+1𝑠ℎ

2𝛼𝑘ℎ𝑗 ) −  

                                    −𝑄𝑘,𝑗+⥂ (𝑟𝑘,𝑗+1 − 𝑟𝑘,𝑗)𝑐ℎ
⥂𝛼𝑘ℎ𝑗) ],                                          (40) 

where  

                                             𝑔𝑗,𝑗+1 =
𝐺*𝑗

𝐺*(𝑗+1)⥂
,                                                            (41) 

                                              𝑟𝑘,𝑗 =
8𝐺*𝑗𝑏

2

𝑘3𝜋3
.                                                               (42) 

In formulae (37)-(42), 𝑗 = 1,  2,   . . . ,  𝑛 − 1. The quantity, ℎ𝑗, is depicted in Fig. 1. Besides 

(Chobanian 1997) 

                                      𝑃𝑘,1 = −
𝑄𝑘,1𝑐ℎ𝛼𝑘ℎ0+𝑟𝑘,1

𝑠ℎ𝛼𝑘ℎ0
,                                                       (43) 

                                      𝑃𝑘,𝑛 = −
𝑄𝑘,𝑛𝑐ℎ𝛼𝑘ℎ𝑛+𝑟𝑘,𝑛

𝑠ℎ𝛼𝑘ℎ𝑛
.                                                      (44) 

Equations (39), (40), (43) and (44) are used to obtain consecutively all unknowns, 𝑃𝑘,𝑗  and 

𝑄𝑘,𝑗, with the same index, 𝑘.  

The stiffness in torsion, 𝑆1, involved in (37) is calculated as (Chobanian 1997) 

𝑆1 =
8

𝜋2
∑

1

𝑘2
∞
𝑘=1,3,... {

𝛼𝑘

2
∑𝑛
𝑗=1 𝑟𝑘,𝑗(ℎ𝑗 − ℎ𝑗−1) + +∑ 𝑃𝑘,𝑗

𝑛
𝑗=1 𝑠ℎ

𝛼𝑘(ℎ𝑗+ℎ𝑗−1)

2
 𝑠ℎ

𝛼𝑘(ℎ𝑗−ℎ𝑗−1)

2
+  
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 +∑ 𝑄𝑘,𝑗
𝑛
𝑗=1 𝑠ℎ

𝛼𝑘(ℎ𝑗−ℎ𝑗−1)

2
 𝑐ℎ

𝛼𝑘(ℎ𝑗+ℎ𝑗−1)

2
}.                                    (45) 

The strain energy density, 𝑢01𝜎𝑗, involved in (36) is found as 

 𝑢01𝜎𝑗 =
𝜎𝑗
2

2𝐸*𝑗
,                                                              (46) 

where the normal stress, 𝜎𝑗, in the j-th layer induced by the bending moment and axial force is 

derived as 

    𝜎𝑗 = 𝐸*𝑗휀𝑗.                                                                (47) 

The distribution of the strains, 휀𝑗, along the thickness is written as 

  휀𝑗 = 𝜅1 (
ℎ

2
− 𝑦 − 𝑦𝑛1−𝑛1),                                                       (48) 

where 

     0 ≤ 𝑦 ≤ ℎ.                                                              (49) 

In formula (48), 𝜅1  and 𝑦𝑛1−𝑛1  are the curvature and the coordinate of the neutral axis, 

respectively. The following equations of equilibrium are used to determine 𝜅1 and 𝑦𝑛1−𝑛1 

     𝑁12 = ∑  
𝑗=𝑛
𝑗=1 ∬

(𝐴𝑗)
𝜎𝑗𝑑𝐴,                                                   (50) 

   𝑀12 = ∑  
𝑗=𝑛
𝑗=1 ∬

(𝐴𝑗)
𝜎𝑗 (

ℎ

2
− 𝑦 − 𝑦𝑛1−𝑛1) 𝑑𝐴.                                  (51) 

The axial force, 𝑁12, and the bending moment, 𝑀12, in beam portion, 𝐻1𝐻2, are found as 

                                            𝑁12 = 𝑅𝐻,                                                                 (52) 

                                     𝑀12 = 𝑅𝑉(𝑥 + 𝑙1) − 𝑀𝑀,                                                    (53) 

where 

                                           −𝑙1 ≤ 𝑥 ≤ −𝑎1.                                                             (54)  

The strain energy, 𝑈2, is obtained as 

 𝑈2 = ∑  ∫
𝑎21
−𝑎1

𝑗=𝑛1
𝑗=1 [ ∬

(𝐴𝑗)
(𝑢02𝜏𝑗 + 𝑢02𝜎𝑗)𝑑𝐴 ] 𝑑𝑥,                            (55) 

where 𝑛1  is the number of layer in the upper crack arm. The strain energy density, 𝑢01𝜏𝑗 , is 

determined by (36). For this purpose, 𝑛 and 𝑆1 are replaced with 𝑛1 and 𝑆2 in formulae (37)-(45). 

Here, 𝑆2 is the stiffness in torsion of the upper crack arm (𝑆2 is found by replacing of 𝑛 with 𝑛1 in 

(45)). Formula (46) is applied to obtain 𝑢02𝜏𝑗. For this purpose, 𝜅1, 𝑦𝑛1−𝑛1 and 𝑛 are replaced with 

𝜅2, 𝑦𝑛2−𝑛2 and 𝑛1 in (48), (50) and (51). Besides, the bending moment involved in (51) is found as 

                           𝑀24 = 𝑅𝑉(𝑥 + 𝑙1) − 𝑀𝑀 + 𝑅𝐻 (
ℎ

2
−

ℎ𝐷

2
).                                         (56) 

The strain energy stored in beam portion, 𝐻4𝐻5, is derived as 

                          𝑈3 = ∑  ∫
𝑙2−𝑎2
𝑎2

𝑗=𝑛

𝑗=1 [ ∬
(𝐴𝑗)

(𝑢03𝜏𝑗 + 𝑢03𝜎𝑗)𝑑𝐴 ] 𝑑𝑥,                         (57) 

where 𝑢03𝜏𝑗  and 𝑢02𝜏𝑗  are obtained by (36) and (46). For this purpose, 𝑆1 , 𝜅1  and 𝑦𝑛1−𝑛1  are 
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replaced with 𝑆3, 𝜅3 and 𝑦𝑛3−𝑛3, respectively.    

The strain energy, 𝑈4, is determined as 

    𝑈4 = ∑  ∫
𝑙−𝑙2
𝑙2

𝑗=𝑛

𝑗=1 [ ∬
(𝐴𝑗)

(𝑢04𝜏𝑗 + 𝑢04𝜎𝑗)𝑑𝐴 ] 𝑑𝑥.                          (58) 

Formulae (36) is applied to calculate 𝑢04𝜏𝑗. For this purpose, 𝑆1 and 𝑇𝑀 are replaced with 𝑆4 

and 𝑇56. Also, 𝑆1 and 𝑇𝑀 are replaced with 𝑆4 and 𝑇56 in formula (37). The torsion moment, 𝑇56, 

in beam portion, 𝐻5𝐻6, is obtained as 

        𝑇56 = 𝑇𝑀 − 𝑇𝐻5 ,                                                             (59) 

where 𝑇𝐻5  is the external torsion moment applied in section, 𝐻5 , of the beam. It should be 

mentioned that 𝑇𝐻5 is unknown. The strain energy density, 𝑢04𝜎𝑗, is calculated by (46). Equations 

(50) and (51) are used to determine the curvature and the coordinate of the neutral axis. For this 

purpose, the axial force and the bending moment in (50) and (51) are replaced by 𝑁56  and 𝑀56. 

The axial force and the bending moment in portion, 𝐻5𝐻6, are derived as 

        𝑁56 = 𝑅𝐻 − 𝐹𝐻,                                                             (60) 

   𝑀56 = 𝑅𝑉(𝑥 + 𝑙1) − 𝑀𝑀 + 𝐹𝑉(𝑥 − 𝑙2),                                             (61) 

where 𝐹𝐻 and 𝐹𝑉 are the external horizontal and vertical forces applied in section, 𝐻6, of the beam 

(𝐹𝐻 and 𝐹𝑉 are unknowns).  

Formulae (37), (52), (53), (56), (59), (60) and (61) indicate that seven unknowns, 𝑅𝐻, 𝑅𝑉, 𝑀𝑀, 

𝑇𝑀, 𝑇𝐻5, 𝐹𝐻 and 𝐹𝑉, are involved in the calculations of the strain energy in the beam structure. The 

same unknowns are involved also in equations (30), (31), (32) and (33). In other words, we have 

four equations with seven unknowns. Further three equations are composed by expressing the 

angle of twist, 𝜙𝐻5 , and the displacements, 𝑢𝐻5  and 𝑣𝐻5 , by the theorem of Castigliano         

      
∂𝑈

∂𝑇𝐻5
= 𝜙𝐻5 ,                                                                  (62) 

     
∂𝑈

∂𝐹𝐻⥂
= 𝑢𝐻5 ,                                                                 (63) 

        
∂𝑈

∂𝐹𝑉
= 𝑣𝐻5 .                                                                  (64) 

After substituting of the strain energy in (30), (31), (32), (33), (62), (63) and (64), the equations 

are solved with respect to 𝑅𝐻 , 𝑅𝑉 , 𝑀𝑀 , 𝑇𝑀 , 𝑇𝐻5 , 𝐹𝐻  and 𝐹𝑉  by using the MatLab computer 

program.  

The strain energy release rate, 𝐺, at increase of delamination in the left-hand delamination tip is 

found as 

   𝐺 =
∂𝑈

𝑏 ∂𝑎1
.                                                                    (65) 

By substituting of (34) in (65), one derives 

 𝐺 =
1

𝑏
[ − ∑  

𝑗=𝑛
𝑗=1 ∬

(𝐴𝑗)
(𝑢01𝜏𝑗 + 𝑢01𝜎𝑗)𝑑𝐴 + ∑  

𝑗=𝑛1
𝑗=1 ∬

(𝐴𝑗)
(𝑢02𝜏𝑗 + 𝑢02𝜎𝑗)𝑑𝐴 ].   (66) 

The material properties involved in (66) are determined at 𝑥 = −𝑎1. The integrals in (66) are 

solved by the MatLab computer program. Formula (66) is used to obtain the strain energy release 
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rate at various values of time.  

At increase of delamination in the right-hand delamination tip, the strain energy release rate is 

obtained as    

   𝐺 =
∂𝑈

𝑏 ∂𝑎2
.                                                                (66) 

By combining of (34) and (66), one determines  

  𝐺 =
1

𝑏
[ ∑  

𝑗=𝑛1
𝑗=1 ∬

(𝐴𝑗)
(𝑢02𝜏𝑗 + 𝑢02𝜎𝑗)𝑑𝐴 − ∑  

𝑗=𝑛⥂
𝑗=1 ∬

(𝐴𝑗)
(𝑢03𝜏𝑗 + 𝑢03𝜎𝑗)𝑑𝐴 ].     (67)  

The material properties involved in (67) are found at 𝑥 = 𝑎2. The integration in (67) is carried-

out by the MatLab computer program. By using (67), one calculates the strain energy release rate 

at various values of time. 

The strain energy release rate is derived also by analyzing the compliances, 𝐶1, 𝐶2 and 𝐶3, of 

the beam for verification of (66) and (67). The compliances are written as 

                                             𝐶1 =
𝑢𝐻5
𝐹𝐻

,                                                              (68) 

                                             𝐶2 =
𝑣𝐻5
𝐹𝑉

,                                                              (69) 

                                              𝐶3 =
𝜙𝐻5

𝑇𝐻5
.                                                             (70) 

The displacements and the angle of twist are expressed as  

𝑢𝐻5 = ∫
−𝑎1
−𝑙1

𝑅𝐻

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛⥂
𝑗=1

𝑅𝐻

𝐹𝐻
𝑑𝑥 + ∫

𝑎2
−𝑎1

𝑅𝐻

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛1
𝑗=1

𝑅𝐻

𝐹𝐻
𝑑𝑥 + ∫ 𝜅2

𝑅𝐻(
ℎ

2
−
ℎ𝐷
2
)

𝐹𝐻

𝑎2
−𝑎1

𝑑𝑥 +  

                +∫
𝑙2
𝑎2

𝑅𝐻

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛
𝑗=1

𝑅𝐻

𝐹𝐻
𝑑𝑥 + ∫

𝑙−𝑙1−𝑙2
𝑙2

𝑅𝐻−𝐹𝐻

∑
𝑗=𝑛
𝑗=1 𝐸*𝑗𝐴𝑗

𝑅𝐻−𝐹𝐻

𝐹𝐻
𝑑𝑥,                              (71) 

where 𝑅𝐻/𝐹𝐻 , (𝑅𝐻 − 𝐹𝐻)/𝐹𝐻  and 𝑅𝐻(ℎ/2 − ℎ𝐷/2)/𝐹𝐻  are the axial forces and the bending 

moment in the beam portions induced by the unit loading for determination of 𝑢𝐻5  

𝑣𝐻5 = ∫
−𝑎1
−𝑙1

𝜅1
𝑅𝑉(⥂𝑙1+𝑥)−𝑀𝑀

𝐹𝑉
𝑑𝑥 + ∫

𝑎2
−𝑎1

⥂ 𝜅2
𝑅𝑉(⥂𝑙1+𝑥)−𝑀𝑀

𝐹𝑉
𝑑𝑥 +  

        +∫
𝑙2
𝑎2

𝜅3
𝑅𝑉(𝑙1+𝑥)−𝑀𝑀

𝐹𝑉
𝑑𝑥 + ∫

𝑙−𝑙1−𝑙2
𝑙2

𝜅4
𝑅𝑉(𝑙1+𝑥)−𝑀𝑀−𝐹𝑉(𝑥−𝑙2)

𝐹𝑉
𝑑𝑥,                  (72) 

where [𝑅𝑉(𝑙1 + 𝑥) − 𝑀𝑀]/𝐹𝑉 and [𝑅𝑉(𝑙1 + 𝑥) −𝑀𝑀 − 𝐹𝑉(𝑥 − 𝑙2)]/𝐹𝑉 are the bending moments 

in the beam portions induced by the unit loading for determination of 𝑣𝐻5   

𝜙𝐻5 = ∫
−𝑎1
−𝑙1

𝑇𝑀

𝑆1

𝑇𝑀

𝑇𝐻5
𝑑𝑥 + ∫

𝑎2
−𝑎1

𝑇𝑀

𝑆2

𝑇𝑀

𝑇𝐻5
𝑑𝑥 + ∫

𝑙2
𝑎2

𝑇𝑀

𝑆3

𝑇𝑀

𝑇𝐻5
𝑑𝑥 +  

∫
𝑙−𝑙1−𝑙2
𝑙2

𝑇𝑀−𝑇𝐻5⥂

𝑆4

𝑇𝑀−𝑇𝐻5
𝑇𝐻5

𝑑𝑥,                                              (73) 

where 𝑇𝑀/𝑇𝐻5  and (𝑇𝑀 − 𝑇𝐻5)/𝑇𝐻5  are the torsion moments in the beam portions induced by the 

unit loading for determination of 𝜙𝐻5 . Expressions (71), (72) and (73) are obtained by applying the 

integrals of Maxwell-Mohr.   

By using the compliance method, the strain energy release rate at increase of the delamination 

in the left-hand delamination tip is found as 
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                            𝐺 =
1

2𝑏
( 𝐹𝐻

2 ∂𝐶1

∂𝑎1
+ 𝐹𝑉

2 ∂𝐶2

∂𝑎1
+ 𝑇𝐻5

2 ∂𝐶3

∂𝑎1
).                                      (74) 

By substituting of (68), (69), (70), (71), (72) and (73) in (74), one derives 

𝐺 =
1

2𝑏
 { −

𝑅𝐻
2

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛

𝑗=1

+ 
𝑅𝐻
2

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛1
𝑗=1

+ 𝜅2𝑅𝐻 (
ℎ

2
−

ℎ𝐷

2
) −  

                   −𝜅1[𝑅𝑉(𝑙1 + 𝑥) − 𝑀𝑀] + 𝜅2[𝑅𝑉(𝑙1 + 𝑥) − 𝑀𝑀] −
𝑇𝑀
2

𝑆1
+ 

𝑇𝑀
2

𝑆2
}.                  (75) 

It should be mentioned that the curvatures and the stiffness in torsion involved in (75) are 

obtained at 𝑥 = −𝑎1. The strain energy release rates found by (75) match these determined by 

using (66). This fact proves the correctness of the solution of the strain energy release rate at 

increase of the delamination in the left-hand delamination tip.  

The application of the compliance method at increase of the delamination in the right-hand 

delamination tip yields the following expression for the strain energy release rate 

  𝐺 =
1

2𝑏
( 𝐹𝐻

2 ∂𝐶1

∂𝑎2
+ 𝐹𝑉

2 ∂𝐶2

∂𝑎2
+ 𝑇𝐻5

2 ∂𝐶3

∂𝑎2
).                                          (76) 

By combing of (68), (69), (70), (71), (72), (73) and (76), one obtains 

𝐺 =
1

2𝑏
 {  

𝑅𝐻
2

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛1
𝑗=1

+ 𝜅2𝑅𝐻 (
ℎ

2
−

ℎ𝐷

2
) − 

𝑅𝐻
2

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛
𝑗=1

+  

     +𝜅2[𝑅𝑉(𝑙1 + 𝑥) − 𝑀𝑀] − 𝜅3[𝑅𝑉(𝑙1 + 𝑥) −𝑀𝑀] +
𝑇𝑀
2

𝑆2
− 

𝑇𝑀
2

𝑆3
}.                  (77) 

The curvatures and the stiffness in torsion involved in (77) are derived at 𝑥 = 𝑎2. The fact that 

the strain energy release rates determined by using (77) match these obtained by (67) confirms the 

correctness of the analysis of the strain energy release rates at increase of the delamination in the 

right-hand delamination tip.  

Another check-up of solutions (66) and (67) is carried-out by considering the energy balance. 

Eq. (78) describes the energy balance at increase of the delamination in the left-hand delamination 

tip. 

    𝐹𝐻𝛿𝑢𝐻5 + 𝐹𝑉𝛿𝑣𝐻5 + 𝑇𝐻5𝛿𝜙𝐻5 =
Δ𝑈

Δ𝑎1
𝛿𝑎1 + 𝐺𝑏𝛿𝑎1.                              (78) 

Eq. (78) is used to determine 𝐺. The result is  

  𝐺 =
𝐹𝐻

𝑏

∂𝑢𝐻5
∂𝑎1

+
𝐹𝑉

𝑏

∂𝑣𝐻5
∂𝑎1

+
𝑇𝐻5
𝑏

∂𝜙𝐻5

∂𝑎1
−

1

𝑏

∂𝑈

∂𝑎1
.                                      (79) 

By inserting of (34), (71), (72) and (73), one obtains  

𝐺 =
1

𝑏
 { −

𝑅𝐻
2

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛
𝑗=1

+ 
𝑅𝐻
2

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛1
𝑗=1

+ 𝜅2𝑅𝐻 (
ℎ

2
−

ℎ𝐷

2
) −  

−𝜅1[𝑅𝑉(𝑙1 + 𝑥) − 𝑀𝑀] + 𝜅2[𝑅𝑉(𝑙1 + 𝑥) − 𝑀𝑀] −
𝑇𝑀
2

𝑆1
+ 

𝑇𝑀
2

𝑆2
+  

      +∑  
𝑗=𝑛
𝑗=1 ∬

(𝐴𝑗)
(𝑢01𝜏𝑗 + 𝑢01𝜎𝑗)𝑑𝐴 − ∑  

𝑗=𝑛1
𝑗=1 ∬

(𝐴𝑗)
(𝑢02𝜏𝑗 + 𝑢02𝜎𝑗)𝑑𝐴 }.             (80) 
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Fig. 3 The strain energy release rate versus time (curve 1-at increase of delamination in the left-

hand delamination tip, curve 2-at increase of delamination in the right-hand delamination tip) 

 

 

Fig. 4 The strain energy release rate versus 𝜃1 (curve 1-at 𝜌11 = 0.5, curve 2-at 𝜌11 = 1.0 and 

curve 3-at 𝜌11 = 1.5) 

 

 

The strain energy release rates determined by (80) match these obtained by (66).  

The energy balance at increase of the delamination in the right-hand delamination tip is 

described by Eq. (81). 

                       𝐹𝐻𝛿𝑢𝐻5 + 𝐹𝑉𝛿𝑣𝐻5 + 𝑇𝐻5𝛿𝜙𝐻5 =
Δ𝑈

Δ𝑎2
𝛿𝑎2 + 𝐺𝑏𝛿𝑎2.                              (81) 

From (34), (71), (72), (73) and (81), it follows that 

𝐺 =
1

𝑏
 {  

𝑅𝐻
2

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛1
𝑗=1

+ 𝜅2𝑅𝐻 (
ℎ

2
−

ℎ𝐷

2
) − 

𝑅𝐻
2

∑ 𝐸*𝑗𝐴𝑗
𝑗=𝑛
𝑗=1

+  

+𝜅2[𝑅𝑉(𝑙1 + 𝑥) − 𝑀𝑀] + 𝜅3[𝑅𝑉(𝑙1 + 𝑥) − 𝑀𝑀] +
𝑇𝑀
2

𝑆2
− 

𝑇𝑀
2

𝑆3
−  

 −∑  
𝑗=𝑛1
𝑗=1 ∬

(𝐴𝑗)
(𝑢02𝜏𝑗 + 𝑢02𝜎𝑗)𝑑𝐴 + ∑  

𝑗=𝑛⥂
𝑗=1 ∬

(𝐴𝑗)
(𝑢03𝜏𝑗 + 𝑢03𝜎𝑗)𝑑𝐴 }.              (82)         
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Fig. 5 The strain energy release rate versus 𝜌21 (curve 1-at 𝜃2 = 0.00066 m, curve 2-at 𝜃2 =
0.00123 m and curve 3-at 𝜃2 = 0.002 m) 

 

 

The strain energy release rates yielded by (82) match these generated by formula (67).    

 

 

3. Parametric investigation 
 

A parametric investigation is performed by applying the solutions of the strain energy release 

rate (66) and (67).  

The results of the parametric investigation are presented in this section of the paper.  

The following data are used: 𝑏 = 0.025  m, ℎ = 0.030  m, 𝑙1 = 0.300  m, 𝑙2 = 0.250  m, 𝑙 =
0.750 m, 𝑛 = 3, 𝑛1 = 2, 𝜃1 = 0.004 m, 𝜃2 = 0.002 m, 𝜃3 = 0.003 rad and 𝛽 = 0.3 × 10−7  1/s. 

The thickness of each layer is 0.010 m.  

Fig. 3 gives the evolution of the strain energy release rate with time. It should be specified that 

the strain energy release rate and time in Fig. 3 are presented in non-dimensional form. For this 

purpose, the following formulae are applied: 𝐺𝑁 = 𝐺/(𝐺1𝐷1𝑏) and 𝑡𝑁 = 𝑡𝐺1𝐷1/𝜂𝐷1. Fig. 3 shows 

that the strain energy release rate at increase of the delamination in right-hand delamination tip is 

lower than that that at increase of the delamination in the left-hand delination tip.  

The explanation of this is linked with the fact that the values of material properties increase 

from the left-hand towards the right-hand end of the beam structure.  

Thus, the right-hand delamination tip is located in a beam section in which the material 

properties have higher values which, actually, is the reason for the decrease of the strain energy 

release rate.  

Fig. 4 shows the results of the analysis for the strain energy release rate over parameter, 𝜃1, at 

three values of 𝜌11. It can be observed in Fig. 4 that increase of 𝜃1 induces increase of the strain 

energy release rate. The inspection of the curves in Fig. 4 reveals that the strain energy release rate 

reduces when 𝜌11 increases.   

Fig. 5 presents the strain energy release rate as a function of parameter, 𝜌21, for three values of 

parameter, 𝜃2. One can observe in Fig. 5 that when 𝜌21 increases, the strain energy release rate 

reduces. The curves in Fig. 5 indicate that the strain energy release rate grows with parameter, 𝜃2.   
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Fig. 6 The strain energy release rate versus 𝜌31  (curve 1-at 𝜃3 = 0.001 rad, curve 2-at 𝜃2 =
0.002 rad and curve 3-at 𝜃2 = 0.003 rad) 

 

 

Fig. 7. The strain energy release rate versus 𝐺2𝐷2/𝐺2𝐷1  ratio (curve 1-at 𝛽 = 0.1 × 10−7  1/s, 

curve 2-at 𝛽 = 0.2 × 10−7 1/s and curve 3-at 𝛽 = 0.3 × 10−7 1/s) 

  

 
Fig. 8 The strain energy release rate versus 𝜂𝐷2/𝜂𝐷1 ratio (curve 1-at 𝑙/ℎ = 15, curve 2-at 𝑙/ℎ =
20 and curve 3-at 𝑙/ℎ = 25)   
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Fig. 9 The strain energy release rate versus 𝐺2𝐷3/𝐺2𝐷1 ratio (curve 1-at upper crack arm with one 

layer, curve 2-at upper crack arm with two layers) 

 

 

The results of the investigation of the effects of parameters, 𝜌31 and 𝜃3, on the strain energy 

release rate are shown in Fig. 6. It is evident form curves in Fig. 6 that increase of 𝜌31 causes 

reduction of the strain energy release rate. It can also be observed in Fig. 6 that when parameter, 

𝜃3, increases, the strain energy release rate increases too.  

The influence of 𝐺2𝐷2/𝐺2𝐷1 ratio and parameter, 𝛽, on the strain energy release is analyzed 

too. In Fig. 7 the strain energy release rate is shown as a function of 𝐺2𝐷2/𝐺2𝐷1 ratio at three 

values of the parameter, 𝛽. It can be seen that increase of 𝐺2𝐷2/𝐺2𝐷1 ratio generates reduction of 

the strain energy release rate (Fig. 7). It is seen also in Fig. 7 that the strain energy release rate 

increases with increase of the parameter, 𝛽. 

The effect of 𝜂𝐷2/𝜂𝐷1 and 𝑙/ℎ ratios on the strain energy release rate is illustrated in Fig. 8. 

The curves shown in Fig. 8 indicate that the strain energy release rate reduces with increasing of 

𝜂𝐷2/𝜂𝐷1 ratio. When 𝑙/ℎ ratio increases, the strain energy release rate increases too (Fig. 8). The 

explanation of this behaviour is in the fact that the bending moments in the beam increase with 

increasing of 𝑙/ℎ ratio.  

The effect of the number of layers in the upper crack arm on the strain energy release rate is 

studied too. For this purpose, a three-layered beam configuration with one layer (i.e., 𝑛1 = 1) in 

the upper crack arm and with two layers in the lower crack arm is also considered.  

The strain energy release rate is plotted versus 𝐺2𝐷3/𝐺2𝐷1 ratio for both cases (upper crack arm 

with one layer and upper crack arm with two layers) in Fig. 9. Inspection of curves in Fig. 9 shows 

that the decrease of the number of layers in the upper crack arm causes significant increase of the 

strain energy release rate (the explanation of this finding is in the reduction of the stiffness of the 

upper crack arm). 

  

 

4. Conclusions 
 

Delamination of a multilayered inhomogeneous beam structure of rectangular cross-section 

under angle of twist, horizontal and vertical displacements which vary continuously with time 
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according to prescribed laws is studied by an analytical approach. The layers are continuously 

inhomogeneous in longitudinal direction. The beam has viscoelastic behaviour. The beam is 

clamped in its both ends. Therefore, under the prescribed angle of twist and displacements the 

beam represents statically undetermined structure having four degrees of indeterminacy. After 

resolving of the static indeterminacy, the strain energy release rate is obtained by considering the 

strain energy stored in the beam. For verification, the strain energy release rate is determined also 

by analyzing the compliances of the beam under prescribed angle of twist and horizontal and 

vertical displacements. A parametric investigation is carried-out. The results obtained indicate that 

the strain energy release rate reduces with increasing of the values of parameters, 𝜌11, 𝜌21 and 𝜌31. 

The increase of 𝐺2𝐷2/𝐺2𝐷1, 𝐺2𝐷3/𝐺2𝐷1 and 𝜂𝐷2/𝜂𝐷1 ratios also generates reduction of the strain 

energy release rate.  The explanation of these finding is linked with increase of the beam stiffness. 

The effect of the parameters which control the change of the prescribed angle of twist and 

displacements on the strain energy release rate is also assessed. It is found that increase of the 

values of parameters, 𝜃1 , 𝜃2 , 𝜃3  and 𝛽 , induces increase of the strain energy release rate. The 

investigation reveals that when 𝑙/ℎ ratio increases, the strain energy release rate increases too (this 

behaviour is due to increase of the bending moments in the beam). The analysis indicates that the 

strain energy release rate is influenced considerably by the number of layers in the upper crack 

arm. The decrease of this number generates significant increase of the strain energy release rate.       
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