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Abstract.  In this paper, we will analyse the thermo-elastic behavior of the plate element of a structure arranged in a 
climatically aggressive environment (extreme temperature), we use a refined four-variable thick plate theory to take 
the shear effect into consideration, the proposed theory less computationally expensive and more accurate so that it 
incorporates the shear effect into the formulation. The plate is assumed to be simply supported on its four edges, so 
exact (closed-form) solutions are found according to the Navier expansion, and the governing stability equations and 
associated boundary conditions of the problem are obtained via the virtual works principle. The plate studied is made 
of laminated composite materials, so a parametric study is needed to see the effect of different types of parameters 
and coupling on the critical temperature value causing thermo-elastic instability of the plate and also on the natural 
frequency of free vibration, as well as for other parameters such as anisotropy, slenderness and aspect ratio of the 
plate and finally the lamination angle. Numerical results are obtained for specially orthotropic and antisymmetrical 
plates and are compared with those obtained by other theories in the literature to validate the analysis approach used. 
 

Keywords:  buckling; composite material; free vibration; instability; laminated plate; Navier series; thermal 

load 

 
 
1. Introduction 
 

Industrial technological developments, especially in the field of material construction, have 
been implemented to have new generation materials to overcome limitations in use and meet 
contemporary challenges in the field of industry, such as space structures for example. For this 
purpose, composite materials have been introduced for the fabrication of smart laminated 
composite structures, which are both strong and lightweight as presented by Eswara and Wanhill 
(2017), Randall and Brian (2012). If these structures are arranged in a climatically aggressive 
environment (extreme temperature), then, thermal instability is the undesirable phenomenon for 

these structures, this phenomenon has long been attracting more attention from the researchers 
Leissa (1987), Majeed and Sadiq (2022). 
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1.1 Review of the literature 
 

By consulting the literature, the elastic instability or in vibration, is a subject that was treated by 

researchers in multitudes situations and by the inclusion of different parameters, geometric related 

to the geometry of the plate or the effect of the distribution of the properties of the materials 

constituting this plate, where we found studies of the bonds at the boundary of the plate in relation 

with the instability of the plate. JEYARAJ (2013), Shinde et al. (2013), SHINDE et al. (2013), 

Sayyad et al. (2014) have dealt with the thermal effect on the dynamic behaviour and elastic 

instability of isotropic plates, the analysis of the instability of laminated plates made of composite 

materials in a thermal environment is a subject dealt with by Wen-Chen and Yi-Chen (1989), 

Also, the stability analysis of a symmetric laminated composite plate has been done by Owhadi 

and Shariat (2009) and many other researchers have done the same type of work, Ounis et al. 

(2014), Subrata et al. (2015), Sayyad et al. (2016), Yusuf and Şeref (2018), Madenci et al. (2020), 

Yang et al. (2020), Farah et al. (2020). Sun (2021) investigated the buckling and vibration 

performance of a composite laminated plate for elastic connections, Javier Gutiérrez and Chiara 

(2021) analyse the thermal buckling and mode hopping of metal plates while Rostamijavanani et 

al. (2020) perform thermo-elastic analysis of memory fibre reinforced laminated composite plates 

and many other studies of similar nature like Bouazza et al. (2016), Patro et al. (2018), Hammed 

and Majeed (2019), Farzad et al. (2019), Foroutan and Ahmadi (2019). The analysis of thermal 

instability of functionally graded plates is a topic that was analyzed by Tung (2015), Rasid and 

Yahaya (2014), Zenkour and Sobhy (2010), Trabelsi et al. (2020), Sobhy (2016). Even beams are 

analysed with the same principles, Zhao et al. (2020) presented a thermo-elastic analysis of forced 

vibrations of a beam, Kobayashi and Sonoda (1991) use a power series expansion method to study 

the free vibration and buckling of an isotropic plate of conical shape. 

 

 

2. Study problem 
 

In this paper, we will analyse the thermo-elastic behaviour of the plate element of a structure 

arranged in a climatically aggressive environment (extreme temperature), thus, its free vibration. 

In this study we use a refined four-variable thick plate theory to take the shear effect into 

consideration. 

 

2.1 Geometric properties of the plate 
 

Let us consider a composite laminated plate of rectangular shape of width a and length b with a 

uniform height h, this plate consists of 𝑁𝑐 layers, in fact, each layer is the result of reinforcement 

of a first material (called matrix) by a second one of different properties in the form of fibres, these 

fibres are arranged, with directions (of angle 𝜃𝑘), uniformly as it is presented in Fig. 1. The local 

coordinates of the material (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) related to the kth layer are oriented at an angle 𝜃𝑘 to the 

axes of the reference frame (𝑥, �̂�, �̂�) The positive ordinate axis z is fixed downwards such that the 

ordinates of the two interfaces of the k-layer are 𝑧 = 𝑧𝑘 and 𝑧 = 𝑧𝑘+1 as shown in Fig. 2. 

 
2.2 Thermal load 

 

The only external load applied on the plate is a thermal load, this load is the resultant of a  
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Analysis of the thermal instability of laminated composite plates 

 

Fig. 1 A laminate with the material and problem coordinate systems 

 

 

Fig. 2 Coordinate system and layer numbering used for a laminated sheet 

 

 

temperature field, we assume that its general form according to the Navier development is 

𝑇(𝑥, 𝑦, 𝑧) = ∑ ∑ 𝑇(𝑧) sin(𝛼𝑥)sin(𝛽𝑦)∞
𝑛=1

∞
𝑚=1                                       (1) 

In this study we will consider three cases of distribution of this field through the thickness: 

• Steady rise in temperature (UTR): 𝑇(𝑧) = Δ𝑇 = (𝑇𝑓 − 𝑇𝑖)    

• Linear Temperature Rise (LTR): 𝑇(𝑧) = 𝑇𝑖 + Δ𝑇(1 2⁄ + 𝑧 ℎ⁄ )    
• Exponential temperature increase (ETR): 𝑇(𝑧) = 𝑇𝑖 + Δ𝑇[1 − cos(𝜋 4⁄ + 𝑧𝜋 ℎ⁄ )]  
With, the distribution of the thermal field across the thickness is 𝑇(𝑧),  𝑇𝑖 the initial temperature 

and 𝑇𝑓  the final temperature and Δ𝑇 = (𝑇𝑓 − 𝑇𝑖)  the change in temperature, to simplify the 

expressions of the equations we put 𝛼 =
𝑚𝜋

𝑎
 and 𝛽 =

𝑛𝜋

𝑏
. 

 

 

3. Mathematical formulation of the study problem 
 

3.1 Assumptions 
 

In order to remain in the small deformation range, we consider that the displacements are small 

in relation to the thickness h. The displacements in the median plane 𝑥𝑦 are 𝑢0(𝑥, 𝑦) + 𝑢
𝑏(𝑥, 𝑦) +

𝑢𝑠(𝑥, 𝑦) in the direction of the x-axis and 𝑣0(𝑥, 𝑦) + 𝑣
𝑏(𝑥, 𝑦) + 𝑣𝑠(𝑥, 𝑦) in the direction of the y-
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axis are the displacements due to the extension  𝑢0(𝑥, 𝑦) ;  𝑣0(𝑥, 𝑦) bending 𝑢𝑏(x, y) =
−z 𝑤0,𝑥

𝑏 ;   𝑣𝑏(x, y) = −z 𝑤0,𝑦
𝑏  and shear displacements 𝑢𝑠(𝑥, 𝑦) = −𝑓(𝑧) 𝑤0,𝑥

𝑠 ; 𝑣𝑠(𝑥, 𝑦) =

−𝑓(𝑧) 𝑤0,𝑦
𝑠  transversally the displacement is  𝑤0

𝑏(x, y) +  𝑤0
𝑠(x, y)  is the result of two 

components, shear   𝑤0
𝑠  and bending  𝑤0

𝑏 . The axial stress along the z-axis, σz  is very small 

compared to 𝜎𝑥 and 𝜎𝑦. 

 

3.2 Displacement and deformation fields  
 

We will grant a point 𝑀(𝑥, 𝑦, 𝑧) of the plate before deformation, after the deformation of the 

plate, under the temperature field, the point 𝑀(𝑥, 𝑦, 𝑧)  will move according to the following 

displacement field, according to the study by Alvarez et al. (2022) 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧𝑤0,𝑥
𝑏 (x, y, 𝑡) − 𝑓(𝑧)𝑤0,𝑥

𝑠 (𝑥, 𝑦, 𝑡)

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧𝑤0,𝑦
𝑏 (x, y, 𝑡) − 𝑓(𝑧)𝑤0,𝑦

𝑠 (𝑥, 𝑦, 𝑡)

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0
𝑏(𝑥, 𝑦, 𝑡) + 𝑤0

𝑠(𝑥, 𝑦, 𝑡)

                       (2) 

According to the theory used, {𝑢(𝑥, 𝑦, 𝑧) 𝑣(𝑥, 𝑦, 𝑧) 𝑤(𝑥, 𝑦, 𝑧)}𝑇 is the displacement field in 

the global reference frame of the laminate  (𝑥, �̂�, �̂�) . The function 𝑓(𝑧)  is the model for the 

development of the shear effect through the thickness, we will base on our proposed model and to 

validate we use a first model of third order shear deformations of Reddy (HPT), Belkacem et al. 

(2016), the second model is that of sinusoidal deformations of Touratier (SPT), Yang et al. (2020) 

(𝑃𝑟𝑒𝑠𝑒𝑛𝑡):   𝑓(𝑧) = h sin (sin (𝜋𝑧 ℎ⁄ )) 𝜋⁄

(HPT)       ∶   𝑓(𝑧) = −(4𝑧3 3ℎ2⁄ ) − 𝑧

(SPT)        ∶   𝑓(𝑧) = (h 𝜋⁄ )sin(𝜋𝑧 ℎ⁄ )

                                         (3) 

Without taking into account the second-order (Von Karman) or higher deformation terms, then 

the linear deformation field takes the following form for the kth layer 

𝜀𝑥
(𝑘) = 𝑢0,𝑥 − 𝑧𝑤0,𝑥𝑥

𝑏 − 𝑓(𝑧)𝑤0,𝑥𝑥
𝑠 = 𝜀𝑥

0 + 𝑧𝑘𝑥
𝑏 + 𝑓(𝑧)𝑘𝑥

𝑠

𝜀𝑦
(𝑘) = 𝑣0,𝑦 − 𝑧𝑤0,𝑦𝑦

𝑏 − 𝑓(𝑧)𝑤0,𝑦𝑦
𝑠 = 𝜀𝑦

0 + 𝑧𝑘𝑦
𝑏 + 𝑓(𝑧)𝑘𝑦

𝑠

𝛾𝑥𝑦
(𝑘) = 𝑢0,𝑦 + 𝑣0,𝑥 − 2z𝑤0,𝑥𝑦

𝑏 − 2f(z)𝑤0,𝑥𝑦
𝑠 = 𝛾𝑥𝑦

0 + 𝑧𝑘𝑥𝑦
𝑏 + 𝑓(𝑧)𝑘𝑥𝑦

𝑠

𝛾𝑦𝑧
(𝑘) = (1 − 𝑓(𝑧),𝑧)𝑤0,𝑦

𝑠 = (1 − 𝑓(𝑧),𝑧)𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
(𝑘) = (1 − 𝑓(𝑧),𝑧)𝑤0,𝑥

𝑠 = (1 − 𝑓(𝑧),𝑧)𝛾𝑥𝑧
𝑠

             (4) 

Under the above assumptions in this methodology {𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦, 𝛾𝑦𝑧 , 𝛾𝑥𝑧}
(𝑘)𝑇

  is the deformation 

field related to the point 𝑀(𝑥, 𝑦, 𝑧) of the kth layer. 

 

3.3 Constitutive equations, stress-strain 
 

We apply Hooke’s law to the case of a linear and orthotropic elastic material. In the presence of 

a thermal load and for each layer, the stress field takes the following form 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}

(𝑘)

= [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

]

(𝑘)

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

}

(𝑘)

− {

𝛼𝑥𝑇(𝑧)

𝛼𝑦𝑇(𝑧)

2𝛼𝑥𝑦𝑇(𝑧)
}

(𝑘)
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Analysis of the thermal instability of laminated composite plates 

Table 1 Values of the undesigned engineering constants of the materials used 

Material Properties 𝐸1(GPa) 𝐸2(GPa) 𝐺12 (GPa) 𝐺13 (GPa) 𝐺23 (GPa) 𝑣12 𝛼1(1 °𝐶⁄ ) 𝛼2 (1 °𝐶⁄ ) 

Graphite-Epoxy 40.E2 6.92 0.6.E2 0.6.E2 0.5.E2 0.25 1,14.10-6 1,14.10-6 

 

 

and  {
𝜏𝑦𝑧
𝜏𝑥𝑧
}
(𝑘)

= [
�̅�44 �̅�45
�̅�45 �̅�55

]

(𝑘)

{
𝛾𝑦𝑧
𝛾𝑥𝑧
}
(𝑘)

                                        (5) 

The stress field {𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑥𝑧}
𝑇
 in the kth layer will be determined using the transformed 

stiffnesses Eq. (8) of the material 

�̅�11
(𝑘)

= 𝑄11cos
4𝜃(𝑘) + 2(𝑄12 + 2𝑄66)cos

2𝜃(𝑘)sin2𝜃(𝑘) + 𝑄22sin
4𝜃(𝑘) 

�̅�12
(𝑘)

= 𝑄12cos
4𝜃(𝑘) + (𝑄11 + 𝑄22 − 4𝑄66)cos

2𝜃(𝑘)sin2𝜃(𝑘) + 𝑄12sin
4𝜃(𝑘) 

�̅�22
(𝑘)

= 𝑄22cos
4𝜃(𝑘) + 2(𝑄12 + 2𝑄66)cos

2𝜃(𝑘)sin2𝜃(𝑘) +𝑄11sin
4𝜃(𝑘) 

�̅�16
(𝑘)

= (𝑄11 − 𝑄12 − 2𝑄66)cos
3𝜃(𝑘)sin𝜃(𝑘) + (2𝑄66

(𝑘)
+ 𝑄12 − 𝑄22) cos𝜃

(𝑘)sin3𝜃(𝑘) 

�̅�26
(𝑘)
= (𝑄11 − 𝑄12 − 2𝑄66)cos𝜃

(𝑘)sin3𝜃(𝑘) + (2𝑄66 + 𝑄12 − 𝑄22)cos
3𝜃(𝑘)sin𝜃(𝑘) 

�̅�66
(𝑘)
= (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)cos

2𝜃(𝑘)sin2𝜃(𝑘) + 𝑄66(cos
4𝜃(𝑘) + sin4𝜃(𝑘)) 

�̅�44
(𝑘)
= 𝑄44cos

2𝜃(𝑘) + 𝑄55sin
2𝜃(𝑘) 

�̅�45
(𝑘)

= (𝑄55 − 𝑄44)cos𝜃
(𝑘)sin𝜃(𝑘) �̅�55

(𝑘)
= 𝑄55cos

2𝜃(𝑘) + 𝑄44sin
2𝜃(𝑘)           (6) 

The coefficient of thermal expansion 𝛼𝑥, 𝛼𝑦 and 𝛼𝑥𝑦 transformed into the global axis system, 

with 

α𝑥
(𝑘)
= 𝛼1cos

2𝜃(𝑘) + 𝛼2sin
2𝜃(𝑘) α𝑦

(𝑘) = 𝛼1sin
2𝜃(𝑘) + 𝛼2cos

2𝜃(𝑘)  

α𝑥𝑦
(𝑘)

= (𝛼1 − 𝛼2)sin𝜃
(𝑘)cos𝜃(𝑘)                                           (7) 

The laws of elasticity allow the material stiffnesses to be related to 𝑄𝑖𝑗
(𝑘)
; 𝑖, 𝑗 = 1,2,4,5,6 to the 

engineering constants as presented in the following formulas 

𝑄11 =
𝐸1

1−𝑣12𝑣21
 ;   𝑄12 =

𝑣12𝐸2

1−𝑣12𝑣21
 ; 𝑄22 =

𝐸2

1−𝑣12𝑣21
 ;  𝑄66 = 𝐺12 ;  𝑄44 = 𝐺23 ;  𝑄55 = 𝐺13    (8) 

In the case of plane stress, the reduced stiffnesses require the following independent 

engineering constants: 

The resultant forces and moments are found by integrating, through the thickness of the plate, 

the stresses taking into account the adopted theory, as follows 

[

𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦

𝑀𝑥
𝑏 𝑀𝑦

𝑏 𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠 𝑀𝑦

𝑠 𝑀𝑥𝑦
𝑠

] = ∑(∫ {
1
𝑧

𝑓(𝑧)
} (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)

(𝑘)
𝑧𝑘+1

𝑧𝑘

𝑑𝑧)

N𝑐

𝑘=1

  

and {
𝑆𝑦𝑧
𝑠

𝑆𝑥𝑦
𝑠 } = ∑ (∫ (1 −

𝑑𝑓(𝑧)

𝑑𝑧
) {
𝜏𝑦𝑧
𝜏𝑥𝑧
}
(𝑘)

𝑧𝑘+1
𝑧𝑘

𝑑𝑧)
N𝑐
𝑘=1                                 (9) 

Similarly, to find the field of thermal forces and moments, but in this case using the thermal 

properties of the plate and the expression for the temperature distribution 
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[

N𝑥
𝑇 = N0

𝑇 N𝑦
𝑇 = N0

𝑇 N𝑥𝑦
𝑇 = 0

𝑀𝑥
𝑏𝑇 = 𝑀0

𝑏𝑇 𝑀𝑦
𝑏𝑇 = 𝑀0

𝑏𝑇 𝑀𝑥𝑦
𝑏𝑇 = 0

𝑀𝑥
𝑠𝑇 = 𝑀0

𝑠𝑇 𝑀𝑦
𝑠𝑇 = 𝑀0

𝑠𝑇 𝑀𝑥𝑦
𝑠𝑇 = 0

] = ∑ ∫
𝐸(𝑘)

1−𝑣(𝑘)
𝑧𝑘+1
𝑧𝑘

𝑁𝑐
𝑘=1 𝑇(𝑥, 𝑦, 𝑧) {

1
𝑧

𝑓(𝑧)
} {𝛼0, 𝛼0, 0}

(𝑘)𝑑𝑧  

(10) 

N.B.: From the data in Table 1, we have 𝛼1 = 𝛼2 and from the transformations in Eq. (5) the 

transformed thermal expansion coefficients are: 𝛼x = 𝛼𝑦 = 𝛼0 and 𝛼yx = 0 

After doing the integrations Eq. (9) and Eq. (10) we get eleven resultant forces and moments, 

as a function of eleven membrane deformations and curvatures, these results are organized in the 

following matrices Eq. (11) and Eq. 

{
 
 
 
 
 

 
 
 
 
 
{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

}

{

𝑀𝑥
𝑏

𝑀𝑦
𝑏

𝑀𝑥𝑦
𝑏

}

{

𝑀𝑥
𝑠

𝑀𝑦
𝑠

𝑀𝑥𝑦
𝑠
}

}
 
 
 
 
 

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
[

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

] [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] [

𝐵11
𝑠 𝐵12

𝑠 𝐵16
𝑠

𝐵12
𝑠 𝐵22

𝑠 𝐵26
𝑠

𝐵16
𝑠 𝐵26

𝑠 𝐵66
𝑠
]

[

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] [

𝐷11
𝑠 𝐷12

𝑠 𝐷16
𝑠

𝐷12
𝑠 𝐷22

𝑠 𝐷26
𝑠

𝐷16
𝑠 𝐷26

𝑠 𝐷66
𝑠
]

[

𝐵11
𝑠 𝐵12

𝑠 𝐵16
𝑠

𝐵12
𝑠 𝐵22

𝑠 𝐵26
𝑠

𝐵16
𝑠 𝐵26

𝑠 𝐵66
𝑠
] [

𝐷11
𝑠 𝐷12

𝑠 𝐷16
𝑠

𝐷12
𝑠 𝐷22

𝑠 𝐷26
𝑠

𝐷16
𝑠 𝐷26

𝑠 𝐷66
𝑠
] [

𝐻11
𝑠 𝐻12

𝑠 𝐻16
𝑠

𝐻12
𝑠 𝐻22

𝑠 𝐻26
𝑠

𝐻16
𝑠 𝐻26

𝑠 𝐻66
𝑠
]

]
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 
{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

}

{

𝜅𝑥
𝑏

𝜅𝑦
𝑏

𝜅𝑥𝑦
𝑏

}

{

𝜅𝑥
𝑠

𝜅𝑦
𝑠

𝜅𝑥𝑦
𝑠
}

}
 
 
 
 
 

 
 
 
 
 

−

{
 
 
 
 

 
 
 
 
{
N0
𝑇

N0
𝑇

0

}

{
𝑀0
𝑏𝑇

𝑀0
𝑏𝑇

0

}

{
𝑀0
𝑠𝑇

𝑀0
𝑠𝑇

0

}

}
 
 
 
 

 
 
 
 

 

(11) 

{
𝑆𝑦𝑧
𝑠

𝑆𝑥𝑧
𝑠 } = [

𝐴44
𝑠 𝐴45

𝑠

𝐴45
𝑠 𝐴55

𝑠 ] {
𝛾𝑦𝑧
𝑠

𝛾𝑥𝑧
𝑠 }                                              (12) 

The normal and coupling stiffnesses {𝐴ij, 𝐵ij, 𝐷ij, 𝐵ij
𝑠 , 𝐷ij

𝑠, 𝐻ij
𝑠, 𝐴𝑖𝑗

𝑠 } and coupling stiffnesses are 

calculated taking into account the layering of each layer and the properties of the materials used, as 

follows 

{𝐴ij, 𝐵ij, 𝐷ij, 𝐵ij
𝑠 , 𝐷ij

𝑠, 𝐻ij
𝑠} = ∑ ∫ 𝑄ij

(𝑘){1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧)}
𝑧𝑘+1
𝑧𝑘

N𝑐
𝑘=1 𝑑𝑧;  𝑖, 𝑗 = 1,2,6     (13) 

𝐴𝑖𝑗
𝑠 = ∑ ∫ 𝑄ij

(𝑘)
(1 −

𝑑𝑓(𝑧)

𝑑𝑧
)
2𝑧𝑘+1

𝑧𝑘

N𝑐
𝑘=1 𝑑𝑧;  𝑖, 𝑗 = 4,5                                 (14) 

 

3.4 Stability governing equations 
 

To find the equilibrium equations of the plate we can express them using the principle of virtual 

works in its dynamic version, as, Yang et al. (2020) 

∫𝛿(𝑈 + 𝑉 − 𝐸)𝑑𝑡 = 0                                                   (15) 

Where, the internal strain energy 𝛿𝑈the virtual work 𝛿𝑉 done by the thermal forces caused by the 

thermal stresses applied in the plane and 𝛿𝐸 is the kinetic energy, these quantities are integrated as 

follows: 

• The deformation energy 

𝑈 = ∬[∫ [𝑁𝑥𝜀𝑥
0 +𝑁𝑦𝜀𝑦

0 +𝑁𝑥𝑦𝛾𝑥𝑦
0 +M𝑥

𝑏𝜅𝑥
𝑏 +M𝑦

𝑏𝜅𝑦
𝑏 +M𝑥𝑦

𝑏 𝜅𝑥𝑦
𝑏 +M𝑥

𝑠𝜅𝑥
𝑠 +M𝑦

𝑠𝜅𝑦
𝑠 +

+ℎ/2

−ℎ/2

M𝑥𝑦
𝑠 𝜅𝑥𝑦

𝑠 + S𝑦𝑧
𝑠 𝛾𝑦𝑧

𝑠 + S𝑥𝑧
𝑠 𝛾𝑥𝑧

𝑠 ]𝑑𝑧]𝑑𝑥𝑑𝑦  
(16) 
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• The work of the forces caused by the thermal field in the 

𝑉 = −∬[𝐹𝑥(𝑤0,𝑥𝑥
𝑏 +𝑤0,𝑥𝑥

𝑠 ) + 2𝐹𝑥𝑦(𝑤0,𝑥𝑦
𝑏 +𝑤0,𝑥𝑦

𝑠 ) + 𝐹𝑦(𝑤0,𝑦𝑦
𝑏 + 𝑤0,𝑦𝑦

𝑠 )]𝑑𝑥𝑑𝑦     (17) 

• The kinetic energy of the plate 

𝐸 =
1

2
∬{𝛿𝑢(𝐼1�̈� − 𝐼2�̈�0,𝑥

𝑏 − 𝐼4�̈�0,𝑥
𝑠 ) + 𝛿𝑣(𝐼1�̈� − 𝐼2�̈�0,𝑦

𝑏 − 𝐼4�̈�0,𝑦
𝑠 ) + 𝛿𝑤0

𝑏[𝐼1(�̈�0
𝑏 + �̈�0

𝑠) +

𝐼2(�̈�,𝑥 + �̈�,𝑦) − 𝐼3(�̈�0,𝑥𝑥
𝑏 + �̈�0,𝑦𝑦

𝑏 ) − 𝐼5(�̈�0,𝑥𝑥
𝑠 + �̈�0,𝑦𝑦

𝑠 )] + 𝛿𝑤0
𝑠[𝐼1(�̈�0

𝑏 + �̈�0
𝑠) +

𝐼4(�̈�,𝑥 + �̈�,𝑦) − 𝐼5(�̈�0,𝑥𝑥
𝑏 + �̈�0,𝑦𝑦

𝑏 ) − 𝐼6(�̈�0,𝑥𝑥
𝑠 + �̈�0,𝑦𝑦

𝑠 )]} 𝑑𝑥𝑑𝑦  

(18) 

We substitute equations Eq. (16), Eq. (17) and Eq. (18) into equation (15) and integrate through 

the thickness, the latter equation Eq. (15) can be rewritten as 

∬[{𝑁𝑥𝛿𝜀𝑥
0 +𝑁𝑦𝛿𝜀𝑦

0 +𝑁𝑥𝑦𝛿𝜀𝑥𝑦
0 +𝑀𝑥

𝑏𝛿𝑘𝑥
𝑏 +𝑀𝑦

𝑏𝛿𝑘𝑦
𝑏 +𝑀𝑥𝑦

𝑏 𝛿𝑘𝑥𝑦
𝑏 +𝑀𝑥

𝑠𝛿𝑘𝑥
𝑠 +𝑀𝑦

𝑠𝛿𝑘𝑦
𝑠 +

𝑀𝑥𝑦
𝑠 𝛿𝑘𝑦𝑧

𝑠 + 𝑆𝑦𝑧
𝑠 𝛿𝛾𝑦𝑧

𝑠 + 𝑆𝑥𝑧
𝑠 𝛿𝛾𝑥𝑧

𝑠 } − {𝐹𝑥(𝑤0,𝑥𝑥
𝑏 +𝑤0,𝑥𝑥

𝑠 ) + 2𝐹𝑥𝑦(𝑤0,𝑥𝑦
𝑏 + 𝑤0,𝑥𝑦

𝑠 ) +

𝐹𝑦(𝑤0,𝑦𝑦
𝑏 +𝑤0,𝑦𝑦

𝑠 )} + {𝛿𝑢𝐼1�̈� + 𝛿𝑣𝐼1�̈� + 𝛿𝑤0
𝑏[𝐼1(�̈�0

𝑏 + �̈�0
𝑠) − 𝐼2(�̈�0,𝑥𝑥

𝑏 + �̈�0,𝑦𝑦
𝑏 ) −

𝐼3(�̈�0,𝑥𝑥
𝑠 + �̈�0,𝑦𝑦

𝑠 )] + 𝛿𝑤0
𝑠[𝐼1(�̈�0

𝑏 + �̈�0
𝑠) − 𝐼3(�̈�0,𝑥𝑥

𝑏 + �̈�0,𝑦𝑦
𝑏 ) − 𝐼4(�̈�0,𝑥𝑥

𝑠 +

�̈�0,𝑦𝑦
𝑠 )]}] 𝑑𝑥𝑑𝑥 = 0  

(19) 

The thermal compression forces in the plane 𝐹𝑥  and 𝐹𝑦  plane now represent loads instead of 

reaction forces 

{𝐹𝑥 , 𝐹𝑦, 𝐹𝑥𝑦} = ∑
𝐸(𝑘)

1−𝑣(𝑘)
∫ 𝑇(𝑧)𝑑𝑧
𝑧𝑘+1
𝑧𝑘

𝑁𝑐
𝑘=1 {𝛼0, 𝛼0, 0}

(𝑘)                               (20) 

The inertias of the plate are defined as (21), where 𝜌(𝑘) is the mass per unit volume for the kth 

layer. 

{𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6} = ∑ ∫ 𝜌(𝑘)(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓(𝑧)2)𝑑𝑧
𝑧𝑘+1
𝑧=𝑧𝑘

𝑁𝑐
𝑘=1                   (21) 

The governing equilibrium equations can be determined from Eq. (19) by integration by parts, 

so 

𝛿𝑢 ≠ 0: 𝑁𝑥,𝑥 +𝑁𝑥𝑦,𝑦 = 𝐼1�̈� − 𝐼2�̈�0,𝑥
𝑏 − 𝐼4�̈�0,𝑥

𝑠  

(22) 

𝛿𝑣 ≠ 0: 𝑁𝑥𝑦,𝑥 +𝑁𝑦,𝑦 = 𝐼1�̈� − 𝐼2�̈�0,𝑦
𝑏 − 𝐼4�̈�0,𝑦

𝑠  

𝛿𝑤𝑏 ≠ 0: 
𝑀𝑥,𝑥𝑥
𝑏 + 2𝑀𝑥𝑦,𝑥𝑦

𝑏 +𝑀𝑦,𝑦𝑦
𝑏 + 𝐹𝑥𝑤0,𝑥𝑥

𝑏 + 𝐹𝑦𝑤0,𝑦𝑦
𝑏 = 𝐼2(�̈�,𝑥 + �̈�,𝑦) + 𝐼1(�̈�0

𝑏 + �̈�0
𝑠) −

𝐼3(�̈�0,𝑥𝑥
𝑏 + �̈�0,𝑦𝑦

𝑏 ) − 𝐼5(�̈�0,𝑥𝑥
𝑠 + �̈�0,𝑦𝑦

𝑠 )  

𝛿𝑤𝑠 ≠ 0: 
𝑀𝑥,𝑥𝑥
𝑠 + 2𝑀𝑥𝑦,𝑥𝑦

𝑠 +𝑀𝑦,𝑦𝑦
𝑠 + 𝐹𝑥𝑤0,𝑥𝑥

𝑠 + 2𝐹𝑥𝑦𝑤0,𝑥𝑦
𝑠 + 𝐹𝑦𝑤0,𝑦𝑦

𝑠 + 𝑆𝑥𝑧,𝑥
𝑠 + 𝑆𝑦𝑧,𝑦

𝑠 =

𝐼4(�̈�,𝑥 + �̈�,𝑦) + 𝐼1(�̈�0
𝑏 + �̈�0

𝑠) − 𝐼5(�̈�0,𝑥𝑥
𝑏 + �̈�0,𝑦𝑦

𝑏 ) − 𝐼6(�̈�0,𝑥𝑥
𝑠 + �̈�0,𝑦𝑦

𝑠 )  

 
3.5 Stability governing equations in terms of displacement 

 

Based on the stability equations Eq. (22) found in the previous section, we substitute the 

resultant forces and resultant moments from the expressions in Eq. (11), and then exploit the 

expressions for deformations found in Eq. (4), we finally arrive at four stability equations in terms 

of displacements, as follows  
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𝐴11𝑢0,𝑥𝑥 + 2𝐴16𝑢0,𝑥𝑦 + 𝐴66𝑢0,𝑦𝑦 + 𝐴16𝑣0,𝑥𝑥 + (𝐴12 + 𝐴66)𝑣0,𝑥𝑦 + 𝐴26𝑣0,𝑦𝑦 −

𝐵11𝑤0,𝑥𝑥𝑥
𝑏 − (𝐵12 + 2𝐵66)𝑤0,𝑥𝑦𝑦

𝑏 − 3𝐵16𝑤0,𝑥𝑥𝑦
𝑏 −𝐵26𝑤0,𝑦𝑦𝑦

𝑏 − 𝐵11
𝑠 𝑤0,𝑥𝑥𝑥

𝑠 − (𝐵12
𝑠 +

2𝐵66
𝑠 )𝑤0,𝑥𝑦𝑦

𝑠 − 3𝐵16
𝑠 𝑤0,𝑥𝑥𝑦

𝑠 − 𝐵26
𝑠 𝑤0,𝑦𝑦𝑦

𝑠 − 𝐼1�̈� + 𝐼2�̈�0,𝑥
𝑏 + 𝐼4�̈�0,𝑥

𝑠 = 𝑁0,𝑥
𝑇   

(23) 

𝐴16𝑢0,𝑥𝑥 + (𝐴12 + 𝐴66)𝑢0,𝑥𝑦 + 𝐴26𝑢0,𝑦𝑦 + 𝐴22𝑣0,𝑦𝑦 + 2𝐴26𝑣0,𝑥𝑦 + 𝐴66𝑣0,𝑥𝑥 −

𝐵22𝑤0,𝑦𝑦𝑦
𝑏 − (𝐵12 + 2𝐵66)𝑤0,𝑥𝑥𝑦

𝑏 − 3𝐵26𝑤0,𝑥𝑦𝑦
𝑏 − 𝐵16𝑤0,𝑥𝑥𝑥

𝑏 − 𝐵22
𝑠 𝑤0,𝑦𝑦𝑦

𝑠 − (𝐵12
𝑠 +

2𝐵66
𝑠 )𝑤0,𝑥𝑥𝑦

𝑠 − 3𝐵26
𝑠 𝑤0,𝑥𝑦𝑦

𝑠 −𝐵16
𝑠 𝑤0,𝑥𝑥𝑥

𝑠 − 𝐼1�̈� + 𝐼2�̈�0,𝑦
𝑏 + 𝐼4�̈�0,𝑦

𝑠 = 𝑁0,𝑦
𝑇   

(24) 

−𝐵11𝑢0,𝑥𝑥𝑥 − (𝐵12 + 2𝐵66)𝑢0,𝑥𝑦𝑦 − 3𝐵16𝑢0,𝑥𝑥𝑦 − 𝐵26𝑢0,𝑦𝑦𝑦 − 𝐵22𝑣0,𝑦𝑦𝑦 − (𝐵12 +

2𝐵66)𝑣0,𝑥𝑥𝑦 − 3𝐵26𝑣0,𝑥𝑦𝑦 − 𝐵16𝑣0,𝑥𝑥𝑥 + 𝐷11𝑤0,𝑥𝑥𝑥𝑥
𝑏 + 2(𝐷12 + 2𝐷66)𝑤0,𝑥𝑥𝑦𝑦

𝑏 +

4𝐷16𝑤0,𝑥𝑥𝑥𝑦
𝑏 + 4𝐷26𝑤0,𝑥𝑦𝑦𝑦

𝑏 + 𝐷22𝑤0,𝑦𝑦𝑦𝑦
𝑏 + 𝐹𝑥𝑤0,𝑥𝑥

𝑏 + 𝐹𝑦𝑤0,𝑦𝑦
𝑏 + 𝐷11

𝑠 𝑤0,𝑥𝑥𝑥𝑥
𝑠 +

2(𝐷12
𝑠 + 2𝐷66

𝑠 )𝑤0,𝑥𝑥𝑦𝑦
𝑠 + 4𝐷16

𝑠 𝑤0,𝑥𝑥𝑥𝑦
𝑠 + 4𝐷26

𝑠 𝑤0,𝑥𝑦𝑦𝑦
𝑠 +𝐷22

𝑠 𝑤0,𝑦𝑦𝑦𝑦
𝑠 + 𝐹𝑥𝑤0,𝑥𝑥

𝑠 + 𝐹𝑦𝑤0,𝑦𝑦
𝑠 +

𝐼2(�̈�,𝑥 + �̈�,𝑦) + 𝐼1(�̈�0
𝑏 + �̈�0

𝑠) − 𝐼3(�̈�0,𝑥𝑥
𝑏 + �̈�0,𝑦𝑦

𝑏 ) − 𝐼5(�̈�0,𝑥𝑥
𝑠 + �̈�0,𝑦𝑦

𝑠 ) = −𝑀0,𝑥𝑥
𝑏𝑇 −𝑀0,𝑦𝑦

𝑏𝑇   

(25) 

−𝐵11
𝑠 𝑢0,𝑥𝑥𝑥 − (𝐵12

𝑠 + 2𝐵66
𝑠 )𝑢0,𝑥𝑦𝑦 − 3𝐵16

𝑠 𝑢0,𝑥𝑥𝑦 − 𝐵26
𝑠 𝑢0,𝑦𝑦𝑦 − 𝐵22

𝑠 𝑣0,𝑦𝑦𝑦 − (𝐵12
𝑠 +

2𝐵66
𝑠 )𝑣0,𝑥𝑥𝑦 − 3𝐵26

𝑠 𝑣0,𝑥𝑦𝑦 − 𝐵16
𝑠 𝑣0,𝑥𝑥𝑥 + 𝐷11

𝑠 𝑤0,𝑥𝑥𝑥𝑥
𝑏 + 2(𝐷12

𝑠 + 2𝐷66
𝑠 )𝑤0,𝑥𝑥𝑦𝑦

𝑏 +

4𝐷16
𝑠 𝑤0,𝑥𝑥𝑥𝑦

𝑏 + 4𝐷26
𝑠 𝑤0,𝑥𝑦𝑦𝑦

𝑏 + 𝐷22
𝑠 𝑤0,𝑦𝑦𝑦𝑦

𝑏 + 𝐹𝑥𝑤0,𝑥𝑥
𝑏 + 𝐹𝑦𝑤0,𝑦𝑦

𝑏 +𝐻11
𝑠 𝑤0,𝑥𝑥𝑥𝑥

𝑠 +

2(𝐻12
𝑠 + 2𝐻66

𝑠 )𝑤0,𝑥𝑥𝑦𝑦
𝑠 + 4𝐻16

𝑠 𝑤0,𝑥𝑥𝑥𝑦
𝑠 + 4𝐻26

𝑠 𝑤0,𝑥𝑦𝑦𝑦
𝑠 +𝐻22

𝑠 𝑤0,𝑦𝑦𝑦𝑦
𝑠 + 𝐴55

𝑠 𝑤0,𝑥𝑥
𝑠 +

2𝐴45
𝑠 𝑤0,𝑥𝑦

𝑠 + 𝐴44
𝑠 𝑤0,𝑦𝑦

𝑠 + 𝐹𝑥𝑤0,𝑥𝑥
𝑠 + 𝐹𝑦𝑤0,𝑦𝑦

𝑠 + 𝐼4(�̈�,𝑥 + �̈�,𝑦) + 𝐼1(�̈�0
𝑏 + �̈�0

𝑠) −

𝐼5(�̈�0,𝑥𝑥
𝑏 + �̈�0,𝑦𝑦

𝑏 ) − 𝐼6(�̈�0,𝑥𝑥
𝑠 + �̈�0,𝑦𝑦

𝑠 ) = −𝑀0,𝑥𝑥
𝑠𝑇 −𝑀0,𝑦𝑦

𝑠𝑇   

(26) 

 

 

4. Analytical solutions to the problem 
 

4.1 Matrix writing of the problem 
 

In the case of specially orthotropic or antisymmetric layering, we use the Navier 

approximations given in Eq. (27) for the displacement field, for further details and clarification of 

the boundary conditions please see reference Shiau and Wu (1997). 

Antisymmetrical cross-pleated 

𝑢0(𝑥, 𝑦)    =
∑ ∑ 𝑒𝑗𝜔𝑡𝑈𝑚𝑛. cos(𝛼𝑥)sin(𝛽𝑦)

∞
𝑛=1

∞
𝑚=1 . 

𝑣0(𝑥, 𝑦)    =
∑ ∑ 𝑒𝑗𝜔𝑡𝑉𝑚𝑛. sin(𝛼𝑥)cos(𝛽𝑦)

∞
𝑛=1

∞
𝑚=1 . 

Antisymmetrical with angular folds 

𝑢0(𝑥, 𝑦)    =
∑ ∑ 𝑒𝑗𝜔𝑡𝑈𝑚𝑛. cos(𝛼𝑥)sin(𝛽𝑦)

∞
𝑛=1

∞
𝑚=1 . 

𝑣0(𝑥, 𝑦)    =
∑ ∑ 𝑒𝑗𝜔𝑡𝑉𝑚𝑛. sin(𝛼𝑥)cos(𝛽𝑦)

∞
𝑛=1

∞
𝑚=1 . 

And for all stratifications 

𝑤0
𝑏(𝑥, 𝑦) = ∑ ∑ 𝑒𝑗𝜔𝑡𝑊𝑚𝑛

𝑏  . sin(𝛼𝑥)sin(𝛽𝑦)∞
𝑛=1

∞
𝑚=1

𝑤0
𝑠(𝑥, 𝑦) = ∑ ∑ 𝑒𝑗𝜔𝑡𝑊𝑚𝑛

𝑠  . sin(𝛼𝑥)sin(𝛽𝑦)∞
𝑛=1

∞
𝑚=1

for 𝛼 =
𝑚𝜋

𝑎
  and  𝛽 =

𝑛𝜋

𝑏
               (27) 

We substitute the field (27) in the stability equations Eq. (23)-Eq. (26), the resulting 

expressions are organized in a matrix writing in the form 

 [𝑅]{𝑑𝑚𝑛} − 𝜔
2[𝑀]{𝑑𝑚𝑛} = {𝐹𝑚𝑛}                                         (28) 
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In this writing, [𝑅] is the symmetric matrix of modified rigidities, [𝑀] is the symmetric mass 

matrix, {𝑑𝑚𝑛} the vector of unknown displacements and the vector of thermal forces acting on the 

plate is {𝐹𝑚𝑛} with 

[𝑅] = [

𝑅11 𝑅12 𝑅13 𝑅14
𝑅12 𝑅22 𝑅23 𝑅24
𝑅13 𝑅23 𝑅33 − 𝐹 𝑅34 − 𝐹
𝑅14 𝑅24 𝑅34 − 𝐹 𝑅44 − 𝐹

] , [𝑀] = [

𝑀11 𝑀12 𝑀13 𝑀14
𝑀12 𝑀22 𝑀23 𝑀24
𝑀13 𝑀23 𝑀33 𝑀34
𝑀14 𝑀24 𝑀34 𝑀44

] 

and {𝑑𝑚𝑛} = {𝑈𝑚𝑛, 𝑉𝑚𝑛,𝑊𝑚𝑛
𝑏 ,𝑊𝑚𝑛

𝑠 }𝑇 {𝐹𝑚𝑛} = {𝐹𝑚𝑛
1 , 𝐹𝑚𝑛

2 , 𝐹𝑚𝑛
3 , 𝐹𝑚𝑛

4 }𝑇 

The rigidities (𝑅𝑖𝑗) are determined after substituting the field Eq. (27) into Eq. (23) to Eq. (26), 

then 

𝑅11 = 𝐴11𝛼
2 + 2𝐴16𝛼𝛽 + 𝐴66𝛽

2 

𝑅12 = 𝐴16𝛼
2 + (𝐴12 + 𝐴66)𝛼𝛽 + 𝐴26𝛽

2 

𝑅13 = −𝐵11𝛼
3 − (𝐵12 + 2𝐵66)𝛼𝛽

2 − 3𝐵16𝛼
2β − 𝐵26𝛽

3 

𝑅14 = −𝐵11
𝑠 𝛼3 − (𝐵12

𝑠 + 2𝐵66
𝑠 )𝛼𝛽2 − 3𝐵16

𝑠 𝛼2β − 𝐵26
𝑠 𝛽3 

𝑅22 = 𝐴22𝛽
2 + 2𝐴26𝛼𝛽 + 𝐴66𝛼

2 

𝑅23 = −𝐵22𝛽
3 − (𝐵12 + 2𝐵66)𝛼

2β − 3𝐵26𝛼𝛽
2 −𝐵16𝛼

3 

𝑅24 = −𝐵22
𝑠 𝛽3 − (𝐵12

𝑠 + 2𝐵66
𝑠 )𝛼2β − 3𝐵26

𝑠 𝛼𝛽2 −𝐵16
𝑠 𝛼3 

𝑅33 = 𝐷11𝛼
4 + 2(𝐷12 + 2𝐷66)𝛼

2𝛽2 + 4𝐷16𝛼
3β + 4𝐷26𝛼𝛽

3 +𝐷22𝛽
4 

𝑅34 = 𝐷11
𝑠 𝛼4 + 2(𝐷12

𝑠 + 2𝐷66
𝑠 )𝛼2𝛽2 + 4𝐷16

𝑠 𝛼3β + 4𝐷26
𝑠 𝛼𝛽3 +𝐷22

𝑠 𝛽4 

𝑅44 = 𝐻11
𝑠 𝛼4 + 2(𝐻12

𝑠 + 2𝐻66
𝑠 )𝛼2𝛽2 + 4𝐻16

𝑠 𝛼3β + 4𝐻26
𝑠 𝛼𝛽3 +𝐻22

𝑠 𝛽4 + 𝐴55
𝑠 𝛼2 

+2𝐴45
𝑠 𝛼𝛽 + 𝐴44

𝑠 𝛽2                                                  (29) 

In order for us to develop closed form Navier solutions, we need to have a zero thermal shear 

residual stress 𝐹𝑥𝑦 = 0 (this condition is verified by the numerical values in Table 1). Due to 

simplification of the parametric study, we set 𝐹𝑥 = 𝜉𝐹𝑦. In order to have a uni-axial thermal effect, 

we will take 𝜉 = 0 and 𝜉 = 1 for a bi-axial effect, then 

𝐹 = 𝐹𝑥𝛼
2 + 𝐹𝑦𝛽

2 = 𝐹𝑥(𝛼
2 + 𝜉𝛽2)                                      (30) 

The coefficients (𝑀𝑖𝑗) are determined after applying the field Eq. (27) in Eq. (23) to Eq. (26), 

then 

𝑀11 = −𝐼1 𝑀12 = 0 𝑀13 = 𝛼𝐼2 𝑀14 = 𝛼𝐼4 𝑀22 = −𝐼1
𝑀23 = 𝛽𝐼2 𝑀24 = 𝛽𝐼4 𝑀33 = 𝐼1 − 𝐼3(𝛼

2 + 𝛽2) 𝑀34 = 𝐼1 − 𝐼5(𝛼
2 + 𝛽2)

 

𝑀34 = 𝐼1 − 𝐼5(𝛼
2 + 𝛽2)                𝑀44 = 𝐼1 − 𝐼6(𝛼

2 + 𝛽2)                       (31) 

The terms of the thermal force vector are determined as follows 

 

 
Table 2 Expression of the thermal load according to the temperature distribution through the thickness 

Temperature distribution Thermal load 

Regular increase (UTR) 𝐹𝑥 = Δ𝑇
𝐸2𝛼0

1−𝑣12
∫ 𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
. 

Linear increase (LTR) 𝐹𝑥 =
𝐸2𝛼0

1−𝑣12
𝑇𝑖 ∫ 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
+ Δ𝑇

𝐸2𝛼0

1−𝑣12
∫ (

1

2
+

𝑧

ℎ
) 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
. 

Exponential increase (ETR) 𝐹𝑥 =
𝐸2𝛼0

1−𝑣12
𝑇𝑖 ∫ 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
+ Δ𝑇

𝐸2𝛼0

1−𝑣12
∫ [1 − cos (

𝜋

4
+

𝑧𝜋

ℎ
)] 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
. 

103



 

 

 

 

 

 

H. Mataich, A. El Amrani and B. El Amrani 

Table 3 Expression of critical thermal change according to temperature distribution across the thickness 

Temperature distribution Thermal load 

Regular increase (UTR) Δ𝑇𝑐𝑟 =
1

(𝛼2+𝜉𝛽2)𝜅𝑢𝑡𝑟

𝑅34𝑅43−𝑅33𝑅44

(𝑅34+𝑅43−𝑅33−𝑅44)
. 

Linear increase (LTR) Δ𝑇𝑐𝑟 =
1

(𝛼2+𝜉𝛽2)𝜅𝑙𝑡𝑟

𝑅34𝑅43−𝑅33𝑅44

(𝑅34+𝑅43−𝑅33−𝑅44)
−

𝜅𝑢𝑡𝑟

𝜅𝑙𝑡𝑟
𝑇𝑖 . 

Exponential increase (STR) Δ𝑇𝑐𝑟 =
1

(𝛼2+𝜉𝛽2)𝜅𝑠𝑡𝑟

𝑅34𝑅43−𝑅33𝑅44

(𝑅34+𝑅43−𝑅33−𝑅44)
−

𝜅𝑢𝑡𝑟

𝜅𝑠𝑡𝑟
𝑇𝑖. 

 

 

𝐹𝑚𝑛
1 = 𝛼∑ ∫

𝐸(𝑘)

1−𝑣(𝑘)
𝑧𝑘+1
𝑧𝑘

𝑁𝑐
𝑘=1 𝑇(𝑧)𝑑𝑧 𝐹𝑚𝑛

2 = 𝛽∑ ∫
𝐸(𝑘)

1−𝑣(𝑘)
𝑧𝑘+1
𝑧𝑘

𝑁𝑐
𝑘=1 𝑇(𝑧)𝑑𝑧

𝐹𝑚𝑛
3 = −(𝛼2 + 𝛽2)∑ ∫

𝐸(𝑘)

1−𝑣(𝑘)
𝑧𝑘+1
𝑧𝑘

𝑁𝑐
𝑘=1 𝑧𝑇(𝑧)𝑑𝑧 𝐹𝑚𝑛

4 = −(𝛼2 + 𝛽2)∑ ∫
𝐸(𝑘)

1−𝑣(𝑘)
𝑧𝑘+1
𝑧𝑘

𝑁𝑐
𝑘=1 𝑓(𝑧)𝑇(𝑧)𝑑𝑧

  

(32) 

But we do not need these terms since we are looking for critical values for the elastic stability 

and natural frequency in the case of free plate vibrations. 

 

4.2 Critical buckling temperature of laminated composite plates 
 

The solution of the buckling problem requires a time fixation, i.e., the time must be constant, 

furthermore, the governing equations of the plate under static buckling are obtained by eliminating 

the thermal loads Eq. (10) and the inertia terms (𝐼1, 𝐼2, 𝐼3, 𝐼4) in Eq. (23) to Eq. (26), then the 

system Eq. (28) simplifies to 

[𝑅]{𝑑𝑚𝑛} = {0}                                                               (33) 

We use condensation techniques to decouple the movements in the plane 𝑢0(𝑥, 𝑦) and 𝑣0(𝑥, 𝑦) 
to the transverse displacements 𝑤0

𝑏(𝑥, 𝑦) and 𝑤0
𝑠(𝑥, 𝑦)Then Eq. (33) reduces to 

[
𝑅33 − 𝐹𝑥(𝛼

2 + 𝜉𝛽2) 𝑅34 − 𝐹𝑥(𝛼
2 + 𝜉𝛽2)

𝑅43 − 𝐹𝑥(𝛼
2 + 𝜉𝛽2) 𝑅44 − 𝐹𝑥(𝛼

2 + 𝜉𝛽2)
] {
𝑊𝑚𝑛

𝑏

𝑊𝑚𝑛
𝑠 } = {

0
0
}                            (34) 

Then the critical thermal change Δ𝑇𝑐𝑟 that causes the plate to buckle is obtained according to 

the type of temperature distribution across the thickness, as shown in Table 3: 

With 𝑅𝑖𝑗 are the new terms after condensation such that:  

𝑅33 = 𝑅33 − 𝑅13
𝑅13𝑅22 − 𝑅12𝑅23
𝑅11𝑅22 − 𝑅12𝑅12

− 𝑅23
𝑅11𝑅23 − 𝑅12𝑅13
𝑅11𝑅22 − 𝑅12𝑅12

 

𝑅34 = 𝑅34 − 𝑅14
𝑅13𝑅22 − 𝑅12𝑅23
𝑅11𝑅22 − 𝑅12𝑅12

− 𝑅24
𝑅11𝑅23 − 𝑅12𝑅13
𝑅11𝑅22 − 𝑅12𝑅12

 

𝑅43 = 𝑅34 − 𝑅13
𝑅14𝑅22 − 𝑅12𝑅24
𝑅11𝑅22 − 𝑅12𝑅12

− 𝑅23
𝑅11𝑅24 − 𝑅12𝑅14
𝑅11𝑅22 − 𝑅12𝑅12

 

𝑅44 = 𝑅44 − 𝑅14
𝑅14𝑅22 − 𝑅12𝑅24
𝑅11𝑅22 − 𝑅12𝑅12

− 𝑅24
𝑅11𝑅24 − 𝑅12𝑅14
𝑅11𝑅22 − 𝑅12𝑅12

 

And the terms 𝜅𝑢𝑡𝑟 =
𝐸2𝛼0

1−𝑣12
∫ 𝑑𝑧
ℎ 2⁄

−ℎ 2⁄
, 𝜅𝑙𝑡𝑟 =

𝐸2𝛼0

1−𝑣12
∫ (

1

2
+

𝑧

ℎ
)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
 and 𝜅𝑠𝑡𝑟 =

𝐸2𝛼0

1−𝑣12
∫ [1 −
ℎ 2⁄

−ℎ 2⁄
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cos (
𝜋

4
+
𝑧𝜋

ℎ
)] 𝑑𝑧. 

 

4.3 Free vibration analysis of laminated composite plates 
 

According to the Navier technique adopted in this study, the system of equations Eq. (28) in the 

case of free vibration analysis is simplified by eliminating any transverse and thermal loading, in 

which case the problem will turn into an eigenvalue problem ([�̿�] − 𝜔2[𝑀]){𝑑𝑚𝑛} = {0}. In order 

to have another solution than the trivial one {𝑑𝑚𝑛} = 0, it is necessary to cancel the determinant 

 𝑑𝑒𝑡([�̿�] − 𝜔2[𝑀]) = 0                                                      (35) 

The solution of the eigenvalue problem Eq. (35) gives for each free vibration mode (𝑚, 𝑛) a 

natural frequency of transverse vibration of the laminated composite plate under study. These 

natural frequencies are given in the following non-dimensional form 

�̅� = 𝜔𝑚𝑛(𝑏
2 𝜋2⁄ )√𝜌ℎ 𝐷22⁄                                                    (36) 

 

 

5. Numerical results and interpretations 
 

To handle the proposed methodology, a plate made of laminated composite materials is 

considered. The Young’s moduli, Poisson’s ratios and thermal expansion coefficients are given in 

Table 1. The general approaches presented in the previous sections for the analysis of the thermal 

stability of the plate and their free vibration under uniform, linear and sinusoidal temperature 

variations through the thickness are illustrated in this section using numerical manipulations. The 

initial temperature will be set at 𝑇𝑖  =  25 C. 

 

5.1 Validation of the theoretical approach adopted 
 

In this section, we will compare the critical thermal loads ∆𝑇𝑐𝑟 and the fundamental natural 

frequency of vibration,  𝜔11 . The laminations studied are specially orthotropic, cross-ply 

antisymmetric and angle-ply antisymmetric. The only external load applied is a thermal load. The 

results obtained are compared with existing results in the literature to determine the accuracy of 

the proposed model. The verification is done for an increasing number of layers 𝑁𝑐 = 2, 8 and 12 

layers.  

All the results in Table 4 are compared with those found by Reddy’s third order shear 

deformation plate theory HPT (Reddy 1984) and Touratier’s sinusoidal shear deformation plate 

theory (SPT) (Touratier 1991). So, from this survey we observe that there is a similarity or almost 

similarity of the model proposed in this study and those existing in the literature. With a numerical 

comparison in terms of error, we can conclude from Table 4 that: The critical buckling 

temperatures found, using the proposed model, are scattered author of Reddy’s model (HPT) with 

an average relative error of  ∆(∆𝑇𝑐𝑟) = 3.99% and with an error of  ∆(∆𝑇𝑐𝑟) = 3.64% for the 

results returned by the Touratier model (SPT). While, the fundamental pulses are found with an 

accuracy with respect to the (HPT) and (SPT) models successively of    ∆(𝜔11) =
1.03% and  ∆(𝜔11) = 0.97%. 
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Table 4 Validation of the methodology adopted in this study (𝐸1 𝐸2⁄ = 40, 𝑎 ℎ⁄ = 10 and 𝑎 𝑏⁄ = 1) 

Size Theory 
Especially orthotropic Antisymmetric crosses Antisymmetrical angular 

𝑵𝒄 = 𝟐 𝑵𝒄 = 𝟖 𝑵𝒄 = 𝟏𝟐 𝑵𝒄 = 𝟐 𝑵𝒄 = 𝟖 𝑵𝒄 = 𝟏𝟐 𝑵𝒄 = 𝟐 𝑵𝒄 = 𝟖 𝑵𝒄 = 𝟏𝟐 

∆𝑇𝑐𝑟 

Present 1.2583 1.1965 1.2584 0.8785 1.1582 1.1154 1.0254 1.5692 1.5895 

HPT 1.1868 1.1868 1.1868 0.8536 1.1051 1.1778 1.0671 1.5173 1.6421 

Error%. 5,68 0,81 5,69 2,83 4,58 5,59 4,07 3,31 3,31 

SPT 1.2847 1.1847 1.1847 0.8524 1.1033 1.1757 1.0680 1.5151 1.6381 

Error%. 2,10 0,99 5,86 2,97 4,74 5,41 4,15 3,45 3,06 

𝜔11 

Present 84.265 80.695 80.253 31.985 41.325 42.986 47.325 65.369 71.123 

HPT 84.511 80.511 81.048 32.903 41.527 43.752 47.636 66.144 70.575 

Error%. 0,29 0,23 0,99 2,87 0,49 1,78 0,66 1,19 0,77 

SPT 84.003 80.945 80.945 32.824 41.463 43.693 47.683 66.238 70.694 

Error%. 0,31 0,31 0,86 2,62 0,33 1,64 0,76 1,33 0,60 

 
Table 5 The non-dimensional critical thermal loading ∆𝑇𝑐𝑟  of an antisymmetric plate with angular folds 𝜃 

𝑎

ℎ
  

𝑁𝑐 = 2 nappies 𝑁𝑐 = 8 nappies 𝑁𝑐 = 12 nappies 
𝐸1

𝐸2
= 1  

𝐸1

𝐸2
= 20  

𝐸1

𝐸2
= 40  

𝐸1

𝐸2
= 1  

𝐸1

𝐸2
= 20  

𝐸1

𝐸2
= 40  

𝐸1

𝐸2
= 1  

𝐸1

𝐸2
= 20  

𝐸1

𝐸2
= 40  

2 15.3934 32.6073 39.1100 21.5943 36.4349 52.3728 23.0038 37.1694 54.4296 

4 4.1859 9.5968 12.2988 5.9058 10.7326 16.4568 6.3785 11.0224 17.4483 

20 0.1616 0.3974 0.5284 0.2330 0.4459 0.7114 0.2539 0.4597 0.7632 

 

 

5.2 Parametric study 
 

A parametric study is needed to see the effect of different types of coupling on the critical 

temperature value causing the thermo-elastic instability of the plate, as well as on the fundamental 

free vibration frequency. Similarly, for other parameters such as anisotropy, slenderness and aspect 

ratio of the plate and finally the lamination angle. This study also compares the responses of plates 

with specially orthotropic and antisymmetric lamination, and finally we will conclude this 

parametric study by extracting the effect of the temperature distribution through the plate 

thickness. 

 
5.2.1 The critical buckling temperature of laminated composite plates 
In this first manipulation (Table 5), the thermal behaviour (critical thermal load ∆𝑇𝑐𝑟) of an 

antisymmetric, square simply supported laminated composite plate is studied, we will consider 

three different plate schemes: (𝑁𝑐 = 2 𝑙𝑎𝑦𝑒𝑟𝑠 ∶  −30 30⁄ ), (𝑁𝑐 = 8 𝑙𝑎𝑦𝑒𝑟𝑠 ∶  (−30 30⁄ )4𝑎𝑠) 
and (𝑁𝑐 = 12 𝑙𝑎𝑦𝑒𝑟𝑠 ∶  (−30 30⁄ )6𝑎𝑠)(the subscript 4as means that the plate consists of 4 pairs of 

layers (−30 30⁄ ) symmetrically arranged), these patterns are studied in terms of the anisotropy 

ratio 𝐸1 𝐸2⁄  and the slenderness ratio 𝑎 ℎ⁄ as presented in Table 5. 

In Table 6, the thermal behaviour (critical thermal load  ∆𝑇𝑐𝑟 ) of a simply supported 

antisymmetric cross-ply composite plate with square layers will be studied. 𝑁𝑐 simply supported, 

will be studied. The study has been done for the three temperature distributions through the 

thickness of the plate (UTR: uniform distribution, LTR: linear distribution and STR: sinusoidal 

distribution). These case studies are manipulated for anisotropy 𝐸1 𝐸2⁄  and slenderness 

ratio 𝑎 ℎ⁄ = 20. 
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Table 6 The non-dimensional critical thermal loading ∆𝑇𝑐𝑟  of an antisymmetric two-ply plate 

𝐸1

𝐸2
  

Uniform distribution Linear distribution Sinusoidal distribution 

𝑎 = 𝑏 = 1 𝑎 = 𝑏 = 4 𝑎 = 𝑏 = 1 𝑎 = 𝑏 = 4 𝑎 = 𝑏 = 1 𝑎 = 𝑏 = 4 

1 38.6552 3.8665 77.2990 7.7216 70.2920 7.0217 

20 45.6409 4.9789 91.2704 9.9464 82.9969 9.0448 

40 56.1980 6.8620 112.3845 13.7127 102.1971 12.4696 

 
Table 6 The non-dimensional critical thermal loading ∆𝑇𝑐𝑟  of an antisymmetric cross-ply plate 

Heat 

distribution 

Number of 

layers 𝑁𝑐 
Uni-axial thermal effect Bi-axial thermal effect 

𝑎 𝑏⁄ = 1 𝑎 𝑏⁄ = 2 𝑎 𝑏⁄ = 4 𝑎 𝑏⁄ = 1 𝑎 𝑏⁄ = 2 𝑎 𝑏⁄ = 4 

Uniform 

UTR 

2 2.2237 1.0760 0.8624 1.1118 0.8608 0.8117 

8 2.7877 1.4153 1.1817 1.3939 1.1322 1.1122 

12 2.8099 1.4382 1.2040 1.4049 1.1506 1.1331 

Linear 

LTR 

2 4.4471 2.1518 1.7246 2.2235 1.7214 1.6231 

8 5.5752 2.8303 2.3631 2.7875 2.2642 2.2241 

12 5.6196 2.8763 2.4077 2.8097 2.3010 2.2661 

Sine wave 

STR 

2 4.0440 1.9567 1.5683 2.0219 1.5653 1.4760 

8 5.0699 2.5737 2.1489 2.5348 2.0589 2.0225 

12 5.1102 2.6155 2.1895 2.5550 2.0924 2.0606 

 

 

𝑇𝑖  Initial temperature 

𝑁𝑐 Number of layers making up the plate 

 

Hint for Figure 4: 

UTR: Uniform temperature rise 

LTR: Linear temperature increase 

STR: Sinusoidal temperature increase 

 

Hint for Figure 9: 

SO: Specially orthotropic 

SC : Antisymmetrical with cross folds 

SA: Antisymmetric with angular folds  

Fig. 3 Variation of the critical temperature ∆𝑇𝑐𝑟  as a function of the ratio 𝑎 ℎ⁄  with 𝑁𝑐 and the direction of 

thermal loading as parameters 

 

 

The parametric study of the thermoelastic instability (determination of the critical thermal 

loading ∆𝑇𝑐𝑟) as a function of the aspect ratio of the plate 𝑎 𝑏⁄  the number of layers 𝑁𝑐 constituting 

an antisymmetric cross-ply plate and the direction of the thermal field effect. This study is done 

for all three types of temperature distribution through the thickness of the plate. The results in 

Table 6 show some of the results of this study. In this case we will set the anisotropy of the plate to 

𝐸1 𝐸2⁄ = 40 and a slenderness of 𝑎 ℎ⁄ = 20. 

The graphical illustrations of the non-dimensional critical thermal loading ∆𝑇𝑐𝑟 as a function of 

slenderness 𝑎 ℎ⁄  or anisotropy 𝐸1 𝐸2⁄  of a plate with different laminations are presented in Figs. 3,  
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Fig. 4 Variation of the critical temperature ∆𝑇𝑐𝑟 as a 

function of the ratio 𝐸1 𝐸2⁄  with plate size and 

temperature distribution as parameters 

Fig. 5 Variation of the critical temperature ∆𝑇𝑐𝑟 as a 

function of the ratio 𝑎 𝑏⁄  with 𝑁𝑐  and the direction 

of thermal loading as parameters 

 

 

4 and 5. The study parameters are the number of layers 𝑁𝑐. the temperature distribution through 

the thickness or the uni-axial or bi-axial temperature direction 𝑇(𝑧). 
The influence of the considered thermal field on the thermoelastic instability of a laminated 

composite plate is shown in Fig. 3. ∆𝑇𝑐𝑟 decreases exponentially with increasing ratio 𝑎 ℎ⁄ . These 

curves show that the critical temperature difference decreases exponentially with increasing ratio, 

so we can say that the thermal shear stresses have the effect of increasing the critical buckling 

temperature of the plate (i.e., in the case of 𝑁𝑐 decreases). Also, we notice that the difference in the 

critical temperature ∆𝑇𝑐𝑟 increases if we replace the uni-axial effect of the thermal field by the bi-

axial one. 

From Fig. 4, we observe a significant difference between the critical buckling temperature 

difference of an antisymmetric cross-ply plate if the dimensions of the sides of the square plate are 

increased by a factor of 10. Similarly, this difference increases with increasing anisotropy 

ratio 𝐸1 𝐸1⁄ . 

In Fig. 5 we have drawn representative curves of the thermoelastic instability of a laminated 

composite plate as a function of the aspect ratio of the plate, thus the difference in the critical 

temperature ∆𝑇𝑐𝑟 decreases exponentially as the ratio increases 𝑎 𝑏⁄ . If we take into account the 

number of layers 𝑁𝑐 we notice that the critical buckling temperature increases with the increase of 

the number of layers, i.e., the different types of couplings are causes that accelerate the 

thermoelastic instability of a laminated composite material plate. 

 

5.2.2 Free vibration analysis of laminated composite plates 
The results obtained for the natural fundamental free vibration frequency of a laminated 

composite plate are given in Tables 7 and 8, the plate is assumed to be square and single supported 

under a linearly distributed thermal load. In Table 7, we have recorded the non-dimensional free 

vibration pulsation 𝜔11 of an antisymmetric plate with two angular plies, the study parameters are 

the number of layers 𝑁𝑐 the anisotropy ratio 𝐸1 𝐸2⁄  and the lamination angle 𝜃. Table 8 shows a 

comparison of the non-dimensional free vibration pulsation 𝜔11 for the three types of lamination  
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Table 7 The non-dimensional free vibration pulsation 𝜔11 of an antisymmetric square plate with two angular 

folds of angle 𝜃 with 𝑎 ℎ⁄ = 20 and 𝑁𝑐 = 8 𝑙𝑎𝑦𝑒𝑟𝑠 

Angle 
𝑁𝑐 = 2 nappies 𝑁𝑐 = 8 nappies 𝑁𝑐 = 12 nappies 

𝐸1

𝐸2
= 1  

𝐸1

𝐸2
= 20  

𝐸1

𝐸2
= 40  

𝐸1

𝐸2
= 1  

𝐸1

𝐸2
= 20  

𝐸1

𝐸2
= 40  

𝐸1

𝐸2
= 1  

𝐸1

𝐸2
= 20  

𝐸1

𝐸2
= 40  

𝜃 = 45° 1.1673 2.7969 2.9956 1.7253 3.4178 4.2351 1.8836 3.5940 4.5865 

𝜃 = 30° 1.6868 2.3544 2.3436 2.3238 2.7707 3.1462 2.5051 2.8899 3.3762 

𝜃 = 75° 3.3502 2.1467 2.1133 3.8966 2.2847 2.3889 4.0546 2.2847 2.3889 

 
Table 8 Comparison of non-dimensional free vibration pulsation 𝜔11 for the three types of plate laminations 

with eight layers 

Heat 

distribution 

𝑎

𝑏
  

Especially 

orthotropic plate 

Anti-symmetrical cross-ply 

plate 

Antisymmetrical plate with 

angular folds 𝜃 = 45° 
𝐸1

𝐸2
= 25  

𝐸1

𝐸2
= 40  

𝐸1

𝐸2
= 25  

𝐸1

𝐸2
= 40  

𝐸1

𝐸2
= 25  

𝐸1

𝐸2
= 40  

Uniform 

UTR 

5 1.0445 1.1451 0.6007 0.5193 0.6526 0.5870 

10 4.1925 4.6060 2.3965 8.6644 2.5904 2.3227 

Linear 

LTR 

5 1.0444 1.1450 0.6006 0.5192 0.6525 0.5869 

10 4.1920 4.6054 2.3961 8.6644 2.5900 2.3224 

Sine wave 

STR 

5 1.0444 1.1450 0.6006 0.5192 0.6525 0.5869 

10 4.1920 4.6055 2.3962 8.6644 2.5900 2.3224 

 

 

 

Fig. 6 Variation of the natural frequency 𝜔11  as a 

function of the ratio 𝑎 ℎ⁄  with 𝑁𝑐 and the anisotropy 

ratio 𝐸1 𝐸2⁄  as parameters 

Fig. 7 Variation of the natural frequency 𝜔11  as a 

function of the ratio 𝐸1 𝐸2⁄  with 𝑁𝑐  and the 

stratification angle 𝜃 as parameters 

 

 

(especially orthotropic, antisymmetric cross-ply and antisymmetric angle-ply) of plates with eight 

layers. 𝜃 = 45°) of plates with eight layers.  

The graphical illustrations of the non-dimensional free vibration pulsation 𝜔11 as a function of 

the slenderness ratio 𝑎 ℎ⁄ , anisotropy 𝐸1 𝐸2⁄  or aspect ratio 𝑎 𝑏⁄  of an antisymmetric plate with 

angular folds are presented successively in Figs. 6, 7 and 8. The study parameters are the number  
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Fig. 8 Variation of the natural frequency 𝜔11  as a 

function of the ratio 𝑎 𝑏⁄  with 𝑁𝑐 and the anisotropy 

ratio 𝐸1 𝐸2⁄  as parameters 

Fig. 9 Variation of 𝜔11  as a function of the ratio 

𝐸1 𝐸2⁄  with the direction of thermal loading and the 

type of stratification as parameters 

 

 

of layers 𝑁𝑐 the anisotropy ratio 𝐸1 𝐸2⁄  or the lamination angle 𝜃. 

Fig. 6 shows the effects of the slenderness ratio 𝑎 ℎ⁄  on the free vibration pulsation of the plates 

for linear thermal loading. It can be seen that, irrespective of the number of layers and also for 

different anisotropy ratios, the pulsation for the (1,1)  mode decreases exponentially with 

increasing ratio 𝑎 ℎ⁄  for all types of thermal loading. It can also be seen from Fig. 7 that 

 𝜔11increases with increasing ratio 𝐸1 𝐸2⁄  in the case of stratification angle 𝜃 = 30° and decreases 

in the case of 𝜃 = 45°. 
From the curves in Fig. 6 we also notice that plates with a larger anisotropy ratio vibrate with 

larger pulsations, so couplings in the plate have an effect of decreasing the free vibration 

frequency of the plate.  𝜔11. Also the couplings in the plate have an effect of decreasing the free 

vibration frequency of the plate. While in Fig. 7, the free pulsations of the plate are smallest for 

𝜃 = 45° and start to increase as 𝜃 away from 45°. 

Fig. 8 shows the variation of the fundamental free vibration pulsation of an antisymmetric 

cross-ply plate as a function of the 𝑎 𝑏⁄  for two values of anisotropy 𝐸1 𝐸2⁄ = 25, 40 and different 

layering schemes (different number of layers), this study shows that the pulsation becomes larger 

if the length of the plate becomes greater than its width, furthermore, coupling has an effect of 

decreasing this pulsation. 

It can be seen from the curves in Fig. 9 that specially orthotropic laminated plates have the 

highest pulsations, while the antisymmetric cross-ply laminated plates vibrate with the lowest 

frequencies. For all types of laminations the free vibration pulsations are small in the uni-axial 

thermal loading case compared to the bi-axial cases. 

 

 

6. Conclusions 
 

The critical temperature difference triggering buckling and free vibration of simply supported 

laminated plates was analyzed by running a refined four-variable plate theory. This study analyzed 
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the effect of different types of thermal loading on a laminated composite plate in terms of thermo-

elastic stability and free vibration pulsation, and showed, firstly, that the plate is susceptible to 

buckling under the action of this thermal field, whereas, its free vibration is not much affected in 

the same temperature range. From these activities we can conclude that: The critical buckling 

temperature difference obtained increases with the presence of different types of coupling, and 

also decreases with increasing slenderness ratio 𝑎/ℎ  and aspect ratio 𝑎/𝑏 . The free vibration 

pulsation is little influenced by the thermal field, so it decreases with increasing slenderness ratio 

𝑎/ℎ while it increases with aspect ratio 𝑎/𝑏. In the case of especially orthotropic laminations, the 

free pulsation of the (1,1) mode is greater than in antisymmetrical laminations. 
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