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Abstract.  The present research is focused on the study of plane harmonic waves in a two-dimensional orthotropic 
magneto-thermoelastic media with fractional order theory of generalized thermoelasticity in the light of two-
temperature and rotation due to time harmonic sources. Here, we studied three types of waves namely quasi-
longitudinal (QL), quasi-transverse (QTS) and quasi thermal (QT) waves. The variations in the wave properties such 
as phase velocity, attenuation coefficient and specific loss have been noticed with respect to frequency for the 
reflected waves. Further the value of amplitude ratios, energy ratios and penetration depth are computed numerically 
with respect to angle of incidence. The numerical simulated results are presented graphically to show the effect of 
fractional parameter based on its conductivity (0<α<1 for weak, α=1 for normal, 1<α≤2 for strong conductivity) on 
all the components. 
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1. Introduction 
 

A lot of research work has been carried out in the area of thermoelastic surface waves. The 

study of harmonic plane waves in different media or interfaces is one of the interesting fields in 
scientific technology. These wave travel along the different interfaces and layers through the earth. 
Moreover, plane waves are special type of waves where the phase of a wave is constant over the 
plane which is perpendicular to the direction of wave propagation. Further, the study of plane 
waves in magneto-thermoelastic media has great importance in the solid mechanics due to its 
applications in the various fields like semiology, geophysics and earthquake engineering, nuclear 
fields, inspecting materials etc. 

During the last few decades the wave propagation in anisotropic media has been widely 
studied. Chen and Gurtin (1968) and Chen et al. (1968, 1969) formulated two-temperature theory 
of thermoelasticity for deformable bodies. Heat conduction equation of this theory depends on two 
different types of temperatures thermodynamical temperature (T) and the conductive temperature 
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(𝜙). The difference between these two temperatures is proportional to the heat supply. The two 
temperatures are equal in the absence of heat supply for time independent problems. For time 
dependent problems, the two temperatures are different regardless of the presence of heat supply. 
Moreover, fractional order theory came into existence during the second half of the 19 th century 
and has been used to model polymer materials. The applications of fractional order theory are 
widely spread over the areas like in dynamics, fluid mechanics, biology, physics, mechanics of 
solids etc. Fractional order differential equations have been focus of many studies due to their non-
localization property. Most of the problems of physical processes are solved with the help of 

fractional order heat conduction equations. The application of fractional calculus was first 
introduced by Abel to solve the tautochrone problem. Borejko (1996) studied the reflection and 
transmission coefficients for 3D plane waves in elastic media. Sinha and Elsibai (1997) analyzed 
the reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with 
two relaxation times. Abd-Alla and Abbas (2002) examined the interactions in an infinite elastic 
cylinder placed in constant magnetic field and periodic load applied on its curved surface with the 
application of Lord Shulman and Green Lindsay theories of generalized thermoelasticity. Youssef 
(2006) formulated a new theory of generalized thermoelasticity by considering two-temperature 

generalized thermoelasticity theory for a homogeneous isotropic body without energy dissipation. 
Kaushal et al. (2010) studied the propagation of waves in generalized thermoelastic medium with 
two-temperature. Sharma and Bhargava (2014) studied the plane waves and fundamental solution 
in thermo-viscoelastic medium with voids. 

 Kumar and Gupta (2013) studied the plane wave propagation in anisotropic thermoelastic 
media with fractional order derivative and void. Zakaria (2014) examined the effect of hall current 
in a micropolar magneto-thermoelastic solid due to ramp type heat. Deswal and Kalkal (2014) 

studied the plane waves in a fractional order micropolar magneto-thermoelastic half-space. Das 
and Kanoria (2014) studied the finite thermal waves in a magneto-thermoelastic rotating medium. 
Sharma and Kumar (2013) studied the thermoelastic plane waves at an imperfect boundary of 
thermal conducting viscous liquid. Lata et al. (2016) studied the plane waves in transversely 
isotropic thermoelastic media with two-temperature and rotation. Marin et al. (2017) studied the 
qualitative results on mixed problem of micropolar bodies with microtemperatures. Abbas and 
Marin (2017) examined the analytical solution of thermoelastic interaction in a half space due to 

pulsed laser heating. Hobiny and Abbas (2017) studied the photothermal waves in an unbounded 
semiconductor medium with cylindrical cavity. Biswas and Abo-Dahab (2018) studied the effect 
of phase lags on Rayleigh wave propagation in initially stressed magneto-thermoelastic orthotropic 
medium. Othman et al. (2019a, 2019b) studied various plane wave problems in thermoelastic and 
magneto-thermoelastic media. Marin et al. (2019)  extended of Dafermos’s results for dynamical 
theory of inhomogeneous anisotropic bodies with a dipolar structure. Abouelregal et al. (2020) 
derived the fundamental equations in generalized thermoelastic diffusion with four lags and 
higher-order time-fractional derivatives. Ezzat (2020) studied the fractional thermo-viscoelastic 

response of biological tissue with variable thermal material properties. Lata and Himanshi (2021a, 
2021b, 2021c) studied the various orthotropic thermoelastic problems in generalized 
thermoelasticity with fractional order heat transfer. Singh and Aarti (2021) studied the Reflection 
of plane waves from the boundary of a thermo-magneto-electroelastic solid half space.  Djilali et 
al. (2021) studied the original four-variable quasi-3D shear deformation theory for the static and 
free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard 
core. Bouafia et al. (2021) analyzed the bending and free vibration characteristics of various 

compositions of FG plates on elastic foundation via quasi 3D HSDT model. Abbas et al. (2021) 
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studied the photo-thermal interactions in a semiconductor medium with a cylindrical cavity with 
two-temperature. Khamis et al. (2021) studied the effect of modified Ohm’s and Fourier’s laws on 
magneto thermo-viscoelastic waves with Green-Naghdi theory in a homogeneous isotropic hollow 
cylinder. Houari (2021) et al. studied the bending analysis of functionally graded plates using a 
new refined quasi 3D shear deformation theory and the concept of the neutral surface position. 
Merazka et al. (2021) studied the hygro-thermo-mechanical bending response of simply supported 

FG plates resting on elastic foundations.  Bakoura et al. (2022) studied the mechanical behavior of 
composite plates by using simple three variable refined plate theory. Bhatti et al. (2022) analyzed 
the thermal and entropy generation of magnetic Eyring-Powell nanofluid containing silver and 
gold nano-particles with viscous dissipation in a wavy asymmetric channel. Bot et al. (2022) 
studied the effects of Pasternak foundation on the bending behavior of FG porous plates in 
hygrothermal environment. Djilali et al. (2022) analyzed the large cylindrical deflection of FG 
carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT. Hebali et 

al. (2022) studied the effect of the variable visco-Pasternak foundations on the bending and 
dynamic behaviors of FG plates using integral HSDT model. Tahir et al. (2022) studied the effect 
of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich 
plates via a simple quasi-3D HSDT. Vinh et al. (2022) studied the static bending and buckling 
analysis of bi-directional functionally graded porous plates using an improved first-order shear 
deformation theory and FEM. Vinh and Tounsi studied the (2022) studied the free vibration 
analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear 
deformation theory with variable nonlocal parameters. Zhang et al. (2022) examined the blood 

flow through anisotropically tapered arteries filled with magnetic zinc-oxide nanoparticles. Bhatti 
et al. (2023) studied the spectral relaxation computation of Maxwell fluid flow from a stretching 
surface with quadratic convection and non-Fourier heat flux using Lie symmetry transformations. 

Including all the above discussed work, we conclude that the plane harmonic waves in an 
orthotropic magneto-thermoelastic medium in the context of fractional order heat transfer with 
combined effects of rotation and two-temperature has not been considered yet. So in the present 
research, we examined the effect of fractional order parameter on the plane wave properties in 

orthotropic media with and without energy dissipation in generalized thermoelasticity and noticed 
the variations in the values of all the field components with the help of graphs. 
 

 

2. Basic equations  
 
Following Lata et al. (2016), the simplified Maxwell’s linear equation of electrodynamics for a 

slowly moving and perfectly conducting elastic solid are 

𝐶𝑢𝑟𝑙 h⃗ =  𝑗 + 휀0 

𝜕�⃗� 

𝜕𝑡
 ,  (1) 

𝐶𝑢𝑟𝑙 E⃗⃗ = −𝜇0 

𝜕ℎ⃗ 

𝜕𝑡
 ,      (2) 

 E⃗⃗ = −𝜇0 ( 
𝜕�⃗� 

𝜕𝑡
× 𝐻0),    (3) 
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𝑑𝑖𝑣 ℎ⃗ = 0,      (4) 

Maxwell stress components are given by 

  𝑡𝑖𝑗 = 𝜇0 ( 𝐻𝑖 ℎ𝑗 + ℎ𝑗 𝐻𝑖 − 𝐻𝑘 ℎ𝑘 𝛿𝑖𝑗),        (5) 

Where, 𝑡𝑖𝑗 is the Maxwell stress tensor, �⃗�  is the induced electric field vector, ℎ⃗  and �⃗⃗� 0 are the 

induced and external applied magnetic field vector, �⃗�  is the displacement vector, 𝑗  is the current 

density vector, 휀0  and 𝜇0 are the electric and magnetic permeabilities, 𝛿𝑖𝑗 is the Kronecker delta 

respectively. 
Following Lata and Himanshi (2021a), equation of motion for an orthotropic thermoelastic 

medium rotating uniformly with an angular velocity 𝛀 =  Ω�⃗� ,  where �⃗�   is unit vector representing 
the direction of axis of rotation and taking into account Lorentz force is given by 

   𝜎𝑖𝑗,𝑗 + 𝐹𝑖 =  𝜌 [�̈�𝑖 + (𝛀 × (𝛀 × �⃗� ))𝑖 + (2 𝛀× �⃗� ̇)𝑖],   (6) 

Where, the components of Lorentz force are given by 

𝐹𝑖 = 𝜇0    ( 𝐽 × �⃗⃗� 0 )𝑖  ,  (7) 

Also, �⃗⃗� = (0,𝐻0, 0), is the magnetic field strength, 𝑗  is the current density vector, 𝜇0  is the 

magnetic permeability. The additional terms  𝛀 × (  𝛀 × �⃗�  ) and 2 𝛀 × �⃗� ̇  on the right side of 
above equation (6) are centripetal acceleration and Coriolis acceleration respectively.  

Following Lata and Zakhmi (2020), heat equation in anisotropic medium with fractional order 
heat transfer and with three-phase-lags is given by 

𝐾𝑖𝑗 (1 +
𝜏𝑡
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
)�̇�,𝑗𝑖 + 𝐾𝑖𝑗

∗ (1 +
𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
 )𝜙,𝑗𝑖

= ( 1 + 
𝜏𝑞 
𝛼

𝛼!
 
𝜕𝛼

𝜕𝑡𝛼
+ 

𝜏𝑞
2𝛼!

2𝛼!
 
𝜕2𝛼

𝜕𝑡2𝛼
)  (𝜌 𝐶𝐸 �̈� + 𝛽𝑖𝑗𝑇0�̈�𝑖𝑗), 

(8) 

Where, 
𝛽𝑖𝑗 =  𝑐𝑖𝑗𝑘𝑙𝛼𝑘𝑙 , 𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗, 𝐾𝑖𝑗 = 𝐾𝑖 𝛿𝑖𝑗 , 𝐾𝑖𝑗

∗ = 𝐾𝑖
∗𝛿𝑖𝑗, 𝑖 is not summed 𝑖, 𝑗

=  1,2,3 and 𝛿𝑖𝑗 is Kronecker delta. 

Also the strain displacement relations are 

  𝑒𝑖𝑗 = 
1

2
 (  𝑢𝑖,𝑗 +  𝑢𝑗,𝑖), 𝑖, 𝑗 = 1,2,3. (9) 

Following Youssef (2006), the two temperature relation is given by 

𝑇 = 𝜙 − 𝑎𝑖𝑗𝜙,𝑖𝑗 , 𝑖, 𝑗 = 1,2,3 (10) 

 

 

3. Formulation of the problem  
 
We consider a perfectly conducting homogeneous orthotropic magneto-thermoelastic medium 

rotating with an angular velocity 𝛀 =  Ω�⃗�   initially at uniform temperature 𝑇0 in the context of 

three-phase-lag fractional order model of thermoelasticity with an initial magnetic field �⃗⃗� =
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(0,𝐻0, 0),  towards 𝑦-axis. We take a rectangular coordinate system (𝑥, 𝑦, 𝑧) having origin on the 
surface 𝑧 = 0 with 𝑧-axis as a axis of symmetry and pointing vertically downwards into the 
medium. We choose x-axis in the direction of wave propagation so that all the particles on a line 

parallel to y-axis are equally displaced. Therefore, all the field quantities will be independent of y-
coordinate. For the 2D problem in 𝑥𝑧-plane, we take 

𝑢 = 𝑢(𝑥, 𝑧, 𝑡), 𝑣 = 0,𝑤 = 𝑤(𝑥, 𝑧, 𝑡), 𝜙 = 𝜙( 𝑥, 𝑧, 𝑡),  (11) 

Let us assume that 

 𝛀 = ( 0,Ω, 0), (12) 

From the generalized ohm’s law 

𝐽2 = 0,   (13) 

And the current density components are given by 

𝐽1 = −휀0𝜇0𝐻0
𝜕2𝑤

𝜕𝑡2  ,  (14) 

𝐽3  = 휀0𝜇0𝐻0
𝜕2𝑢

𝜕𝑡2
 ,   (15) 

Following Kumar and Chawla (2014), the stress-strain relations in an orthotropic medium is 
given by 

𝜎11 = 𝐶11 𝑒11 + 𝐶13 𝑒33 − 𝛽1𝑇, (16) 

𝜎33 = 𝐶13 𝑒11 + 𝐶33 𝑒33 − 𝛽3 𝑇, (17) 

= 2𝐶55 𝑒13, (18) 

Where 

𝑒11 =
𝜕𝑢

𝜕𝑥
, 𝑒33 =

𝜕𝑤

𝜕𝑧
, 𝑒13 = 

1

2 
(
𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑥
) , 𝑇 = 𝜙 − (𝑎1

𝜕2𝜙

𝜕𝑥2 + 𝑎3
𝜕2𝜙

𝜕𝑧2),  

 𝛽1 = 𝐶11 𝛼1 + 𝐶13 𝛼3, 𝛽3 =  𝐶13 𝛼1 + 𝐶33 𝛼3 .  
(19) 

Eqs. (6) and (8) with the aid of (9)-(10) and (11)-(19) reduce to the form   

𝐶11
𝜕2𝑢

𝜕𝑥2  + 𝐶55
𝜕2𝑢

𝜕𝑧2   + (𝐶13 + 𝐶55)
𝜕2𝑤

𝜕𝑥𝜕𝑧
− 𝛽1

𝜕

𝜕𝑥
{𝜙 − ( 𝑎1

𝜕2𝜙

𝜕𝑥2 + 𝑎3
𝜕2𝜙

𝜕𝑧2  )} − 𝜇0 𝐽3𝐻0 =

 𝜌 ( 
𝜕2𝑢

𝜕𝑡2 − Ω2 𝑢 + 2Ω
𝜕𝑤

𝜕𝑡
 ),  

(20) 

(𝐶55 + 𝐶13) + 𝐶55
𝜕2𝑤

𝜕𝑥2 + 𝐶33
𝜕2𝑤

𝜕𝑧2 − 𝛽3
𝜕

𝜕𝑧
{𝜙 − ( 𝑎1

𝜕2𝜙

𝜕𝑥2 + 𝑎3
𝜕2𝜙

𝜕𝑧2  )} + 𝜇0 𝐽1𝐻0 =

 𝜌 (
𝜕2𝑤

𝜕𝑡2 − Ω2 𝑤 − 2Ω
𝜕𝑢

𝜕𝑡
),   

(21) 

𝐾1 (1 + 
𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼)�̇�,11 + 𝐾3 (1 + 
𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼 ) �̇�33 + 𝐾1
∗  (1 + 

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 )𝜙,11 + 𝐾3
∗  (1 +

 
𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 )  𝜙,33 = [1 + 
𝜏𝑞
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 +
𝜏𝑞
2𝛼!

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼]  [𝜌𝐶𝐸
𝜕2

𝜕𝑡2 {𝜙 − ( 𝑎1
𝜕2𝜙

𝜕𝑥2 + 𝑎3
𝜕2𝜙

𝜕𝑧2  )} + 𝑇0  {𝛽1�̈�1,1 +

 𝛽3�̈�3,3 } ]  

(22) 
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In the above equations, we use the contracting subscript notations  
( 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6 ) to relate  𝐶𝑖𝑗𝑘𝑙  to 𝐶𝑚𝑛  

Where  𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3 and 𝑚, 𝑛 = 1,2,3,4,5,6   
We assume that the medium is initially is at rest. Then the undisturbed state is maintained at 

reference temperature. Then the initial and regularity conditions are 

𝑢(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 
𝑤(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 

𝜙(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0) 𝑓𝑜𝑟 𝑥3 ≥ 0 ,−∞ < 𝑥1 < ∞, 
𝑢(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑧, 𝑡) = 𝜙(𝑥, 𝑧, 𝑡)  = 0  For 𝑡 > 0 𝑤ℎ𝑒𝑛 𝑥3  → ∞. 

To facilitate the solution the following dimensionless quantities are used 

𝑥 , = 
𝑥

𝐿
 , 𝑧 , = 

𝑧

𝐿
, 𝑢, =

𝜌𝑐1
2

 𝐿𝑇0𝛽1
𝑢 ,𝑤 , = 

𝜌𝑐1
2

 𝐿𝑇0𝛽1
𝑤 , 𝑡 , = 

𝐶1

𝐿 
𝑡, 𝜎33 

, = 
𝜎33

𝑇0𝛽1
,  

𝜎31
, =

𝜎31

𝑇0𝛽1
, 𝜙 , =  

𝜙

𝑇0
 , Ω, = 

𝐿

𝐶1
Ω,𝑎1

, = 
𝑎1

𝐿2 
, 𝑎3

, = 
𝑎3

𝐿2 
.   

(23) 

Where, 𝑐1
2 =

𝑐11

𝜌
, 

Using dimensionless quantities given by (23) in Eqs. (20)-(22) and suppressing the primes for 
convenience yield 

(
  𝜕2𝑢

𝜕𝑥2
+ 𝛿1

𝜕2𝑢

𝜕𝑧2
+ 𝛿2

𝜕2𝑤

𝜕𝑥𝜕𝑧
) − 

𝜕

𝜕𝑥
{𝜙 − ( 

𝑎1

𝐿

𝜕2𝜙

𝜕𝑥2
+

𝑎3

𝐿

𝜕2𝜙

𝜕𝑧2
 )} = {(1 + 

𝜀0𝜇0
2𝐻0

2

𝜌
)

𝜕2𝑢

𝜕𝑡2
 − Ω2 𝑢 +

2Ω
𝜕𝑤

𝜕𝑡
} ,  

(24) 

(𝛿3  
𝜕2𝑤

𝜕𝑧2
+ 𝛿1

𝜕2𝑤

𝜕𝑥2
 + 𝛿2

𝜕2𝑢

𝜕𝑥𝜕𝑧
) − 휀 

𝜕

𝜕𝑧
 {𝜙 − ( 

𝑎1

𝐿

𝜕2𝜙

𝜕𝑥2
+

𝑎3

𝐿

𝜕2𝜙

𝜕𝑧2
 )} =  {(1 + 

𝜀0𝜇0
2𝐻0

2

𝜌
)

𝜕2𝑤

𝜕𝑡2
 −

Ω2 𝑤 − 2Ω
𝜕𝑢

𝜕𝑡
},  

(25) 

𝜖1𝑇1
𝜕

𝜕𝑡
(
𝜕2𝜙

𝜕𝑥2) + 𝜖2 𝑇1
𝜕

𝜕𝑡
(
𝜕2𝜙

𝜕𝑧2) +  𝜖3𝑇2 (
𝜕2𝜙

𝜕𝑥2) + 𝜖4 𝑇2 (
𝜕2𝜙

𝜕𝑧2) =  𝑇3 [
𝜕2

 𝜕𝑡2 {𝜙 − ( 
𝑎1

𝐿

𝜕2𝜙

𝜕𝑥2 +

𝑎3

𝐿

𝜕2𝜙

𝜕𝑧2  )} + 𝜖5
𝜕2

𝜕𝑡2 (
𝜕𝑢

𝜕𝑥
+  휀 

𝜕𝑤

𝜕𝑧
)],  

(26) 

Where, 

𝛿1 =  
𝑐55

𝑐11
, 𝛿2 = 

𝑐13+𝑐15

𝑐11
 , 𝛿3 = 

𝑐33

𝑐11
 , 𝜖1 =

𝐾1

𝜌 𝐿 𝐶1𝐶𝐸  
, 𝜖2 = 

𝐾3

𝜌 𝐿𝐶1𝐶𝐸  
, 𝜖3 =

𝐾1
∗

𝜌𝑐1
2𝐶𝐸  

, 𝜖4 =
𝐾3

∗

𝜌𝑐1
2𝐶𝐸  

,  

𝜖5 =
𝛽1

2𝑇0

𝜌2𝑐1
2𝐶𝐸  

 , 휀 =  
𝛽3

𝛽1
, 𝑇1 = (1 + 

𝜏𝑡
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼) , 𝑇2 = (1 + 
𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼) , 𝑇3 = [1 + 
𝜏𝑞
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 +
𝜏𝑞
2𝛼!

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼].  

 

 

4. Solution of the problem 
 

Following Kaur et al. (2021), we take harmonic plane wave solution of the form 

(

𝑢
𝑤
𝜙

) = (
𝑢∗

𝑤∗

𝜙∗
)exp{𝑖(𝜉𝑥 𝑛1 +𝜉𝑧𝑛3 − 𝜔𝑡)}, (27) 

Where (𝑛1, 𝑛3) denotes the projection of the wave normal onto the 𝑥 − 𝑧 plane, 𝜉 𝑎𝑛𝑑 𝜔 are 

respectively the wave number and angular frequency of plane harmonic waves propagating in 𝑥 −
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𝑧 plane. 
Upon using Eq. (27) in Eqs. (24)-(26) and eliminating  𝑢∗, 𝑤∗ and 𝜙∗  from the resulting 

equations yields the following characteristic equation. 

(𝐴𝜉6 + 𝐵𝜉4 + 𝐶𝜉2 + 𝐷 ) = 0, (28) 

Where, 

𝐴 = [ 𝑝1𝑝9𝑝15 − 𝑝1 𝑝12𝑝14 −  𝑝3𝑝7𝑝15 +  𝑝3𝑝12𝑝13 +  𝑝6𝑝7𝑝14 −  𝑝6𝑝9𝑝13], 
𝐵 = [ 𝑝1𝑝9𝑝16 +  𝑝1𝑝10𝑝15 − 𝑝1 𝑝11 𝑝14 +  𝑝2𝑝9𝑝15 −  𝑝2𝑝12𝑝14 −  𝑝3𝑝7𝑝16 −  𝑝3 𝑝8 𝑝15 +

 𝑝3𝑝11𝑝13 −  𝑝4𝑝7𝑝15 +  𝑝4 𝑝12 𝑝13 +  𝑝5𝑝7𝑝14  − 𝑝5 𝑝9 𝑝13 +  𝑝6𝑝8𝑝14− 𝑝6𝑝10𝑝13],  
𝐶 = [ 𝑝1𝑝10𝑝16 +  𝑝2𝑝9𝑝16 + 𝑝2 𝑝10 𝑝15 −  𝑝2𝑝11𝑝14 −  𝑝3𝑝8𝑝16 −  𝑝4𝑝7𝑝16 −  𝑝4 𝑝8 𝑝15 +

 𝑝4𝑝11𝑝13 +  𝑝5𝑝8𝑝14 − 𝑝5  𝑝10 𝑝13],  
𝐷 = [ 𝑝2𝑝10𝑝16 −  𝑝4𝑝8𝑝16], 

 𝑝1 = [−𝑛1
2 − 𝛿1𝑛3

2 ], 

𝑝2 = Ω2 + 𝜔2 (1 + 
휀0𝜇0

2𝐻0
2

𝜌
),  

 𝑝3 = −𝛿2𝑛1𝑛3, 
 𝑝4 =  2Ω𝑖𝜔, 
 𝑝5 = −𝑖𝑛1, 

𝑝6 = − 𝑖𝑎1𝑛1
3 + 𝑖𝑎3 𝑛1𝑛3

2, 
 𝑝7 = 𝑝3 , 

𝑝8 = − 𝑝4, 
𝑝9 = −𝛿1𝑛1

2 − 𝛿3𝑛3
2 , 

𝑝10  =  𝑝2, 
𝑝11 = − 𝑖휀𝑛3 , 

𝑝12 = − 𝑖휀𝑎1𝑛1
2𝑛3 + 𝑖휀𝑎3𝑛3

3, 
𝑝13 = 𝑇3

,  𝑖휀5𝜔
2 𝑛1, 

𝑝14 = 𝑇3
,  𝑖휀휀5 𝜔

2 𝑛3, 

𝑝15 = 𝑇1
,  [𝑖휀1 𝜔𝑛1

2 + 𝑖휀2𝜔𝑛3
2] + 𝑇2

, [−휀3𝑛1
2 − 휀4𝑛3

2 ] − 𝑇3
,  𝜔2[ 𝑎1𝑛1

2 + 𝑎3𝑛3
2], 

𝑝16 = 𝑇3
,  𝜔2, 

𝑇1
, = 1 + 

𝜏𝑡
𝛼

𝛼!
 (−𝑖𝜔)𝛼  , 

𝑇2
, = 1 + 

𝜏𝑣
𝛼

𝛼!
 (−𝑖𝜔)𝛼 , 

𝑇3
, = 1 + 

𝜏𝑞
𝛼

𝛼!
 (−𝑖𝜔)𝛼 + 

𝜏𝑞
2𝛼

2𝛼!
 (−𝑖𝜔)2𝛼. 

The roots of the Eq. (28) gives six values of 𝜉, in which we are interested in those roots whose 
imaginary parts are positive. Corresponding to these roots, there exist three waves corresponding 
to decreasing orders of their velocities, namely quasi-longitudinal, quasi-transverse and quasi-
thermal waves. The phase velocities, attenuation coefficients, specific loss and penetration depth 

of these waves are obtained by the following expressions. 
(i) Phase velocity 
The phase velocity is given by  

𝑉𝑗 =
𝜔

|𝑅𝑒(𝜉𝑗 )|
 , 𝑗 = 1,2,3  (29) 
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Fig. 1 Geometry of the problem 

 
 

Where, 𝑉𝑗  , 𝑗 = 1,2,3 are the phase velocities of QL, QTS and QT-waves respectively.  

(ii) Attenuation coefficient  
The attenuation coefficient is defined by  

𝑄𝑗 = 𝐼𝑚 (𝜉𝑗), 𝑗 = 1,2,3 (30) 

Where, 𝑄𝑗 , 𝑗 = 1,2,3 are the attenuation coefficients of QL, QTS and QT-waves respectively. 

(iii) Specific loss 

The specific loss is the ratio of the energy (Δ𝑤) dissipated in taking a specimen through a stress 

cycle, to the elastic energy (𝑤) stored in the specimen when the strain is maximum. The specific 
loss is defined as 

𝑊𝑗 = (
Δ𝑤

𝑤
) 𝑗 = 4𝜋 |

𝑖𝑚𝑔(𝜉𝑗)

𝑅𝑒 (𝜉𝑗)
| , 𝑗 = 1,2,3 (31) 

Where,  𝑊𝑗  , 𝑗 = 1,2,3 are the specific losses of QL, QTS and QT waves respectively. 

(iv) Penetration depth 
The penetration depth is defined as 

𝑆𝑗 = 
1

|𝑖𝑚𝑔 (𝜉𝑗)|
 , 𝑗 = 1,2,3  (32) 

=where  𝑆𝑗 , 𝑗 = 1,2,3 are the penetration depths of QL, QTS and QT waves respectively. 

 

 

5. Reflection and transmission at the boundary surfaces 
 

We consider an orthotropic magneto-thermoelastic half-space occupying the region 𝑧 ≥ 0 . 
Incident quasi-longitudinal or quasi-transverse or quasi-thermal waves at the stress free surface 

(𝑧 = 0) will generate QL-reflected, QTS-reflected and QT-reflected waves in the half-space 𝑧 >
0. The total displacements, conductive temperature are given by 
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𝑢 = ∑ 𝐴𝑗𝑒
𝑖𝑀𝑗6

𝑗=1  , 𝑤 = ∑ 𝑑𝑗𝐴𝑗𝑒
𝑖𝑀𝑗6

𝑗=1  , 𝜙 =  ∑ 𝑙𝑗𝐴𝑗𝑒
𝑖𝑀𝑗6

𝑗=1  ;  𝑗 = 1,2… .6  (33) 

Where,        

𝑀𝑗 =  𝜔𝑡 − 𝜉𝑗 (𝑥 𝑛1𝑗 − 𝑧 𝑛3𝑗),      𝑗 = 1,2,3 

𝑀𝑗 =  𝜔𝑡 − 𝜉𝑗 (𝑥𝑛1𝑗 + 𝑧 𝑛3𝑗),      𝑗 = 4,5,6 

Here the subscripts 𝑗 = 1,2,3 respectively denote the quantities corresponding to incident QL, 
QTS, QT waves and the subscripts j=4,5,6 denote the corresponding reflected QL, QTS and QT-
waves, 𝜉𝑗 denotes the roots of the Eq. (28), 𝑛1𝑗 = sin𝜃𝑗 , 𝑛3𝑗 =  cos𝜃𝑗. 

𝑑𝑗 = 
𝜉𝑗 
4(𝑝1𝑗𝑝15𝑗 − 𝑝6𝑗𝑝13𝑗  ) + 𝜉𝑗

2(𝑝1𝑗𝑝16𝑗 + 𝑝2𝑗𝑝15𝑗 − 𝑝5𝑗𝑝13𝑗) + 𝑝2𝑝16

𝜉𝑗
4  (𝑝9𝑗𝑝15𝑗 − 𝑝12𝑗𝑝14𝑗  ) + 𝜉𝑗

2(𝑝9𝑗𝑝16𝑗 + 𝑝10𝑗𝑝15𝑗 − 𝑝11𝑗𝑝14𝑗) + 𝑝10𝑝16

 , 

𝑙𝑗 = 
𝜉𝑗 
4(𝑝1𝑗𝑝9𝑗 − 𝑝3𝑗𝑝7𝑗  ) + 𝜉𝑗

2(𝑝1𝑗𝑝10𝑗 + 𝑝2𝑗𝑝9𝑗 − 𝑝3𝑗𝑝8𝑗 − 𝑝4𝑗𝑝7𝑗) + (𝑝2𝑝10 − 𝑝4𝑝8)

𝜉𝑗
4  (𝑝9𝑗𝑝15𝑗 − 𝑝12𝑗𝑝14𝑗 ) + 𝜉𝑗

2(𝑝9𝑗𝑝16𝑗 + 𝑝10𝑗𝑝15𝑗 − 𝑝11𝑗𝑝14𝑗) +  𝑝10𝑝16

 ,   

𝑓𝑜𝑟 𝑗 = 1,2,3 

𝑑𝑗 = 
𝜉𝑗 
4(𝑝1𝑗𝑝15𝑗 − 𝑝6𝑗𝑝13𝑗  ) + 𝜉𝑗

2(𝑝1𝑗𝑝16𝑗 + 𝑝2𝑗𝑝15𝑗 − 𝑝5𝑗𝑝13𝑗) + 𝑝2𝑝16

𝜉𝑗
4  (𝑝9𝑗𝑝15𝑗 + 𝑝12𝑗𝑝14𝑗  ) + 𝜉𝑗

2(𝑝9𝑗𝑝16𝑗 + 𝑝10𝑗𝑝15𝑗 − 𝑝11𝑗𝑝14𝑗) + 𝑝10𝑝16

 , 

𝑙𝑗 = 
𝜉𝑗 
4(𝑝1𝑗𝑝9𝑗 − 𝑝3𝑗𝑝7𝑗 ) + 𝜉𝑗

2(𝑝1𝑗𝑝10𝑗 + 𝑝2𝑗𝑝9𝑗 + 𝑝3𝑗𝑝8𝑗 + 𝑝4𝑗𝑝7𝑗) + (𝑝2𝑝10 − 𝑝4𝑝8)

𝜉𝑗
4  (𝑝9𝑗𝑝15𝑗 + 𝑝12𝑗𝑝14𝑗  ) + 𝜉𝑗

2(𝑝9𝑗𝑝16𝑗 + 𝑝10𝑗𝑝15𝑗 − 𝑝11𝑗𝑝14𝑗) + 𝑝10𝑝16

 , 

𝑓𝑜𝑟 𝑗 = 4,5,6 

 

 

6. Boundary conditions 
 

Following Lata et al. (2016), we take the following boundary conditions at the free surface 𝑧 =
0 

 (1)  𝜎33 = 0,  (34) 

(2) 𝜎31 = 0, (35) 

(3) 
𝜕𝜙

𝜕𝑧
= 0 𝑎𝑡 𝑧 = 0, (36) 

Making the use of Eq. (33) in (34)-(36), we obtain 

∑ (−𝑖𝜉𝑗
3
𝑗=1 sin 𝜃𝑗

𝐶13

𝜌𝐶1
2 + 𝑖𝜉𝑗𝑑𝑗 cos 𝜃𝑗

𝐶33

𝜌𝐶1
2 − 휀𝑙𝑗 ( 1 + 𝑎1𝜉𝑗

2𝑠𝑖𝑛2𝜃𝑗 +

𝑎3 𝜉𝑗
2𝑐𝑜𝑠2𝜃𝑗 ))𝐴𝑗𝑒

𝑖𝑀𝑗(𝑥,0) + ∑ (−𝑖𝜉𝑗
6
𝑗=4 sin𝜃𝑗

𝐶13

𝜌𝐶1
2 − 𝑖𝜉𝑗𝑑𝑗 cos𝜃𝑗

𝐶33

𝜌𝐶1
2) − 휀𝑙𝑗(1 +

 𝑎1𝜉𝑗
2𝑠𝑖𝑛2𝜃𝑗 + 𝑎3 𝜉𝑗

2𝑐𝑜𝑠2𝜃𝑗) )𝐴𝑗𝑒
𝑖𝑀𝑗(𝑥,0) = 0,  

(37) 

∑ (𝑖𝜉𝑗
3
𝑗=1 cos 𝜃𝑗 − 𝑖𝜉𝑗𝑑𝑗 sin 𝜃𝑗)𝐴𝑗𝑒

𝑖𝑀𝑗(𝑥,0) + ∑ (−𝑖𝜉𝑗
6
𝑗=4 cos𝜃𝑗 − 𝑖𝜉𝑗𝑑𝑗 sin 𝜃𝑗)𝐴𝑗𝑒

𝑖𝑀𝑗(𝑥,0) = 0,  (38) 

∑ (𝑖𝜉𝑗
3
𝑗=1 𝑙𝑗 cos𝜃𝑗)𝐴𝑗𝑒

𝑖𝑀𝑗(𝑥,0) + ∑ (−𝑖𝜉𝑗
6
𝑗=4 𝑙𝑗 cos𝜃𝑗) 𝐴𝑗𝑒

𝑖𝑀𝑗(𝑥,0) = 0,  (39) 

The Eqs. (37)-(39) are satisfied for all values of 𝑥, therefore we have  
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𝑀1(𝑥, 0) =  𝑀2(𝑥, 0),= 𝑀3(𝑥, 0),= 𝑀4(𝑥, 0),= 𝑀5(𝑥, 0),= 𝑀6(𝑥, 0),  (40) 

From the equations (33) and (40), we obtain 

𝜉1 sin 𝜃1 = 𝜉2 sin𝜃2 = 𝜉3 sin 𝜃3 = 𝜉4 sin 𝜃4 = 𝜉5 sin 𝜃5 = 𝜉6 sin 𝜃6,  (41) 

Which is the form of Snell’s law for stress free surface of orthotropic magneto-thermoelastic 
medium with rotation, the Eqs. (33)-(35) and (37) yield 

∑ 𝑋𝑖𝑞 𝐴𝑞
3 
𝑞=1 + ∑  𝑋𝑖𝑗 𝐴𝑗

6
𝑗=4 = 0,                   𝑖 = 1,2,3  (42) 

Where 

 𝑋1𝑞 = (−𝑖𝜉𝑞 sin𝜃𝑞
𝐶13

𝜌𝐶1
2 + 𝑖𝜉𝑞𝑑𝑞 cos𝜃𝑞

𝐶33

𝜌𝐶1
2 − 휀𝑙𝑞 ( 1 + 𝑎1𝜉𝑞

2𝑠𝑖𝑛2𝜃𝑞 + 𝑎3 𝜉𝑞
2𝑐𝑜𝑠2𝜃𝑞), 𝑞 =

1,2,3  

𝑋2𝑞 = (𝑖𝜉𝑞 cos𝜃𝑞 − 𝑖𝜉𝑞𝑑𝑞 sin 𝜃𝑞),          𝑞 = 1,2,3 

𝑋3𝑞 = (𝑖𝜉𝑞 𝑙𝑞cos 𝜃𝑞),                                  𝑞 = 1,2,3 

𝑋1𝑗 =  (−𝑖𝜉𝑗sin 𝜃𝑗
𝐶13

𝜌𝐶1
2 − 𝑖𝜉𝑗𝑑𝑗 cos𝜃𝑗

𝐶33

𝜌𝐶1
2) − 휀𝑙𝑗(1 + 𝑎1𝜉𝑗

2𝑠𝑖𝑛2𝜃𝑗 + 𝑎3 𝜉𝑗
2𝑐𝑜𝑠2𝜃𝑗 )),        𝑗 =

4,5,6  

𝑋2𝑗 = (𝑖𝜉𝑗 cos𝜃𝑗 − 𝑖𝜉𝑗𝑑𝑗 sin𝜃𝑗),             𝑗 = 4,5,6 

𝑋3𝑗 =  (−𝑖𝜉𝑗𝑙𝑗 cos𝜃𝑗),                  𝑗 = 4,5,6 

(43) 

 

 
7. Amplitude ratios 
 

7.1 Incident QL-wave 
 

In case of Quasi-longitudinal wave, the subscript 𝑞 takes only one value, that is 𝑞 = 1 which 

means 𝐴2 = 𝐴3 = 0, dividing the set of Eq. (38) throughout by 𝐴1 then we obtain a system of 
three non-homogeneous equations in three unknowns which is solved by Cramer’s rule and we 
have 

𝐴1𝑖 = 
𝐴𝑖+3

𝐴1
= 

Δ𝑖
1

Δ
 ,        𝑖 = 1,2,3 (44) 

 

7.2 Incident QTS-wave 
 

In case of Quasi-longitudinal wave, the subscript 𝑞 takes only one value, that is 𝑞 = 2 which 

means 𝐴1 = 𝐴3 = 0, dividing the set of Eq. (38) throughout by 𝐴2, we obtain a system of three 
non-homogeneous equations in three unknowns which is solved by Cramer’s rule and we get 

𝐴2𝑖 = 
𝐴𝑖+3

𝐴2
= 

Δ𝑖
2

Δ
 ,        𝑖 = 1,2,3 (45) 

 

7.3 Incident QT-wave 
 

In case of Quasi-longitudinal wave, the subscript 𝑞 takes only one value, that is 𝑞 = 3 which 

112



 

 

 

 

 

 

Plane harmonic waves in fractional orthotropic magneto-thermoelastic solid… 

means 𝐴1 = 𝐴2 = 0, dividing the set of Eq. (38) throughout by 𝐴3 then we obtain a system of 
three non-homogeneous equations in three unknowns which is solved by Cramer’s rule and we 
have 

𝐴3𝑖 = 
𝐴𝑖+3

𝐴3
= 

Δ𝑖
3

Δ
 ,        𝑖 = 1,2,3  (46) 

Where, 

𝐴1𝑖 , 𝐴2𝑖 , 𝐴3𝑖 are the amplitude ratios of the reflected QL, reflected QTS and reflected QT waves 
respectively. 

Here Δ =  |𝑋𝑖𝑖+3|3×3 and ∆𝑖
𝑝
, ( 𝑖 = 1,2,3) can be obtained by replacing, respectively, 1st, 2nd, 

and 3rd columns of  ∆ by [−𝑋1𝑝, −𝑋2𝑝, −𝑋3𝑝]
𝑡
 

Following Achenbach (1973), the energy flux across the surface element, which is the rate at 
which energy is communicated per unit area of the area of the surface, is repeated as 

𝑃∗ = 𝑡𝑙𝑚𝑛𝑚𝑢𝑙 ,̇  (47) 

Where, 𝑡𝑙𝑚 is the stress tensor, 𝑛𝑚 are the direction cosines of the unit normal and 𝑢𝑙̇  are the 
components of the particle velocity.   

The time average of 𝑃∗  over a period, denoted by < 𝑃∗ >  represents the average energy 

transmission per unit surface area per unit time and is given at the interface 𝑥3 = 0, as 

 < 𝑃∗ >= < 𝑅𝑒 (𝑡13).𝑅𝑒(𝑢1̇) + 𝑅𝑒 (𝑡33).𝑅𝑒(𝑢3̇) >,  (48) 

 

 

8. Energy ratios 
 

Following Achenbach (1973), for any two complex functions 𝑓 and 𝑔, we have 

< 𝑅𝑒(𝑓) >< 𝑅𝑒(𝑔) >= 
1

2
 𝑅𝑒 (𝑓�̅�),   (49) 

The expressions for energy ratio 𝐸𝑖  , ( 𝑖 = 1,2,3) for reflected QL, QTS and QT waves is given 
as 

 

8.1 Incident QL-wave 
 

𝐸1𝑖 = 
<𝑃𝑖+3

∗ >

<𝑃1
∗>

,                 𝑖 = 1,2,3  (50) 

 

8.2 Incident QTS-wave 
 

𝐸2𝑖 = 
<𝑃𝑖+3

∗ >

<𝑃2
∗>

,                 𝑖 = 1,2,3  (51) 

 

8.3Incident QT-wave 
 

𝐸3𝑖 = 
<𝑃𝑖+3

∗ >

<𝑃3
∗>

.                𝑖 = 1,2,3   (52) 

113



 

 

 

 

 

 

Himanshi and Parveen Lata 

Where, < 𝑃𝑖
∗ >   𝑖 = 1,2,3 are the average energies transmission per unit surface area per unit time 

corresponding to incident QL, QTS, and QT waves respectively and < 𝑃𝑖+3
∗ > 𝑖 = 1,2,3 is the 

average energies transmission per unit surface area per unit time corresponding to reflected QL, 
QTS and QT waves respectively. 
 

 

9. Particular cases 
 

1. If we put 𝐾1 = 𝐾3 = 0  in Eq. (22), the problem reduces for the case Plane harmonic wave 
propagation in orthotropic magneto-thermoelastic rotating medium without energy dissipation 
(GN-II type) with three-phase-lag fractional order model and two-temperature. 

2. If  𝐶11 = 𝐶33, 2𝐶55 =  𝐶11 − 𝐶33, we get the expressions for Plane harmonic wave 

propagation in transversely isotropic magneto-thermoelastic medium with combined effect of 
rotation and two-temperature with GN-III type fractional order model with three-phase-lags. 

3. If  𝐶11 = 𝐶33 = 𝜆 + 2𝜇, 𝐶13 = 𝜆, 𝐶55 = 𝜇, 𝛽1 = 𝛽3 = 𝛽,𝐾1 = 𝐾3 = 𝐾,𝐾1
∗ = 𝐾3

∗ = 𝐾∗,  we 
get the expressions for Plane harmonic wave propagation for isotropic solid with three-phase-lag 
fractional order theory in generalized thermoelasticity. 

4. If we put  𝜏𝑡 =  𝜏𝑣 =  𝜏𝑞 = 0, and 𝐾1
∗ = 𝐾3

∗ = 0,  in Eq. (22) then the resulting equation 

represents heat equation for coupled theory of thermoelasticity. 

5. If we put  𝐾1
∗ = 𝐾3

∗ = 0, in Eq. (22), then the problem reduces for the case GN-I type 
fractional order model in generalized thermoelasticity. 

6. If we put  𝜏𝑡 =  𝜏𝑣 =  𝜏𝑞 = 0, in Eq. (22), then the resulting equation reduces for the case 

GN-III type model of thermoelasticity.  

7. If we put 𝑎1 = 𝑎3 = 0, in Eq. (22), the problem reduces for the case Plane wave propagation 
in orthotropic magneto-thermoelastic rotating medium without two-temperature and with three-
phase-lag fractional order model in generalized thermoelasticity. 

8. If Ω = 0,  then we obtain the corresponding expressions for an orthotropic magneto-
thermoelastic solid with and without energy dissipation and with two-temperature without rotation.  
 

 

10. Numerical results and discussion 
 

Following Lata and Himanshi (2021a), for the purpose of numerical calculation cobalt material 
has been taken for the purpose of numerical computations with numerical values as  

 𝑐11 =  3.071 × 1011 Kgm−1s−2,  𝑐13 =  1.650 × 1011Kgm−1s−2, 𝑐33 =  3.581 ×
1011Kgm−1s−2,  

𝑐55 =  1.510 × 1011Kgm−1s−2, 𝑐𝐸 = 4.27 × 102 JKg−1K−1 ,𝛽1 =  7.04 × 106Nm2K−1,  
𝛽3 = 6.90 × 106 Nm2K−1, 𝑇0 = 293K,𝐾1 =  6.90 × 102Wm−1K−1,𝐾3 =  7.01 ×

102Wm−1K−1,  
𝐾1

∗ =  1.313 × 102Ws−1, 𝐾3
∗ =  1.54 × 102Ws−1, 𝜌 =  8.836 × 103Kgm−3,  𝜏𝑣 =  2.0 × 10−7S,  

 𝜏𝑞 =  2.0 × 10−7S, 𝜇0 =  1.2571 × 10−6 Hm−1, 𝐻0 = 1 Jm−1nb−1, 휀0 = 8.838 × 10−12 Fm,  

  𝜏𝑡 = 2.0 × 10−7S, 𝐿 = 1   
Using the above values, the numerical simulated results are represented graphically with the 

help of octave software. The variations of phase velocity, attenuation coefficient depth, Specific 
loss, penetration depth, amplitude ratios and energy ratios of the reflected QL, QTS, QT with  
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Fig. 2 Variation of phase velocity 𝑽𝟏  with 

frequency 𝛚 

Fig. 3 Variation phase velocity 𝑽𝟐 with frequency 𝛚 

 

  

Fig. 4 Variation phase velocity 𝑽𝟑 with respect to 

frequency 𝛚 

Fig. 5 Variation attenuation coefficient 𝑸𝟏  with 

respect to frequency 𝛚 

 

  

Fig. 6 Variation attenuation coefficient 𝑄2  with 

respect to frequency ω 

Fig. 7 Variation attenuation coefficient 𝑸𝟑  with 

respect to frequency 𝛚 

 

 
respect to incident QL, QTS, QT corresponding to three different values of fractional parameter 
have been investigated for plane harmonic waves in an orthotropic magneto-thermoelastic rotating 
media in generalized thermoelasticity with three-phase-lag fractional order theory and two-
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temperature. The variation of magnitude of phase velocity, attenuation coefficients, penetration 
depth and specific loss with respect to frequency are shown in Figs. 2-13. The variations of 
amplitude ratios and energy ratios of the reflected waves subject to incident waves with respect to 
angle of incidence have been plotted in Figs. 14-31 respectively.  
 

 

11. Effect of fractional parameter 
 

1. The red solid line with centre symbol (□) relates to 𝛼 = 0.25 (weak conductivity) 
2. The green solid line with centre symbol (Δ) relates to 𝛼 = 1 (normal conductivity) 

3. The blue solid line with centre symbol (○) relates to 𝛼 = 1.75 (strong conductivity) 
 

11.1 Phase velocity: 
 

Figs. 2-4 gives the variation in the phase velocities 𝑉1 , 𝑉2, , 𝑉3  with respect to frequency 𝜔 
corresponding to three different values of fractional parameter 𝛼 = 0.25,1,1.75 respectively. We 

see that for all values of 𝛼 the value of phase velocity 𝑉1 oscillates in the range 2.5 ≤ 𝜔 ≤ 7.5  
then increases monotonically corresponding to all values of 𝛼 with different magnitudes. The 

phase velocity 𝑉1 attains its maximum value corresponding to 𝛼 = 1 and attains minimum value 

corresponding to 𝛼 = 0.25 whereas the value corresponding to 𝛼 = 1.75 lies in between these 
two. Fig. 3 shows the behaviour of phase velocity  𝑉2 with respect to frequency 𝜔. We noticed that 

for 𝛼 = 0.25,1,1.75 in the starting range 2.5 ≤ 𝜔 ≤ 10 the value of phase velocity  𝑉2 oscillates 
with different amplitude of oscillations then increases monotonically in the rest and attains a peak 

value for 𝛼 = 1.75 and minimum value for 𝛼 = 0.25 while for 𝛼 = 1 its value lies in between 

these two. Fig. 4, exhibits the nature of phase velocity 𝑉3 with respect to frequency 𝜔. It can be 
observed that its value decreases initially near the boundary surface then a sharp increase is 

noticed as the frequency increases for all values of 𝛼 = 0.25,1,1.75 respectively. 
 

11.2 Attenuation coefficients: 
 

Figs. 5-7 gives the variation in the value of attenuation coefficients 𝑄1, 𝑄2 and 𝑄3 with respect 

to frequency corresponding to three different values of fractional parameter 𝛼 = 0.25,1,1.75 

respectively. Fig. 5 shows the variations in the attenuation coefficient 𝑄1 with respect to frequency 

𝜔. Here, we noticed that its value decreases sharply in the starting range 2.5 ≤ 𝜔 ≤ 7.5  for all 

values of 𝛼 = 0.25,1,1.75 respectively afterwards shows linearity. While for 𝛼 = 0.25 its value 
oscillates in the range 2.5 ≤ 𝜔 ≤ 7.5  then decreases and remains constant as the frequency 

approaches to its maximum value. The change in attenuation coefficient 𝑄2 is described in Fig. 6. 

We see that for 𝛼 = 1,1.75 its value increases in the range 2.5 ≤ 𝜔 ≤ 5 then decreases slowly 

when frequency approaches to its maximum value. For 𝛼 = 0.25 in the range 2.5 ≤ 𝜔 ≤ 7.5 its 

value increases sharply and attains a highest peak at 𝜔 = 7.5  afterwards declines in the rest. Fig. 7 
represents the change in the attenuation coefficient 𝑄3 with respect to frequency 𝜔. The value of 

𝑄3 increases sharply in the starting range 2.5 ≤ 𝜔 ≤ 4 after that declines with different magnitude 

values corresponding to all values of 𝛼 = 0.25, 1, 1.75 respectively.  
 

11.3 Specific loss 
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Fig. 8 Variation of specific loss 𝑾𝟏with respect to 

frequency 𝝎 

Fig. 9 Variation of specific loss 𝑾𝟐 with respect to 

frequency 𝝎 

 

  

Fig. 10 Variation of specific loss 𝑊3  with respect 

to frequency 𝜔 

Fig. 11 Variation of penetration depth 𝑺𝟏 with 

respect to frequency 𝝎 

 

  

Fig. 12 Variation of penetration depth 𝑺𝟐 with 

respect to frequency 𝝎 

Fig. 13 Variation of penetration depth 𝑺𝟑 with 

respect to frequency 𝝎 

 
 

Figs. 8-10 gives the variation of specific loss 𝑊1 ,𝑊2  and 𝑊3  with respect to frequency 

corresponding to three different values of fractional parameter 𝛼 = 0.25,1,1.75 respectively. From 

Fig. 8 we observe that for 𝛼 = 0.25 the value of specific loss 𝑊1 remains same in the range 0 ≤
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𝜔 ≤ 3  then oscillates in the range 3 ≤ 𝜔 ≤ 4 and attains its maximum value at 𝜔 = 5 after that 
its value declines in the remaining range. However, for 𝛼 = 1,1.75, its value oscillates in the range 

0 ≤ 𝜔 ≤ 3 then remains constant with increase in the value of frequency. Fig. 9 gives the variation 

of specific loss 𝑊2 with respect to frequency 𝜔. It can be noticed that for all the three cases trends 
are similar (oscillatory) with different magnitudes. Fig. 10 exhibits the variation of specific loss 

𝑊3. We see that near the boundary the value of 𝑊3  increases for all values of α=0.25,1,1.75 

respectively in the range 0 ≤ 𝜔 ≤ 1 and declines in the rest of the range. Further the value remains 
same throughout as the frequency approaches to its maximum value. 
  

11.4 Penetration depth: 
 

Figs. 11-13 gives the variation of penetration depth 𝑆1 , 𝑆2 and 𝑆3  with respect to frequency 

corresponding to three different values of fractional parameter 𝛼 = 0.25,1, 1.75 respectively. For 

𝛼 = 0.25. We observed that the value of penetration depth 𝑆1 oscillates in the range 1 ≤ 𝜔 ≤ 3 

afterwards increases monotonically in the rest. For 𝛼 = 1,1.75 curves are increasing sharply in the 
whole range and attains a maximum value. Fig. 12 describes the nature of penetration depth 𝑆2 

with respect to frequency. The behaviour is quite opposite as compared to 𝑆1 means its value 

decreases sharply near the boundary in the range 1 ≤ 𝜔 ≤ 4 afterwards increases monotonically in 

the rest. For 𝛼 = 1,1.75  its value declines in the range 1 ≤ 𝜔 ≤ 2  after that it increases 
monotonically in the remaining range and attains a peak value with the increase in the value of 

frequency. The value of 𝑆3 for α=0.25 increases monotonically throughout. However for α=1, 1.75 
curves show small increase in its value in the whole range.  
   
 

12. Amplitude ratios 
 

12.1 Incident QL-wave 
 

Figs. 14-16 depicts the variations of amplitude ratios 𝐴11, 𝐴12, 𝐴13 of QL-wave with respect to 
angle of incidence 𝜃. From Fig. 14, we noticed that initially there is a small increase in the value of 

the amplitude ratio 𝐴11 for α=0.25 and then declines monotonically with the increasing value of 

angle of incidence 𝜃. For α=1, 1.75 it decreases sharply near the boundary then a little increase is 
noticed after that its value decreases monotonically in the rest of the range and all the three curves 

intersect each other. From the Fig. 15, we conclude that initially in the range 0≤ 𝜃 ≤ 19 for α=1, 

1.75 the value of amplitude ratio  𝐴12 declines sharply then increases in the range 19≤ 𝜃 ≤ 50 
afterwards its value decreases as the angle of incidence approaches to its maximum value. It can 

also be noticed that corresponding to all values of fractional parameter α and at 𝜃 = 90° all the 

curves meet each other. The nature of amplitude ratio 𝐴13 is described in Fig. 16. Here, we noticed 

that behaviour is same as for the amplitude ratio 𝐴11 with different magnitude values. 
 

12.2 Incident QTS-wave 
 

Figs. 17-19 depicts the variations of amplitude ratios 𝐴21, 𝐴22,𝐴23 of QTS-wave with respect 

to angle of incidence 𝜃. From Fig. 17 it can be observed in the range 0 ≤ 𝜃 ≤ 90 the value of 

amplitude ratio 𝐴21 declines monotonically from its highest value to lowest value with different  
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Fig. 14 Variation of amplitude ratio of 𝐴11  with 

respect of angle of incidence 𝜃 

Fig. 15 Variation of amplitude ratio of 𝐴12  with 

respect of angle of incidence 𝜃 

  

Fig. 16 Variation of amplitude ratio of 𝐴13  with 

respect of angle of incidence 𝜃 

Fig. 17 Variation of amplitude ratio of 𝐴21  with 

respect of angle of incidence 𝜃 

  

Fig. 18 Variation of amplitude ratio of 𝐴22  with 

respect of angle of incidence 𝜃 

Fig. 19 Variation of amplitude ratio of 𝐴23  with 

respect of angle of incidence 𝜃 

 
 

magnitudes corresponding to all three values of α=0.25, 1, 1.75 respectively. The change in the 

amplitude ratio 𝐴22 has shown in Fig. 18. It can be seen that in the range 0≤ 𝜃 ≤ 10 for all the 
three cases its value decreases sharply then remains constant with increase in the value of angle of 

incidence. The variation of amplitude ratio 𝐴23 is depicted in Fig. 19. We observed that variations 

are similar as for 𝐴21 with differ in their magnitude values. Further we also noticed that  
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Fig. 20 Variation of amplitude ratio of 𝐴31  with 

respect of angle of incidence 𝜃 

Fig. 21 Variation of amplitude ratio of 𝐴32  with 

respect of angle of incidence 𝜃 

 
 

corresponding to all values of fractional parameter α and at 𝜃 = 90° all the curves meet each 

other. 
 

12.3 Incident QT-wave 
 

Figs. 20-22 gives the change in the value of amplitude ratios 𝐴31, 𝐴32, 𝐴33 of QT-wave with 

respect to angle of incidence 𝜃. From the graphs it is clear that the value of all the three amplitude 

ratios 𝐴31,𝐴32, 𝐴33 decreases monotonically from maximum to minimum value in range 0≤ 𝜃 ≤ 5  
afterwards remains constant in the rest of the range corresponding to all three values of α=0.25, 1, 
1.75 respectively. 
 

 

13. Energy ratios 
 

13.1 Incident QL-wave 
 

Figs. 23-25 depicts the variations of energy ratios 𝐸11 , 𝐸12 , 𝐸13  of QL-wave with respect to 

angle of incidence 𝜃. It is clear from the Fig. 23 that for α=0.25,1 the value of energy ratio 𝐸11 
increases monotonically. While for α=1.75 its value decreases monotonically in the whole range of 

angle of incidence. The value of energy ratio 𝐸12 rises from low to high value with increase in the 
angle of incidence 𝜃 corresponding to all values of fractional parameter. It can be observed from 

fig 25 that the value of energy ratio  𝐸13 decreases in all the three cases with different magnitudes 
for α=0.25, 1, 1.75 respectively. 

 
13.2 Incident QTS-wave 
 

Figs. 26-28 depicts the variations of energy ratios 𝐸21, 𝐸22, 𝐸23 of QTS-wave with respect to 
angle of incidence 𝜃. we see that for α=0.25, 1 the value of energy ratio 𝐸21 increases linearly 
while for α=1.75 it decreases throughout with the increasing value of angle of incidence. The 

nature of energy ratio 𝐸22 has shown in Fig. 27. From the graph it can be seen that its value  
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Fig. 22 Variation of amplitude ratio of 𝐴33 with 

respect of angle of incidence 𝜃 

Fig. 23 Variation of energy ratio 𝐸11  with respect of 

angle of incidence 𝜃 

 

  

Fig. 24 Variation of energy ratio 𝐸12  with respect 

of angle of incidence 𝜃 

Fig. 25 Variation of energy ratio 𝐸13  with respect of 

angle of incidence 𝜃 

 

  

Fig. 26 Variation of energy ratio  𝐸21  with respect 

of angle of incidence 𝜃 

Fig. 27 Variation of energy ratio 𝐸22  with respect of 

angle of incidence 𝜃 

 
 

increases in all the three cases in the whole range with difference in their magnitude values. From 

the Fig. 28, we see that the value of energy ratio 𝐸23 declines linearly corresponding to all values 
of α=0.25, 1, 1.75 respectively throughout. 
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Fig. 28 Variation of energy ratio 𝐸23  with respect 

of angle of incidence 𝜃 

Fig. 29 Variation of energy ratio 𝐸31  with respect 

of angle of incidence 𝜃 

 

  

Fig. 30 Variation of energy ratio  𝐸32  with respect 

of angle of incidence 𝜃 

Fig. 31 Variation of energy ratio 𝐸33  with respect 

of angle of incidence 𝜃 

 
 

13.3 Incident QT-wave 
 

Figs. 29-31 depicts the variations of energy ratios 𝐸31, 𝐸32, 𝐸33 of QT-wave with respect to 

angle of incidence 𝜃. From Fig. 29, it can be observed that the value of energy ratio increases 

smoothly for 𝛼 = 0.25,1 in the whole range whereas for 𝛼 = 1.75 in the whole range of angle of 
incidence 𝜃  the trends are opposite. Fig 30 describes the behaviour of energy ratio  𝐸32  with 

respect to angle of incidence 𝜃 . We noticed that its value increases steadily for 𝛼 = 0.25,1 

respectively. For 𝛼 = 1.75 there is a sharp increase in its value and attains its peak at 𝜃 = 90°. 

The variation of 𝐸33 has shown in Fig. 31. We see that the behaviour is just opposite in this case 
i.e., decreases for all values of fractional parameter. 

 
 

14. Conclusions  
 

In the present investigation, the nature of plane harmonic waves in a magneto-thermoelastic 
orthotropic media with combined effect of rotation and two-temperature in the context of 
fractional order heat transfer in frequency domain has been noticed. We examined the impact of 
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fractional order parameter on all the field components with respect to frequency. From the 
graphical results, we conclude that the phase velocities of all the three waves oscillate in the initial 

range 0 < 𝜉 < 10 then increases sharply in the whole range of frequency. It is observed that the 
value of attenuation coefficients for the QL-waves declines while for QTS and QT-waves it 
increases near the boundary surface afterwards it decreases monotonically with different 
magnitudes. Further the change in the specific loss for the QL, QTS and QT waves oscillates in the 
starting range then remains constant as the angle of incidence increases. The value of penetration 
depth increases linearly for QL-waves. For QTS and QT-waves it declines initially then increases 

monotonically and approaches to its maximum value as the angle of incidence increases. The 
variations in the amplitude ratios for all the three waves show similar behaviour i.e., its value 
declines throughout with different magnitudes. Further, we observed that the value of energy ratios 
is either increasing or decreasing monotonically with in the whole range of angle of incidence. 
Collectively we can say that the fractional parameter changes the magnitude of waves. Further, 
these wave signals not only give the information about the internal layer of the earth but also 
helpful in exploration of new materials such as crystals and minerals etc.   
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