Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory

M. Alimoradzadeh\(^1\) and Ş.D. Akbaş\(^2\)

\(^1\)Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
\(^2\)Department of Civil Engineering, Bursa Technical University, 16330, Bursa, Turkey

(Received December 21, 2021, Revised May 30, 2022, Accepted June 30, 2022)

Abstract. This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton’s principle. The Galerkin’s decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.

Keywords: carbon nanotubes; composite beams; modified couple stress theory; nonlinear oscillations

1. **Introduction**

Carbon nanotubes (CNTs) are a type of reinforcements which have high strength, Young’s Modulus, strength-to-weight, high performance and low density. CNTs have used many engineering applications, such as structures, reactor vessels, space vehicles biomedical devices, automotive, electronic devices, civil, machine, marine engineering applications. CNTs are discovered by Sumio Iijima (1991) and using CNTs in engineering applicants has increasing day by day.

Because of its higher strength and flexible properties, Carbon nanotubes experience large displacements and rotations which means nonlinear behavior. Thus, the nonlinear analysis of Carbon nanotubes and its structural behavior are very important for understanding for design and using in the engineering applications. In the open literature, many investigations have been presented about dynamic, stability and static behavior of CNTs in last years. Some studies of them

*Corresponding author, Ph.D., E-mail: seref.akbas@btu.edu.tr, serefda@yahoo.com

Copyright © 2022 Techno-Press, Ltd.
http://www.techno-press.org/?journal=csmsubpage=8 ISSN: 2234-2184 (Print), 2234-2192 (Online)

Nonlinear oscillation analysis of composite beams by reinforced carbon nanotubes has not been investigated broadly. Primary objective of this investigation is to analyze nonlinear oscillations of CNTRC under lateral harmonic load with damping effect based on the modified couple stress theory by using Galerkin’s decomposition technique with using of multiple time scale method. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves and phase trajectory of the carbon nanotube
Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube...

reinforced composite beam are investigated.

2. Problem formulation

Fig. 1 shows a simply supported beam reinforced CNTs with length L, thickness h and width b, in x, y and z direction is considered as shown in Fig. 1. It is assumed that the simply supported beam is subjected to supersonic air flow. In this study, three different patterns of CNTs reinforcement over the beam are considered as uniform distribution (UD), and functionally distribution O and X as shown in Fig. 1.

It is assumed that, the CNTs are embedded in an isotropic polymer matrix without abrupt interface through whole region of the beam. In order to represents the effective material properties of carbon nanotube-reinforced composite (CNTRC), the rule of mixture model can be used. Based on the rule of mixture model, modulus of Young’s modulus E, shear modulus G, Poisson’s ratio ν and density ρ of the CNTRC beams can be defined as below (Wattanasakulpong and Ungbhakorn 2013, Shen 2009)

$$E_{11} = \eta_1 V_{CNT} E_{11}^{CNT} + V_p E_p$$ \hspace{1cm} (1)

$$\frac{\eta_2}{E_{22}} = \frac{V_{CNT}}{E_{22}^{CNT}} + \frac{V_p}{E_p}$$ \hspace{1cm} (2)

$$\frac{\eta_3}{G_{12}} = \frac{V_{CNT}}{G_{12}^{CNT}} + \frac{V_p}{G_p}$$ \hspace{1cm} (3)

$$V_{CNT} + V_p = 1$$ \hspace{1cm} (4)

$$\nu = V_{CNT} \nu^{CNT} + V_p \nu^p$$ \hspace{1cm} (5)

$$\rho = V_{CNT} \rho^{CNT} + V_p \rho^p$$ \hspace{1cm} (6)

where superscripts CNT and p respectively symbolize the related material properties of carbon nanotube and polymer matrix. η_1, η_2, η_3 can be indicated the efficiency parameters of CNT. Also, V_{CNT} and V_p define the volume fractions for CNT and polymer matrix, respectively. Volume fractions of CNTs as a function of thickness direction for different patterns of CNTs
Table 1 For different distributions of CNTs Volume fractions of CNTs dependent thickness direction (Wattanasakulpong and Ungbhakorn 2013)

<table>
<thead>
<tr>
<th>Patterns of CNTs</th>
<th>V_{CNT}^{*}</th>
</tr>
</thead>
<tbody>
<tr>
<td>UD</td>
<td>V_{CNT}^{*}</td>
</tr>
<tr>
<td>FG-O</td>
<td>$2V_{CNT}^{*} \left(1 - 2 \frac{</td>
</tr>
<tr>
<td>FG-X</td>
<td>$4V_{CNT}^{*} \frac{</td>
</tr>
</tbody>
</table>

(Wattanasakulpong and Ungbhakorn 2013) are presented in Table 1. In this table, V_{CNT}^{*} is the given volume fraction of CNTs. In this study, the efficiency parameters of CNTs for three different values of V_{CNT}^{*} are considered as (Yas and Samadi 2012)

\[
\eta_1 = 1.2833, \eta_2 = \eta_3 = 1.055 \text{ for } V_{CNT}^{*} = 0.12 \tag{7a}
\]

\[
\eta_1 = 1.3414, \eta_2 = \eta_3 = 1.7101 \text{ for } V_{CNT}^{*} = 0.17 \tag{7b}
\]

\[
\eta_1 = 1.3238, \eta_2 = \eta_3 = 1.738 \text{ for } V_{CNT}^{*} = 0.28 \tag{7c}
\]

The normal stress and nonlinear strain-displacement component relationship can be defined by using of Von-Karman strain nonlinearity as follows

\[
\sigma_{xx} = \frac{E_{11}(z)}{1-\nu_1^2(z)} \epsilon_{xx} \tag{8a}
\]

\[
\epsilon_{xx} = \frac{\partial u}{\partial x} - z \frac{\partial^2 w}{\partial x^2} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \tag{8b}
\]

where u and w represent axial and lateral displacement of the midplane along x and z direction, respectively.

Based on the modified couple stress theory, the strain energy of the beam is given as follows (Yang et al. 2002)

\[
U = \frac{1}{2} \int_V \left(\sigma_{ij} \varepsilon_{ij} + m_{ij} \chi_{ij} \right) dv \text{ for } i,j,k \in [x,y,z] \tag{9}
\]

where, ε_{ij} and χ_{ij} denote the components of the strain tensor and the symmetric part of the curvature tensor, respectively. Also in Eq. (1) σ_{ij} and m_{ij} denotes the stress tensor and the deviatoric part of couple stress tensor respectively and can be define as below (Yang et al. 2002)

\[
\sigma_{ij} = \lambda \delta_{kk} \delta_{ij} + 2\mu \varepsilon_{ij} \tag{10a}
\]

\[
m_{ij} = 2\mu l^2 \chi_{ij} \tag{10b}
\]

\[
\chi_{ij} = \frac{1}{2} \left(\frac{\partial \theta_i}{\partial x_j} + \frac{\partial \theta_j}{\partial x_i} \right) \tag{10c}
\]

where, l is the material length scale parameter δ_{ij} is the Kronecker delta, and θ is the rotation vector, λ and μ are lamé’s constants that can be expressed as below

\[
\lambda(z) = \frac{E(z)\theta(z)}{\left(1+\theta(z))(1-2\theta(z))\right)} \tag{11b}
\]
\[\mu(z) = G_{12}(z) \]
\[\theta_x = \theta_z = 0 \quad \theta_y = -\frac{\partial w}{\partial x} \]

Using of Eqs. (10)-(11) leads to the non-zero components of the symmetric curvature tensor and the couple stress tensor as follows (Yang et al. 2002)

\[\chi_{xy} = \chi_{yx} = -\frac{1}{2} \frac{\partial^2 w}{\partial x^2} \]
\[m_{xy} = m_{yx} = -G_{12} \frac{\partial^2 w}{\partial x^2} \]

Substituting Eqs. (8,10,11,12), into Eq. (9) leads to

\[U_s = \frac{1}{2} \int_0^L A_{11} \left(\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right)^2 - 2B_{11} \frac{\partial^2 w}{\partial x^2} \left(\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right) + \left(D_{11} + \Gamma \right) \left(\frac{\partial^2 w}{\partial x^2} \right)^2 \] dx

where

\[A_{11}, B_{11}, D_{11} = \int_A \frac{E_{11}(x)}{1-\nu(x)}(1,z,z^2) \] dA
\[\int_A G_{12}(x) l^2 dA = \Gamma \]

The CNT reinforced composite beam is subjected to external forces includes lateral harmonic force \(F_w \) and damping force \(F_D \) due to medium. The virtual work done by external forces and the kinetic energy of the beam can be defined as follows (Ramezani 2012)

\[W^{ext} = \int_0^L [(F_D + F_w)w(x,t)] dx \]

where

\[F_D = -C_d \frac{\partial w}{\partial t} \]
\[F_w = F(x) \cos(\Omega t) \]

In above equations \(F(x) \) and \(\Omega \) represents transverse external load and the frequency of the excitation force respectively. Also, \(C_d \) is the coefficient of the viscous damping due to viscous medium.

The kinetic energy (K) of the beam can be expressed as below

\[K = \frac{1}{2} \int_0^L \left[I_0 \left(\frac{\partial u}{\partial t} \right)^2 + \left(\frac{\partial w}{\partial t} \right)^2 \right] + I_2 \left(\frac{\partial^2 w}{\partial x \partial t} \right)^2 - 2I_1 \left(\frac{\partial^2 w}{\partial x \partial t} \right) \] dx

where

\[I_0, I_1, I_2 = \int_A \rho(z)(1,z,z^2) dA \]

where \(\rho \) indicates the mass density. The nonlinear partial differential equation governing the motion can be derived by using of Hamilton’s principle which is expressed as below

\[\delta \int_{t_1}^{t_2} [K - U_s + W^{ext}] dt = 0 \]

where \(\delta \) denotes the variational symbol. Substituting Eqs. (13), (15), (16) and (17) into Eq. (19) leads to nonlinear governing equation of the CNT composite beams of the CNT composite beams as follows
\[
\frac{\partial}{\partial x} \left[A_{11} \left(\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right) - B_{11} \frac{\partial^2 w}{\partial x^2} \right] = I_0 \frac{\partial^2 u}{\partial x^2} - I_1 \frac{\partial^2 w}{\partial x^2} \tag{20}
\]

\[
I_0 \frac{\partial^2 w}{\partial t^2} + \frac{\partial}{\partial x} \left[I_1 \frac{\partial^2 w}{\partial x^2} - I_2 \frac{\partial^2 w}{\partial x \partial t} + C_d \frac{\partial w}{\partial t} + \frac{\partial^2 w}{\partial x^2} \left(\frac{\partial D_{11} + \Gamma}{\partial x^2} - B_{11} \left(\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right) \right) \right] - \frac{\partial}{\partial x} \left[A_{11} \left(\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right) - B_{11} \frac{\partial^2 w}{\partial x^2} \right] \frac{\partial^2 w}{\partial x^2} = F_0 \cos(\Omega t) \tag{21}
\]

In the case of Euler-Bernoulli beam theory, the axial inertia and the rotational inertia of the beam cross section can be neglected. By ignoring the axial inertia, the rotational inertia and the external force due free oscillation analysis the Eqs. (20) and (21) takes the following form

\[
\frac{\partial}{\partial x} \left[A_{11} \left(\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right) \right] - B_{11} \frac{\partial^2 w}{\partial x^2} = 0 \tag{22}
\]

Eq. (22) can be reformulated as below

\[
\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left[- \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 + \frac{B_{11}}{A_{11}} \frac{\partial^2 w}{\partial x^2} \right] \tag{23}
\]

Integrating Eq. (23) along x-axis yields

\[
\frac{\partial u}{\partial x} = - \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 + \frac{B_{11}}{A_{11}} \frac{\partial^2 w}{\partial x^2} \frac{N_0(t)}{A_{11}} \tag{24}
\]

The integration of Eq. (24) leads to

\[
u = \int_0^x - \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 dx + \frac{B_{11}}{A_{11}} \frac{\partial w}{\partial x} \frac{N_0(t)}{A_{11}} + N_1(t) \tag{25}
\]

It is assumed that the beam has immovable support. Hence, the following boundary condition can be considered

\[
u(0, t) = \nu(L, t) = 0 \tag{26}
\]

Substituting Eq. (26) into Eq. (25) yields

\[
N_0 = \frac{-A_{11}}{2L} \int_0^L \left(\frac{\partial w}{\partial x} \right)^2 dx + \frac{B_{11}}{L} \left[\frac{\partial w(L, t)}{\partial x} - \frac{\partial w(0, t)}{\partial x} \right] \tag{27}
\]

\[
N_1(t) = \frac{B_{11}}{A_{11}} \frac{\partial w(0, t)}{\partial x} \tag{28}
\]

Finally, by substituting Eqs. (22) and (24) into Eq. (21), one can obtain the following nonlinear partial differential equation governing the forced vibration of the CNT composite beam

\[
I_0 \frac{\partial^2 w}{\partial t^2} + C_d \frac{\partial w}{\partial t} + \left[\left(\frac{\partial D_{11}}{\partial x^2} \right) + \Gamma \right] \frac{\partial^2 w}{\partial x^2} + N_0 \frac{\partial^2 w}{\partial x^2} = F(x) \cos(\Omega t) \tag{29}
\]

where \(N_0(t)\) is expressed in Eq. (27). In order to derive the governing ordinary differential equation from the partial one mentioned in Eq. (29), the Galerkin’s method, is utilized. Based on the Galerkin’s method, the solution of the governing equation can be defined as below

\[
(x, t) = \sum_{n=1}^{\infty} \Psi_n(x) \cdot q_n(t) \tag{30}
\]

where \(q_n(x)\) and \(q_n(t)\) are the n-th mode shape functions (admissible function) and n-th is the modal coefficient respectively. Since the dominant mode in the beam is the first mode, the solution of eq. (29) can be express as follows

\[
w(x, t) = \psi(x), q(t) \tag{31}
\]
For the simply supported beam boundary conditions without axial movement at both ends, the mode shape function can be express as follows (Şimşek 2014)

\[\psi(x) = \sin \left(\frac{nx}{L} \right) \]

(32)

where satisfies the following kinematic boundary conditions for simply supported beam (Ansari et al. (2010))

\[w(0, t) = \frac{\partial^2 w(0,t)}{\partial x^2} = 0 \]

(33)

\[w(L, t) = \frac{\partial^2 w(L,t)}{\partial x^2} = 0 \]

(34)

Substituting Eq. (32) in to Eq. (29) leads to

\[\ddot{\psi}[\psi(t)] + C_d \psi \dot{\psi} + a_1 \psi + a_2 \psi^2 + a_3 \psi^3 = F_0 \cos(\Omega t) \]

(35)

where, \(\dot{\psi} \) and \(\ddot{\psi} \) is the first and the second derivative of \(\psi(t) \) with respect to time, respectively. Also, the coefficients \(a_0 \), \(a_1 \), \(a_2 \) and \(a_3 \) are

\[a_1 = \psi_{xxxx} \left[\left(D_{11} - \frac{B_{11}^2}{A_{11}} \right) + \Gamma \right], \]

\[a_2 = \frac{B_{11}}{L} \psi_{xx} [\psi_x(L) - \psi_x(0)], \quad a_3 = \psi_{xxx} \left[-\frac{A_{11}}{2L} \int_0^L \psi_x^2 \, dx \right] \]

(36)

where \(\psi_x \), \(\psi_{xx} \) and \(\psi_{xxxx} \) are the first, the second, and the fourth derivative of \(\psi(x) \) with respect to \(x \), respectively.

Considering the transverse external load as \(F(x) = f_0 \psi(x) \), multiplying both side of Eq.(35) with a mode shape function \(\psi(x) \) and integrating the result equation over domain \((0, L)\) leads to the nonlinear ordinary differential equation governing the motion of the microscale CNTR composite beam as follows

\[\ddot{\psi} + 2\mu \dot{\psi} + \omega_0^2 \psi + \hat{\eta}_2 \psi^2 + \hat{\eta}_3 \psi^3 = f \cos(\Omega t) \]

(37)

where

\[\mu = \frac{1}{2} \left(\int_0^L \frac{C_d \psi^2 \, dx}{\int_0^L \psi^2 \, dx} \right), \]

(38a)

\[\omega_0^2 = \int_0^L \frac{a_1 \psi(x) \, dx}{\int_0^L \psi^2 \, dx}, \]

(38b)

\[\hat{\eta}_2 = \int_0^L \frac{a_2 \psi(x) \, dx}{\int_0^L \psi^2 \, dx}, \]

(38c)

\[\hat{\eta}_3 = \int_0^L \frac{a_3 \psi(x) \, dx}{\int_0^L \psi^2 \, dx}, \]

(38d)

\[f = \int_0^L \frac{f_0 \psi^2(x) \, dx}{\int_0^L \psi^2 \, dx} \]

(38e)

where, \(f_0 \) is the amplitude of the lateral external load. The nonlinear ordinary differential equation is solved by using the method of multiple scales. In order to obtain solution assumption, following assumption is used.
\[
\dot{\mu} = \epsilon \mu \tag{39a}
\]
\[
\dot{\eta}_2 = \epsilon \eta_2 \tag{39b}
\]
\[
\dot{\eta}_3 = \epsilon \eta_3 \tag{39c}
\]
\[
f = \epsilon^2 f \tag{39d}
\]

\(\epsilon\) indicates bookkeeping parameter. Inserting Eq. (39) to Eq. (37) yields
\[
\ddot{q} + 2\epsilon^2 \mu \dot{q} + \omega_0^2 q + \epsilon \eta_2 q^2 + \epsilon^2 \eta_3 q^3 = \epsilon^2 f \cos(\Omega t) \tag{40}
\]

In method of multiple scales, time variable is defined as following
\[
T_n = e^{\epsilon t}, n = 0, 1, 2, 3, \ldots \tag{41}
\]

With processing chain rule for Eq. (39), the following form is obtained
\[
\frac{d}{dt} = D_0 + \epsilon D_1 + \epsilon^2 D_2 + \epsilon^3 D_3 + \cdots \tag{42a}
\]
\[
\frac{d^2}{dt^2} = D_0^2 + 2\epsilon D_0 D_1 + \epsilon^2 (D_1^2 + 2D_0 D_2) + 2\epsilon^3 (D_1 D_2) + \cdots \tag{42b}
\]

where
\[
D_i = \frac{\partial}{\partial t_i}, \quad i = 0, 1, 2, 3 \tag{43}
\]

In the solution of Eq. (40), the method of multiple scales obtained as follows (Nayfeh et al. 1980, Shafiei and Setoodeh 2017)
\[
q = q_0(T_0, T_1, T_2) + \epsilon q_1(T_0, T_1, T_2) + \epsilon^2 q_2(T_0, T_1, T_2) + \cdots \tag{44}
\]

Substituting Eq. (44) into Eq. (40) together with using Eqs. (42) and then equating coefficients of similar power of \(\epsilon\) to zero yields
\[
(D_0^2 + \omega_0^2) q_0 = 0 \tag{45}
\]
\[
(D_0^2 + \omega_0^2) q_1 = -2D_0 D_1 q_0 - \eta_2 q_0^2 \tag{46}
\]
\[
(D_0^2 + \omega_0^2) q_2 = -2D_0 D_1 q_1 - (D_1^2 + 2D_0 D_2) q_0 - 2\mu D_0 q_0 - 2\eta_2 q_0 q_1 - \eta_3 q_0^3 + f \cos(\Omega t) \tag{47}
\]

Solution of Eq. (45) is obtained as follows
\[
q_0 = A(T_1, T_2) \exp(i\omega_0 T_0) + \Lambda(T_1, T_2) \exp(-i\omega_0 T_0) \tag{48}
\]

where \(A(T_1, T_2)\) is an unknown complex function and will be determined by eliminating the secular terms from \(q_1\). CC denotes the complex conjugated of the previous terms and \(\Lambda\) is the complex conjugate of \(A\). Substituting Eq. (48) into Eq. (46) yields
\[
(D_0^2 + \omega_0^2) q_1 = -2i\omega_0 D_1 A e^{i\omega_0 T_0} - \eta_2 \left[A^2 e^{2i\omega_0 T_0} + \Lambda \bar{\Lambda}\right] + cc \tag{49}
\]

where cc stands for the complex conjugate of the preceding terms. To eliminate the secular terms from \(q_1\) equating the coefficients of \(\exp(\mp i\omega_0 T_0)\) to zero as follows
\[
D_1 A(T_1, T_2) = 0 \tag{50}
\]

Therefore, \(A\) only is a function of \(T_2\). With considering the Eq. (50), the particular solution of Eq. (49) can be define as below
\[
q_1 = \frac{\eta_2}{3\omega_0} \left[A^2 e^{2i\omega_0 T_0} + \Lambda^2 e^{-2i\omega_0 T_0} - 6A \Lambda\right] \tag{51}
\]
In primary resonance, it is assumed that the excitation frequency Ω is near to linear frequency ω_0 of the system ($\Omega \approx \omega_0$) as below

$$\Omega = \omega_0 + \epsilon^2\sigma$$ \hspace{1cm} (52)

where σ is the detuning parameter and used to illustrate the nearness of Ω to ω_0. Substituting Eqs. (48), (51) and (52) into Eq. (47) and recalling that $D_1 A = 0$, yields

$$(D_0^2 + \omega_0^2)q_2 = -A^3 \left[\frac{2n_2^2}{3\omega_0^2} + \eta_3 \right] e^{3i\omega_0 T_0} + \left[-2i\omega_0 (D_2 A + \mu A) + A^2 \bar{A} \left(\frac{10\eta_2^2}{3\omega_0^2} - 3\eta_3 \right) + \frac{f}{2} e^{i\sigma T_2} \right] \epsilon^{i\omega_0 T_0} + CC$$ \hspace{1cm} (53)

To eliminate the secular terms from q_2 equating the coefficients of exp($\mp i\omega_0 T_0$) in Eq. (53) to zero as follows

$$-2i\omega_0 (D_2 A + \mu A) + A^2 \bar{A} \left(\frac{10\eta_2^2}{3\omega_0^2} - 3\eta_3 \right) + \frac{f}{2} e^{i\sigma T_2} = 0$$ \hspace{1cm} (54)

Considering $A(T_2)$ in the polar form as follows (Nayfeh et al. 1980)

$$A(T_2) = \frac{1}{2} a \exp(i\beta)$$ \hspace{1cm} (55)

where, $a(T_2)$ and $\beta(T_2)$ indicate real functions of T_2. Inserting Eq. (55) into Eq. (54) and separating the results in to its real and imaginary parts leads to

$$\dot{a} + \mu a = \frac{f}{2\omega_0} \sin(\bar{\theta})$$ \hspace{1cm} (56a)

$$a(\sigma - \bar{\theta}) - \frac{9\omega_0^2 \eta_3 - 10\eta_2^2}{24\omega_0^2} a^2 = -\frac{f}{2\omega_0} \cos(\bar{\theta})$$ \hspace{1cm} (56b)

where, $(\dot{\cdot})$ is the first derivative with respect to T_2. Also, $\bar{\theta}$ is defined as below

$$\bar{\theta} = \sigma T_2 - \beta$$ \hspace{1cm} (57)

In the case of steady state motion of the system the amplitude a and the phase of the system θ are not charged at a singular point (Nayfeh et al. 1980)

$$\dot{a} = \dot{\bar{\theta}} = 0$$ \hspace{1cm} (58)

Substituting Eq. (58) into Eqs. (52a) and (52b) leads to

$$\mu = \frac{f}{2\omega_0} \sin(\bar{\theta})$$ \hspace{1cm} (59a)

$$\sigma + \frac{10\eta_2^2 - 9\omega_0^2 \eta_3}{24\omega_0^2} a^2 = -\frac{f}{2\omega_0} \cos(\bar{\theta})$$ \hspace{1cm} (59b)

Squaring and adding Eqs. (59a) and (59b) leads to the frequency response equation as follows

$$\sigma = \frac{9\omega_0^2 \eta_3 - 10\eta_2^2}{24\omega_0^3} a^2 \pm \frac{f^2}{4\omega_0^2 a^2} - \mu^2$$ \hspace{1cm} (60)

Substituting Eq. (60) into Eq. (52) yields

$$\Omega = \omega_0 + \epsilon^2 \left[\frac{9\omega_0^2 \eta_3 - 10\eta_2^2}{24\omega_0^2} a^2 \pm \frac{f^2}{4\omega_0^2 a^2} - \mu^2 \right]$$ \hspace{1cm} (61)

Substituting Eqs. (48), (51) and (55) into Eq. (44) leads to
\[q = a \cos \hat{\theta}(t) - \epsilon a^2 \frac{\eta_2}{2\omega_0^2} \left[1 - \frac{1}{3} \cos 2\hat{\theta}(t) \right] + O(\epsilon^2) \]

(62)

where

\[\hat{\theta} = \omega_0 t + \beta \]

(63)

Using of Eqs. (52), (57), (62) and (63) leads to the approximate solution as below

\[q = a \cos(\Omega t - \theta) - \epsilon a^2 \frac{\eta_2}{2\omega_0^2} \left[1 - \frac{1}{3} \cos(2\Omega t - 2\theta) \right] + O(\epsilon^2) \]

(64)

3. Numerical results

In numerical results, the material and geometry parameters are used as follows; (Wattanasakulpong and Ungbhakorn 2013, Yas and Samadi 2012): \(E_{11}^{CNT} = 600 \text{ GPa} \), \(E_{22}^{CNT} = 10 \text{ GPa} \), \(G_{12}^{CNT} = 17.2 \text{ GPa} \), \(v^{CNT} = 0.19 \), \(\rho^{CNT} = 1400 \text{ kg/m}^3 \), \(E^P = 2.5 \text{ GPa} \), \(v^P = 0.30 \), and \(\rho^P = 1190 \text{ kg/m}^3 \). \(L=300 \mu\text{m}; h=2 \mu\text{m}, b=h, \) length scale parameter \(l = 0.5 \mu\text{m} \), amplitude of the load \(f_0 = 0.012 \text{ N} \) maximum amplitude \((\Lambda) = 1.0 \mu\text{m} \), damping coefficient \(C_d = 0.005 \text{ Pa.s} \)

In order to accuracy of present method, a comparison study is performed. For this purpose, the fundamental frequencies of a microscale simply supported beam made of pure polymer are calculated with different slenderness ratio and compared with those of Kong et al. (2008) corresponding to the Euler-Bernoulli beam theory in Table 2. In the obtaining of the vibration frequency from this study, the eigenvalue process is implemented in Eq. (38b). It is found from Table 2, the current results are in good harmony with the related results of Kong et al. (2008). It is worth noting that, Kong et al. (2008) neglected the contribution of the Poisson’s which leads to the small difference between the results presented in Table 2.

Moreover, the results of Table 3 presents the linear oscillations at \(l = 0 \) and \(V_{CNT}^* = 0.17 \). To validate the obtained results from the current work, this table compared the linear natural frequency of this research with the results presented by Shafiei and Setoodeh (2017). As can be seen in Table 3, the current results are in good harmony with the related results of Shafiei and Setoodeh (2017).

Figs. 2 and 3 presents the frequency response curves and the phase trajectory of the system for the classical theory and the MCST for X beam, \(V_{CNT}^* = 012; f_0 = 0.013 \text{ N} \), respectively. As can be

<table>
<thead>
<tr>
<th>(\frac{L}{h})</th>
<th>Natural Frequency (MHz)</th>
<th>Kong et al (2008)</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>2.604</td>
<td>2.702</td>
<td></td>
</tr>
<tr>
<td>50.0</td>
<td>0.938</td>
<td>0.973</td>
<td></td>
</tr>
<tr>
<td>60.0</td>
<td>0.651</td>
<td>0.676</td>
<td></td>
</tr>
<tr>
<td>70.0</td>
<td>0.478</td>
<td>0.496</td>
<td></td>
</tr>
<tr>
<td>90.0</td>
<td>0.289</td>
<td>0.300</td>
<td></td>
</tr>
<tr>
<td>100.0</td>
<td>0.234</td>
<td>0.243</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Comparative results for fundamental frequencies (MHz) of a simply supported CNTR Composite beam for different patterns of CNTs for \(l = 0 \)

<table>
<thead>
<tr>
<th>(L/h)</th>
<th>Shafiei and Setoodeh (2017)</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>17.56</td>
<td>17.56</td>
</tr>
<tr>
<td>50.0</td>
<td>6.32</td>
<td>6.32</td>
</tr>
<tr>
<td>60.0</td>
<td>4.39</td>
<td>4.39</td>
</tr>
<tr>
<td>70.0</td>
<td>3.23</td>
<td>3.23</td>
</tr>
<tr>
<td>90.0</td>
<td>1.95</td>
<td>1.95</td>
</tr>
<tr>
<td>100.0</td>
<td>1.58</td>
<td>1.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(L/h)</th>
<th>Shafiei and Setoodeh (2017)</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>19.58</td>
<td>19.58</td>
</tr>
<tr>
<td>50.0</td>
<td>7.05</td>
<td>7.05</td>
</tr>
<tr>
<td>60.0</td>
<td>4.90</td>
<td>4.90</td>
</tr>
<tr>
<td>70.0</td>
<td>3.60</td>
<td>3.60</td>
</tr>
<tr>
<td>90.0</td>
<td>2.18</td>
<td>2.18</td>
</tr>
<tr>
<td>100.0</td>
<td>1.76</td>
<td>1.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(L/h)</th>
<th>Shafiei and Setoodeh (2017)</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>15.34</td>
<td>15.34</td>
</tr>
<tr>
<td>50.0</td>
<td>5.52</td>
<td>5.52</td>
</tr>
<tr>
<td>60.0</td>
<td>3.84</td>
<td>3.84</td>
</tr>
<tr>
<td>70.0</td>
<td>2.82</td>
<td>2.82</td>
</tr>
<tr>
<td>90.0</td>
<td>1.70</td>
<td>1.70</td>
</tr>
<tr>
<td>100.0</td>
<td>1.38</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Fig. 2 The effects of the Length scale parameter on the frequency response curves of the X Beam for \(V_{CNT}^* = 012, f_0 = 0.013 \) N
seen in Figs. 2 and 3, the frequency response curves consist of two branch. The upper branch represents the stable solution and the lower branch represents stable and unstable solutions. The deviation of the curves illustrates the type of nonlinearity. As can be observed from these figures, the curve is deviated to the right which exhibits the hardening type behavior of the system. The MCST predicts weaker hardening behavior and lower resonance frequency. Moreover, whole response region become narrow and the height of the jump phenomena (sudden change in the amplitude and phase of the response with small change in the excitation frequency due to nonlinear nature of the system) decreases with increase in the material length scale parameter. The nonlinear vibration is stable with finite limit cycle and the classical theory predicts higher vibration velocity compare the MCST (see Fig. 3).

The frequency-response curves and the phase trajectory of the system for different pattern of reinforcement are presented in Figs. 4 and 5, respectively. The Results indicate that, as the pattern of reinforcement changes as the order X Beam, UD and O distributions, whole response region become wider and the frequency response curves bend to the left which means that the hardening behavior of the system become weaker. With changing the pattern of reinforcement as the order X Beam, UD and O distributions, the peak amplitude and the nonlinear resonant frequency and the height of the jump increase. In addition, the results demonstrated that, with changing the pattern of reinforcement as the order X Beam, UD and O distributions, the phase trajectory expand outward and the velocity of the nonlinear oscillation increase.

Figs. 6 and 7 show the frequency response curves and the phase trajectory of the CNTR composite microscale beam with X pattern of reinforcement for different values of V_{CNT}^*, respectively. As can be seen, the frequency response curves bends to the right which illustrates increase in the hardening behavior of the system increase in V_{CNT}^*. The results illustrate that, whole response region become narrow and at the same time the peak amplitude of the nonlinear oscillation and the nonlinear resonance frequency decreases increase in V_{CNT}^*. Moreover, with increasing V_{CNT}^*, the height of the jump decreases, the phase trajectory shrink inward and velocity of the nonlinear oscillation decreases.
Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube...

Fig. 4 The effects of the pattern of reinforcement on the frequency response curves for $V_{CNT}^* = 0.17$

Fig. 5 The effects of the pattern of reinforcement on the phase trajectory for $V_{CNT}^* = 0.17$

Figs. 8 and 9 demonstrates the frequency response curves and the phase trajectory of the microscale CNTR composite beam for X distribution for different values of forcing amplitude, respectively. The presented results from Figs. 8 and 9 indicate that with the whole response region become wider and the peak amplitude of the nonlinear oscillation and the nonlinear resonance frequency increases increasing the amplitude of the force. Also, as increase in the amplitude of the load increase the height of the jump, the phase trajectory expands out ward and the velocity of the nonlinear oscillation increases while the system remains in stable situation (finite limit cycle).
4. Conclusions

In this paper, nonlinear oscillation of a CNTRC microscale beam subjected to lateral harmonic load and damping force due to viscous medium are investigated based on modified couple stress theory the Euler-Bernoulli beam theory, von Kármán type of geometrical nonlinearity. The Galerkin’s decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of
Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube...

Fig. 8 The effects of the amplitude of the frequency response curves for X beam and $V_{CNT}^* = 0.12$

Fig. 9 The effects of the amplitude of the Load on the phase trajectory for X beam and $V_{CNT}^* = 0.12$

multiple time scale method. In numerical studies, effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated. In the obtained results, the important consequences are presented as:

• The MCST predicts weaker hardening behavior and lower resonance frequency. The classical theory predicts higher vibration velocity compare the MCST.
• The distribution of CNTs play an important role on nonlinear dynamics of CNTRC beam. With changing the pattern of reinforcement in order; X, UD and O, the hardening behavior of the system become weaker.
• Increase in volume fraction of CNTs, the hardening behavior of the system increase.
Nonlinear vibration responses of the CNTRC beam change considerably with volume fraction of CNTs.
• With the increasing in the material length scale parameter, the hardening behavior of the system decreases and the nonlinear vibration responses of the CNTRC microscale beam change considerably.
• With the increasing in the amplitude of the excitation force, hardening behavior of the system remains steady, the whole response region become wider and the peak amplitude of the nonlinear oscillation and the nonlinear resonance frequency increases.

References

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube...

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube... 503

