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Abstract.  Scarce research has been published on crack propagation fracture of flywheels manufactured with carbon 
fiber-reinforced polymers. The present work deals with a calculation method to determine the conditions for which a 
crack propagates in the axial direction of the flywheel. The assumptions are: flywheels made with just a single thick 
ply or ply clustering laminates, oriented following the hoop direction; a single crack is analyzed in the plane defined 
by the hoop and axial directions; the crack starts close to one of the free edges; its axial length is initially large enough 
so that its tip is far away from that free edge, and the crack expands the entire circumferential perimeter and keeps its 
concentric position. The developed method provides information for a good design of flywheels. It is concluded that 
a fracture-based crack propagation criterion generally occurs at a lower speed than a stress-based criterion. Also, that 
the evolution of failure with thickness using the fracture criterion is exponential, demonstrating that thin flywheels are 
relatively not sensitive to crack propagation, whereas thick ones are very prone. 
 

Keywords:  analytical stress analysis; composite material flywheel; crack growth; failure criteria; finite 
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1. Introduction 
 

Composite flywheels are one of the few common applications of advanced composites for 
which the directionality of the fibers is more or less uniform and the thickness very high. 
Compared with metal parts, they have been increasingly used in many technological sectors due to 

their low weight and high traction resistance, which allow elevated angular velocities 𝜔  and 
produce a good energy density. 

A composite flywheel can be a long cylinder with several layers of different materials. 
However, in this article, we will study a single and thick layer for simplicity and for being widely 
used. Cylinders of several layers would behave similarly, but the governing equations are more 
complex. The rest of the parts, which are generally metallic: hub, center cup, spokes, endcaps, etc., 

are not included in the present analysis. The flywheel that rotates at 𝜔 is under several tensile  
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Fig. 1 Possible cracks in composite flywheel cut in half; cylindrical coordinates and 

stresses in differential element 

 
 

stresses function of the centrifugal force 𝑓𝑖 that is volumetric. 
During operation, a possible cause for the start of a fracture would be the presence of 

microcracks generated through the winding process Koch et al. (2018): small air cavities can be 
created when the filaments and the matrix are deposited and cured. Any other material, 

manufacturing, transportation, etc. defect, would also be a crack initiator, and the inherent 
vibration of these machines often provokes the start and propagation of macrocracks. 

For constant 𝜔, when an existing crack of variable length 𝑎  propagates, it will be under a 
fracture mode similar to I, and its orientation is probably forced to be parallel to the direction of 

the fibers. In general, for a unidirectional laminate in the circumferential 𝜃 (hoop) direction, the 
crack will be contained in one of the three orthogonal planes sketched in Fig. 1: 𝑟 − 𝑧, 𝜃 − 𝑧 or 

𝑟 − 𝜃, Lenz et al. (2014), Tzeng et al. (2006), Tzeng (1998). In thick-wall cylinders, the first 
propagation plane is unlikely since it requires the breakage of fibers; of the other two involving 
matrix breakage, the weakest will depend on the state of stress, see the following sections for 

disambiguation. 
Under steady state regime, the highest mechanical component is the hoop or circumferential 

stress 𝜎𝜃, as sketched in the detail of Fig. 1. The orientation of this component coincides with that 
of the fibers, the direction for which the longitudinal tensile strength 𝑋𝜃+ is highest (Figs. 2(c), 
2(d)); this coincidence makes composite flywheels one of the most efficient thick composite parts. 

Suppose the hub is designed with sufficient elasticity to avoid pressing the composite cylinder 

through operation due to boundary conditions. In that case, the radial stress 𝜎𝑟  is null at the 
external 𝑟𝑒 and internal 𝑟𝑖 radii (Fig. 3). This stress increases in the bulk and reaches its maximum 

near the radial center. Also, 𝜎𝑟  is always much lower than 𝜎𝜃; still, it is very damaging since it acts 

in the plane perpendicular to the fibers, for which the transversal tensile strength 𝑋𝑟+ is in CFRP 

typically 25 times lower than 𝑋𝜃+ . Only for very thin-walled flywheels would 𝜎𝜃  be more 

damaging than 𝜎𝑟 . 
The axial stress 𝜎𝑧 only appears when the length of the flywheel is significant concerning the 

other dimensions. Its value is often much lower or lower than the previous two, and its influence 

on failure is generally small: this low value makes the progression of the crack 𝑟 − 𝜃 unlikely. 

Notice that the distribution of 𝜎𝑧 must be self-equilibrating since no external axial loads exist in 
the axial direction, and no end caps are considered (Fig. 2(b)). 

Stresses caused by sources other than the centrifugal force may be present under special  
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Analytical crack growth in unidirectional composite flywheel 

 
Fig. 2 (a), (c): FEM stresses for several radii along the first semilength of the cylinder. (b), (d): FEM stresses 

for three axial positions along the radius of the cylinder. Longitudinal and transversal strengths in [MPa]; in 

top figures, thick lines for 𝜎𝑟, thin ones for 𝜎𝑧 

 
 

conditions; for example, if the rotation speed varies in a short time (strong 
acceleration/deceleration), significant shear stresses appear in the circumferential plane Pérez-
Aparicio and Ripoll (2011). Residual stresses may exist Koch et al. (2018), Tzeng and Pipes 
(1992), for example, due to manufacturing using the interference union of two cylinders or by 

moisture absorption. Still, they are usually only about 10% of the centrifugal ones; see Tzeng and 
Moy (2008), Arnold et al. (2002). 

Only a little research has been published on composite flywheel fracture. The reference Lenz et 

al. (2014) designed a test program with the help of finite element analysis; Koch et al. (2018), 
Arnold et al. (2002), Wang et al. (2018) evaluated cycle life with other methods than fracture, 
such as micromechanics or damage models. 

Some articles have studied crack growth in axisymmetric composite parts; for instance, Wang 
et al. (2020) carried out a dynamic fracture experiment of a plastic PMMA disk using an 
experimental digital laser dynamic caustic system. A discrete lattice spring method was used to 
simulate the crack growth, although the plastic was not reinforced with fiber. Investigations on 
mode-I fracture and thick composites were thoroughly carried out in El-Haijar and Haj-Ali (2005) 

to assess the effect of material orthotropy in continuous filament layers with E-glass fiber and 
polyester matrix. Finally, the same authors developed in Haj-Ali et al. (2006) a cohesive finite 
element method for mode-I and -II crack growth analysis of thick-section composites and also for 
single-edge-notch specimens. 
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There are publications on different approaches to model fracture; in particular, Nguyen et al. 
(2022), Suljevic et al. (2022), Ibrahimbegovic and Mejia-Nava (2021), Ibrahimbegovic et al. 
(2022) studied viscoplastic, plasticity, damping, and multiple scales respectively. These works 
differ from the present since they are theoretical and very advanced. In the same journal, Rizov 
(2020) published a more practical work for analytical investigations of crack growth in tapered 
beams. 

In the present study, a calculation method is derived to determine the conditions for which a 
crack propagates in the axial direction of the flywheel. For an absolute prediction, it would be 
necessary to carry out more complex studies, for example, the analysis of local phenomena and the 

priority of propagation along the direction of the fibers Cepero et al. (2019). 
 
 

2. Preliminary case without crack 
 

For a cylindrical and intact CFRP axisymmetric flywheel rotating at 48,000 [rpm], Fig. 2 show 
the stress distributions obtained with the Finite Element Method (FEM). The axisymmetric, 
transversally isotropic element of the research code FEAP Taylor and Govindjee (2020) was used; 

a mesh of about 3,400 square elements represented a rectangular section dimensioned by 𝑟𝑖 =
0.1, 𝑟𝑒 = 0.2  and 𝐿 = 0.4 [m] . The prescribed natural conditions were distributed forces, 
mimicking the centrifugal forces. The only essential boundary conditions necessary to enforce 

axial symmetry are in the middle vertical plane 𝑟 − 𝜃 defined by 𝑧 = 𝐿/2. Although these FEM 
results are not directly the objective of the present work, they are presented to help the 
understanding of the fracture mechanics hypotheses and methodology and the interpretation of 
final results. 

Along with the other properties, the values of the longitudinal 𝑋𝜃+  and transversal 𝑋𝑟+ 
strengths are listed in Table 1 and plotted as horizontal dotted lines in all Fig. 2 to assess their 

influence on failure. It is observed that the most damaging component is 𝜎𝑟  since its maximum 

practically coincides with the limit 𝑋𝑟+ (Fig. 2(a), 2(b)). The hoop stress 𝜎𝜃 is about one-third of 

𝑋𝜃+ (Fig. 2(c), 2(d)), and the axial stress 𝑋𝑟+ one-fourth (Fig. 2(a), 2(b); finally, the three shear 
stresses are negligible. 

Fig. 2(c) also shows that 𝜎𝜃 is practically constant in 𝑧, and so is 𝜎𝑟  (Fig. 2(a)) except for a 

sharp decrease close to the free end; axial stresses are also almost constant with 𝑧 outside the edges 

and in any case smaller than 𝜎𝑟 . Therefore, it can be considered that the stresses are independent of 
the axial position in the internal zones of the flywheel. 

Clearly, there is an edge effect, but with the particularity that in it, the most damaging 𝜎𝑟  is 
lower than in the internal zones; shear stresses 𝜏𝑟𝜃 , 𝜏𝑟𝑧 are also generated but under steady state of 
meager value. The physical reason for this decrease is that the confinement is less severe at and 
close to the axial ends, allowing some free deformations that cannot exist inside and relieving the 

material from part of the stresses (a plane stress condition). This edge effect differs significantly 
from flat laminated composites with fibers cut at the edges and placed in different directions. In 
the present types of flywheels, the fibers are not interrupted at the edge since their direction is 
always parallel to it. In conclusion, the edge effect is favorable in the particular case of the present 
flywheels. 

The stress distributions of the figures confirm one of the ideas explained in the previous 

section: the tensile 𝜎𝑟  is the most damaging for thick unidirectional flywheels. Most published 
articles aim to find designs that decrease its effect on failure Wang et al. (2018), Ha et al. (2001),  
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Table 1 Material properties for a unidirectional Carbon Fiber Reinforced Polymer from González et al. 

(2018) 

Property Symbol Unit Value 

Density 𝜌 [kg/m3] 1510 

Elastic Modulus 𝐸𝜃  [GPa] 116.7 

-”- 𝐸𝑟  [GPa] 8.3 

Poisson ratio 𝜈𝜃𝑟  [−] 0.26 

-”- 𝜈𝑟𝑧 [−] 0.52 

Strength 𝑋𝜃+ [MPa] 1477 

-”- 𝑋𝑟+ [MPa] 55.5 

Fracture Toughness 𝐺𝜃+ [kN/m] 248.5 

-”- 𝐺𝑟+ [kN/m] 0.62 

 

 

Fig. 3 Axial zones according to stress distributions for a cylindrical flywheel. Angular 𝜔 

and peripheral linear 𝑣 velocities 

 
 

for instance, by intercalating different materials and/or thin elastic layers. Therefore, it can be 

expected that the fracture in the 𝜃 − 𝑧 plane of Fig. 1 is probable, or at least it should be studied in 
detail. 

Since the present cylinder is “long” 𝐿 > 𝑟𝑒 − 𝑟𝑖, two very different zones can be differentiated 
considering the stress state; see Fig 3. In the two end zones, the edge effects cause a perturbation 

of the stresses, making them vary with 𝑧; in the central zone called “uniform”, all stresses are 

practically constant in 𝑧. This uniform zone will be under generalized plane strain, with uniform 
axial deformation (see Pérez-Aparicio and Ripoll (2011) for justification). 

Then, the central zone is more vulnerable to crack propagation, and therefore, its real fracture 
strength (not the nominal from testing specimens, see the next section) is relatively low. 
 

 

3. Crack limitation in the 𝜽 − 𝒛 plane 
 

The fracture in the plane 𝜃 − 𝑧 is of mode I type, with a crack front similar to that of the 
normalized DCB (Iso15024) test for composite materials, but the distant zone behaves differently. 

In the workshop specimen, the point forces 𝐹 separate the ends of the two arms without limitation; 

the large opening 𝐶 or the maximum distance between the two separated arms increases through  
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Fig. 4 Crack separation: top, unrestricted in a DCB specimen for composite materials; bottom, 

limited by adjacent material in a flywheel. For the latter, inertial forces differ in both sub-

cylinders 

 
 

the experiment. This opening is due to bending and only depends on the crack length, as shown in 

Fig. 4 top. But in a cylinder, the I-mode crack growth in the 𝜃 − 𝑧 plane of Fig. 4 bottom (a 𝜃 − 𝑧 

cut for the crack of Fig. 1) is different: the smaller opening 𝑐 is limited by the rest of the thick 
flywheel volume. Therefore, the two subcylinders are restricted to opening freely. In addition, the 

radial projection of the circumferential stress 𝜎𝜃 partially compensates for the centrifugal forces, 
and consequently, the opening is smaller. This behavior allows the analytical calculation of 
energies before and after the crack opening and, therefore, that of the dissipated energy. 

The new internal, free surface created by the crack located by the radius 𝑟𝑐 and defined by the 

length a modifies the distribution of 𝜎𝑟 . Subsequently, the inner and outer new subcylinders must 

reach a new equilibrium position with 𝑓𝑖. 
This phenomenon can be appreciated in Fig. 5 frontal view: a differential element located at a 

point where the crack will start is subjected to 𝑓𝑖 . As in the left figure, these forces must be 
compensated by the projections of sigma sub theta and by the differential d sigma sub r. When the 
crack is partially circumferential (center figure), the stress state is complex but non-necessary for 
the present model. Once the crack reaches the entire perimeter (right figure), it is possible to study 
the stress distribution as in Pérez-Aparicio and Ripoll (2011). In particular, at the differential 

element located at the same position (just outside 𝑟𝑐 ), the stress 𝜎𝑟  disappears due to the boundary 
condition of a free surface, causing the outer cylinder to move outwards. Then, the hoop stress 

must increase to 𝜎𝜃
′ , so the element remains in equilibrium for the same 𝑓𝑖. A similar situation 

occurs in the inner cylinder but moving inwards. Both movements generate a crack of limited 

opening 𝑐, much smaller than the DCB specimen for the same material. 
 

 

4. Geometry of fracture 
 

In the intact cylinder of Fig. 3, we have differentiated between the axial external end zones 
(edge) and the internal one, where the stresses are almost uniform. 
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Fig. 5 Flywheel frontal view. Left: no crack and internal stresses of a differential element; 

central: partial crack; right: total crack and new stress state of the element at the same position 

 

 

Fig. 6 Radial stresses at a generic section 𝑧-constant before (top parabola) and after the crack 

appearance (lower twin parabolas) 

 
 

As justified before, a single crack in the 𝜃 − 𝑧 plane will be analyzed; we assume that this 

crack started close to one of the free edges and its length 𝑎 is already large enough for its tip to be 
far away from that edge. It is also assumed that the crack expands the entire circumferential 
perimeter (Fig. 5 right) and keeps its concentric position; that is, it is axisymmetric. This 
hypothesis will allow us to use a relatively simple two-dimensional model similar to other 
published studies Tzeng (1998). In any case, a partial crack of the Fig. 5 center type will rapidly 

progress along the circumference since the tensile 𝜎𝑟  provokes a mode I opening against the 

commonly low fracture toughness 𝐺𝑟+, see Table 1. In addition, the axisymmetric premise sets a 
lower bound for failure; therefore, the present is a safe design procedure. 

Since the current flywheel is made out of a single material, the crack is located near the radius 

𝑟𝑐, approximately the median (𝑟𝑒 + 𝑟𝑖)/2 where 𝜎𝑟  is maximum, see the distribution (1) in Fig. 6 

for an intact cylinder. Once the crack appears, 𝜎𝑟  is nil at 𝑟𝑐, and its maximum is reduced to the 
center of both split cylinders (2) and (3). For a flywheel made out of several materials (case not 

studied here), the position of the maximum 𝜎𝑟  would depend on the relative radii and stiffnesses of 
the layers, as explained, for instance, in Ha et al. (2001). 

In Fig. 7, three short subcylinders with constant stresses (uniform as in Fig. 3) can be 
distinguished: the intact one (1) and the “split” (2) and (3). At the edges of the flywheel, the stress 
state is still non-uniform. Around the crack tip, an axial transition zone between the uniform zones 
will exist; the stresses are again challenging to calculate in this transition. But the stresses for the 
two split cylinders can be calculated analytically with the formulae of Pérez-Aparicio and Ripoll  
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Fig. 7 Crack 𝜃 − 𝑧 divides part of the flywheel into two subcylinders. Stress-uniform zones (1), 

(2), (3) for stress and fracture. A dotted line near the free edge denotes the initial configuration, a 

continuous line deformed 

 
 

(2003), considering the new 𝑟𝑖 and 𝑟𝑒. For (1), the calculation is direct with the original external 
and internal radii. 
 

 

5. Crack propagation 
 

The crack growth study for a fixed 𝜔 is based on a virtual advance (differential distance) of its 

front. While the cylinders (2) and (3) increase their axial length 𝑑𝑧 , (1) decreases the same 

amount, see Fig. 8 right. Then, this advance will cause a change of relative volumes, and since 𝑓𝑖 is 

constant for a given 𝑟 in the uniform zones, a perturbation of the displacement field appears, 

modifying the stress state. These changes imply an increment/decrement of internal energy Δ𝑈. 
Additionally, the change of displacement will generate work Δ𝑊 of the centrifugal forces. 

In this process, the volumes under a complex stress state, the cracked and intact edges (Fig. 7), 

or the transition zone simply translate and do not change (Fig. 8). Therefore, they should not be 
included in the calculations. This simplification is an essential advantage of the present 

formulation since both Δ𝑈 and Δ𝑊 are only non-zero in the volumes of the three stress-uniform 
cylinders of Fig. 7, allowing the obtaining of a closed-form solution. 

The energies will be calculated from the radial displacement Δ𝑟(𝜔), denoted by 𝑢 in what 
follows. At any point in (2), the increment of displacement is negative −Δ𝑢2 since once the crack 
appears, the radial displacement inside this internal cylinder is still positive (outwards in the 

direction of 𝑟) but lower than what used to be at this point before the crack. The physical reason 

for this negative sign is that from a positive value, 𝜎𝑟  becomes zero; therefore, the cylinder (2) 
returns to its initial position. At the same time and free from the retention, the external cylinder (3) 

moves outside. In the outer (3), any point will have a positive +Δ𝑢3 since there is less internal 
mass to restrain it--see Fig. 8 for the drawing of both increments--. The radial displacements of 
any point of study and the intact cylinder (before the crack appears) can be calculated in (1) using 
the radii of the given point. 

To simplify the calculation, it is considered that the centrifugal force of any point does not vary 
during the separation of the sub-cylinders, even if this point is under a slight increase of its radius 
due to the radial displacement. This hypothesis is common in published studies, for instance,  
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Fig. 8 Left: radial displacement of the two subcylinders formed by the axial crack. Right: crack 

length increment and related length change of stress-uniform zones (1), (2), (3). Length 𝑙𝑡 of the 

transition zone does not change with d𝑧 

 

 
Arnold et al. (2002) and Ha et al. (2001) that use the initial radius to calculate the force per unit 

volume 𝑓𝑖 . The current configuration 𝑓𝑖 = 𝜌𝜔2(𝑟 + 𝑢)  would be necessary for a more exact 
calculation. 

The computation of Δ𝑊 will consider the centrifugal force and the mentioned Δ𝑢 with its sign, 

Fig. 8 left. The crack will grow uncontrollably if the increase in energy per unit area 𝐴 released by 

this crack is more significant than the material's toughness. The total released energy 𝑈𝑅  and the 

energy release rate 𝐺 can be formulated as 

𝑈𝑅 = −Δ𝑈 + Δ𝑊;                𝐺 =
d𝑈𝑅

 d𝐴
=

1

2𝜋𝑟𝑐

d𝑈𝑅

 d𝑧
 (1) 

For the three stress-uniform cylinders, these energies are constant with 𝑧, so from now values 

per unit length with subscript 𝑙 will be used instead of per unit area; the energy released is then 

𝑈𝑅𝑙 =
d𝑈𝑅

 d𝑧
 (2) 

 

 

6. Increment of energy 
 
The internal energy per unit volume of a general solid can be calculated with the scalar product 

of the stress and strain tensors, in Voigt notation 

𝑈0 =
𝝈 ⋅ 𝝐

2
=

𝜎𝜃𝜖𝜃 + 𝜎𝑟𝜖𝑟 + 𝜎𝑧𝜖𝑧 + 𝜏𝑟𝜃𝛾𝑟𝜃 + 𝜏𝑟𝑧𝛾𝑟𝑧 + 𝜏𝜃𝑧𝛾𝜃𝑧

2
 (3) 

Some terms in the right fraction can be simplified for the uniform cylinder: the axisymmetry 

cancels the fourth term since the shear deformation is null, and the almost uniform stresses in 𝑧 

cancel the fifth and sixth terms to the nullity of the related shear strains. Finally, the axial strain 𝜖𝑧
𝑢 

is constant; see Koch et al. (2018). Applying the kinematic relations for small deformation in polar 
coordinates 

𝑈0 =
1

2
(𝜎𝜃

𝑢

𝑟
+ 𝜎𝑟𝑢,𝑟 + 𝜎𝑧𝜖𝑧

𝑢) (4) 
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The total energy per unit crack length (𝑑𝑧 ≡ 1) of a cylinder with axisymmetric geometry will 
be noted again with the subindex 𝑙. Considering the differential of volume 𝑑Ω = 𝑟 𝑑𝜃𝑑𝑟 ⋅ 1 

𝑈𝑙  = ∫  
Ω

 𝑈0 dΩ = 2𝜋 ∫  
𝑟𝑒

𝑟𝑖

 𝑈0𝑟 d𝑟 = 𝜋 ∫  
𝑟𝑒

𝑟𝑖

 𝜎𝜃𝑢 d𝑟 + 𝜋 ∫  
𝑟𝑒

𝑟𝑖

 𝑟𝜎𝑟𝑢,𝑟  d𝑟 + 𝜋𝜖𝑧
𝑢 ∫  

𝑟𝑒

𝑟𝑖

 𝑟𝜎𝑧  d𝑟

∶= 𝑈𝜃𝑙 + 𝑈𝑟𝑙 + 𝑈𝑧𝑙

 (5) 

From Pérez-Aparicio and Ripoll (2011) and excluding the residual terms, each variable in the 
kernels can be expressed as 

𝑢 = 𝐴𝑟−𝑘 + 𝐵𝑟𝑘 + 𝑈𝑏𝑟3 + 𝑈𝑑𝑟;  𝜎𝜃 = 𝐻𝐴𝑟−(𝑘+1) + 𝐻𝐵𝑟𝑘−1 + 𝐻𝑏𝑟2 + 𝐻𝑑

𝜎𝑟 = 𝑅𝐴𝑟𝑘+1 + 𝑅𝐵𝑟𝑘−1 + 𝑅𝑏𝑟2 + 𝑅𝑑;  𝜎𝑧 = 𝜈𝜃𝑧𝜎𝜃 + 𝜈𝑟𝑧𝜎𝑟 + 𝐸𝑧𝜖𝑧
𝑢

 (6) 

The terms 𝐴, 𝐵 in the first expression are calculated from the internal and external boundary 
condition and continuity between adjacent layers; then, they have different values for each of the 

three cylinders (1), (2), or (3). Also, the coefficients 𝑈𝑏 are a function of the centrifugal force and 

𝑈𝑑 of the internal axial force. 

The parameter 𝑘 represents the anisotropy of the material so that for an isotropic layer, 𝑘 = 1. 
All the other parameters directly depend on the composite material, some in addition to the 
centrifugal and axial forces defined in the Appendix. Calculating the first integral of the middle 
Eq. (5) by substitution of the first and second Eq. (6), in each subcylinder of thickness 𝑟𝑖𝑗 − 𝑟𝑒𝑗 

(where 𝑗 = (1), (2), (3)), the energy produced by the hoop stress is 

𝑈𝜃𝑙 = 𝜋 [𝐴𝐻𝐴 (
𝐴𝑟−2𝑘

−2𝑘
+ 𝐵ln 𝑟 +

𝑈𝑏𝑟−𝑘+3

−𝑘 + 3
+

𝑈𝑑𝑟−𝑘+1

−𝑘 + 1
) +

𝐵𝐻𝐵 (
𝐵𝑟2𝑘

2𝑘
+ 𝐴ln 𝑟 +

𝑈𝑏𝑟𝑘+3

𝑘 + 3
+

𝑈𝑑𝑟𝑘+1

𝑘 + 1
) +

𝐻𝑏 (
𝑈𝑏𝑟6

6
+

𝑈𝑑 𝑟4

4
+

𝐴𝑟−𝑘+3

−𝑘 + 3
+

𝐵𝑟𝑘+3

𝑘 + 3
) +

𝐻𝑑 (
𝑈𝑏𝑟4

4
+

𝑈𝑑 𝑟2

2
+

𝐴𝑟−𝑘+1

−𝑘 + 1
+

𝐵𝑟𝑘+1

𝑘 + 1
)]

𝑟𝑖𝑗

𝑟𝑒𝑗

 (7) 

where it has been considered that the opening 𝑐 (Fig. 5) is very small with respect to the radii. The 

integral solution is straightforward since it only involves simple exponentials of 𝑟. Similarly, the 
second integral of Eq. (5) transforms into 

𝑈𝑟𝑙 = 𝜋 [𝐴𝑅𝐴 (
𝐴𝑟−2𝑘

2
+ 𝑘𝐵ln 𝑟 +

3𝑈𝑏𝑟−𝑘+3

−𝑘 + 3
+

𝑈𝑑𝑟−𝑘+1

−𝑘 + 1
) +

𝐵𝑅𝐵 (−
𝐵𝑟2𝑘

2
− 𝑘𝐴ln 𝑟 +

3𝑈𝑏𝑟𝑘+3

𝑘 + 3
+

𝑈𝑑 𝑟𝑘+1

𝑘 + 1
) +

𝑅𝑏 (
3𝑈𝑏𝑟6

6
+

𝑈𝑑𝑟4

4
−

𝑘𝐴𝑟−𝑘+3

−𝑘 + 3
+

𝑘𝐵𝑟𝑘+3

𝑘 + 3
) +

𝑅𝑑 (
3𝑈𝑏𝑟4

4
+

𝑈𝑑𝑟2

2
−

𝑘𝐴𝑟−𝑘+1

−𝑘 + 1
+

𝑘𝐵𝑟𝑘+1

𝑘 + 1
)]

𝑟𝑖𝑗

𝑟𝑒𝑗

 (8) 

(7) 
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Finally, the third integral related to the axial force energy is 

𝑈𝑧𝑙 = 𝜋𝜖𝑧
𝑢 [(𝜈𝜃𝑧𝐻𝐴 + 𝜈𝑟𝑧𝑅𝐴)

𝐴𝑟−𝑘+1

−𝑘 + 1
+ (𝜈𝜃𝑧𝐻𝐵 + 𝜈𝑟𝑧𝑅𝐵)

𝐵𝑟𝑘+1

𝑘 + 1

+(𝜈𝜃𝑧𝐻𝑏 + 𝜈𝑟𝑧𝑅𝑏)
𝑟4

4
+ (𝜈𝜃𝑧𝐻𝑑 + 𝜈𝑟𝑧𝑅𝑑 + 𝐸𝑧𝜖𝑧

𝑢)
𝑟2

2
]

𝑟𝑖𝑗

𝑟𝑒𝑗  (9) 

For each subcylinder, the energies of Eqs. (7), (8), and (9) must be summed up. The increment 

of unit internal energy of the flywheel is 

Δ𝑈𝑙 = 𝑈𝑙2 + 𝑈𝑙3 − 𝑈𝑙1 (10) 

The terms of the right-hand side correspond to the sum of Eq. (5) for each of the three 
cylinders. Notice that the energy of (2) and (3) is positive since their length increases with the 

crack, while that of (1) is negative due to its decrease, see Fig. 8. 
 

 

7. Work of centrifugal force 
 

All points inside the intact rotating flywheel are under a radial displacement field 𝑢(𝑟, 𝑧) due to 
the centrifugal force; the crack's progression perturbs this initial field. 

Since we assume that the infinitesimal displacement field does not change the centrifugal force, 

the work per unit volume 𝑊 is proportional to only one difference between the initial 𝑢𝑖𝑛 (intact) 

and final displacements 𝑢𝑓𝑖  (cracked). For a disk volume of unit length d𝑧 , we obtain 𝑊 =

𝑓𝑖(𝑢𝑓𝑖 − 𝑢𝑖𝑛) = 𝑓𝑖Δ𝑢 and 

𝑊𝑙 = ∫  
Ω

𝑊 dΩ = 2𝜋𝜌𝜔2 ∫  
𝑟𝑒

𝑟𝑖

(𝑢𝑓𝑖 − 𝑢𝑖𝑛)𝑟2 d𝑟 (11) 

The situation for points with lower and greater radii than 𝑟𝑐 will be studied separately. For the 
former, see Section 5, −Δ𝑢2 is the opposite of 𝑓𝑖 generating a negative work. For the latter, Δ𝑢3 is 

in the sense of 𝑓𝑖, and therefore its work is positive. 

Δ𝑊2 = 2𝜋𝜌𝜔2 ∫  
𝑟𝑐

𝑟𝑖

− Δ𝑢2𝑟2 d𝑟;  Δ𝑊3 = 2𝜋𝜌𝜔2 ∫  
𝑟𝑒

𝑟𝑐

Δ𝑢3𝑟2 d𝑟 (12) 

The points in (1) do not significantly change their radial displacement, then Δ𝑊1 = 0. 
 

 

8. Fracture of a CFRP flywheel 
 

Before the presentation of the main case, a previous consideration is made. Although it has 
been assumed that the crack is situated in the radial middle, the formulation accepts any position 

for simplicity. To check the influence of 𝑟𝑐 in the results, in Fig. 9, the ratio between the calculated 
energy Eq. (5) for several crack radii and the maximum of the series is plotted. As expected, the 

energy is very low when the crack is close to the internal or external radii. This is due to the 

reduction of one of the subcylinders and consequently Δ𝑢 → 0 in the other. For the dimensions 
given in Section 2, the highest ratio is 53% of the thickness for the first case and 57% for a thicker  
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Fig. 9 Normalized released energy vs. position of crack defined by inflexion point. Continuous 

line 𝑟𝑒  = 0.2, dashed line 𝑟𝑒 = 0.3 both with 𝑟𝑖 = 0.1 [m] 
 

 
Fig. 10 Peripheral speed limits at 𝑟𝑒  for failure of cylinders using stresses plus failure criterion 

(dashed line), and using fracture with the present study (continuous line) with the same external 

radius, several inner radii and common length 𝐿 = 0.4 [m] 
 
 

flywheel. These peaks indicate the position in which the crack most likely will develop. In any 

case, the error in the final result of Fig. 10 is less than 5% when the crack is calculated in the 
middle. 

The fracture of several flywheels made out of a single layer is analyzed in the following; the 

relevant material properties are listed in Table 1. Although in Section 3, it was justified that the 
fracture toughness of a unidirectional cylinder does not coincide with the interlaminar 𝐺𝑟+ 
measured from a flat specimen (see Fig. 4), to the best of our knowledge no other information is 

available; therefore, the value of 0.62 [kN/m] will be used. 
A parametric study for cylinders of several internal and external radii is now presented in Fig. 

10, fixing 𝑟𝑒 in each figure and varying 𝑟𝑖 nine times; for each of the 27 cases, the maximum linear 

velocity at 𝑟𝑒 (proportional to 𝜔, see Fig. 3) that produces sudden propagation of the crack is 

solved by iteration of 𝑏 in the first equation of the Appendix--the initiation is taken for sure 
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starting at minor defects--. Therefore, these values are the limit of revolutions before the flywheel 
breaks. 

Alternatively, with the geometry of each case, all stresses are calculated with the formulae from 
Pérez-Aparicio and Ripoll (2003), and with the criterion of Christensen (1997), a new peripheral 

velocity 𝑣  is again solved by iteration. This approach does not consider Fracture theory but 
Strength of Materials theory, that is, failure by stress limit. The reason for choosing this criterion is 
that it is especially suitable for very thick composite laminates. 

The discontinuity in the dashed lines of Fig. 10 represents two different failure modes: 

according to Christensen (1997), for relatively thick-wall flywheels the matrix is damaged. 
Although the failure criteria cannot consider fracture, the situation corresponds to that of a 𝜃 − 𝑧 
(Fig. 1) crack, as the one analyzed in the present work. For relatively thin-wall flywheels, the 

crack would be in the 𝑟 − 𝑧 plane, with a total loss of structural integrity and a catastrophic failure. 
With the matrix failure mode, the initial cylinder is divided into two concentric ones of the thinner 

wall, in theory, with better progressive failure resistance. 
 

 

9. Conclusions 
 

A cylindrical flywheel with an initial crack in the circumferential-axial plane that extends the 
complete perimeter will generally present a fracture limit at a lower speed than the predicted from 

a failure criterion; this difference means that for the design of real flywheels, the former approach 
must be applied. The evolution of these fracture results is exponential, implying that thin rotors are 
relatively immune to crack propagation but that thick ones are very prone. This incremental 
response is more relevant when the external diameter is small. The failure criterion predicts an 

increment of speed limit with the reduction of thickness, but at a certain 𝑟𝑖, the limit decreases; the 

reason is that for a particular ratio 𝑟𝑒/𝑟𝑖 when the cylinder becomes thin, the level of the radial 

stress 𝜎𝑟  is low and 𝜎𝜃 becomes prevalent--although 𝜎𝜃/𝑋1+ is always relatively small due to the 
high strength in this direction--. That is, the failure mechanism changes from matrix failure to fiber 
failure. 
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Appendix 
 
The inertial and axial deformations are defined only by two respective coefficients: 

𝑏 = −
𝜌𝜔2

𝑝
;       𝑑 = (𝑘2𝑛𝐻 − 𝑛𝑅)𝜀𝑧

𝑢

𝑈𝑏 =
𝑏

9 − 𝑘2
;       𝑈𝑑 =

𝑑

1 − 𝑘2

 

expressions that include the following material coefficients related to transversal isotropy, 𝜈𝜃𝑧 =
𝜈𝑟𝜃 and 𝐸𝑟 = 𝐸𝑧: 

𝑠11 =
1 − 𝜈𝜃𝑧

2

𝐸𝜃
; 𝑠12 = 𝜈𝜃𝑧

1 + 𝜈𝑟𝑧

𝐸𝑟

𝑠21 = 𝑠12; 𝑠22 =
1 − 𝜈𝑟𝑧

2

𝐸𝑟

𝜈𝐻 =
𝑠12

𝑠22
; 𝜈𝑅 =

𝑠12

𝑠11
𝑛𝐻 = 𝜈𝜃𝑧 + 𝜈𝐻𝜈𝑟𝑧; 𝑛𝑅 = 𝜈𝑅𝜈𝜃𝑧 + 𝜈𝑟𝑧

𝑘2 =
𝑠22

𝑠11
; 𝑝 =

𝑠11

𝑠11𝑠22 − 𝑠12
2

 

At Eq. (6), the stress coefficients associated only with material properties are: 

𝐻𝐴 = 𝑘2𝑝(1 − 𝑘𝜈𝐻); 𝐻𝐵 = 𝑘2𝑝(1 + 𝑘𝜈𝐻)

𝑅𝐴 = 𝑝(𝜈𝑅 − 𝑘); 𝑅𝐵 = 𝑝(𝜈𝑅 + 𝑘)
 

From the same equation, the stress coefficients that include material, centrifugal, and axial 
behavior are: 

𝐻𝑏 = 𝑘2𝑝(1 + 3𝜈𝐻)𝑈𝑏;     𝐻𝑑 = 𝑘2𝑝(1 + 𝜈𝐻)𝑈𝑑 + 𝑛𝐻𝜀𝑧
𝑢

𝑅𝑏 = 𝑝(3 + 𝜈𝑅)𝑈𝑏;     𝑅𝑑 = 𝑝[(𝜈𝑅 + 1)𝑈𝑑 + 𝑛𝑅𝜀𝑧
𝑢]
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