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Abstract.  Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) 
structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer 
surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply 
mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the 
strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible 
membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential 
delamination between both materials. For these reasons, the standard engineering calculations used in the practice 
remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite 
element capable to link a solid body with a flexible thin layer, as it were the “skin” of the body, allowing the potential 
delamination between both materials. In numerical terms, this “skin” element is intended to work as a transitional 
region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) 
and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-Of-
Freedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to 
simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the 
inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real 
bearing capacity of the strengthened element when the coat is attached or detached from the solid body. 
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1. Introduction 
 

Reinforced Concrete (RC) has been the most used material to construct a large amount of 

buildings and facilities, since its invention in the XIXth Century, promoting the economical and 

social development of many countries. Unfortunately, Reinforced Concrete’s integrity is 
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susceptible to suffer long-term alterations, either by the local weather’s effects (corrosion of steel) 

or by the unexpected mechanical effects of extreme hazards (cracking in concrete after an 

earthquake), making it necessary to repair it promptly in order to recover the loading capacity of 

the affected RC element (Xiong and Yue 2019). There are also some other reasons to strengthen 

existing RC structures such as the refurbishing of an old building by a land-use change or the 

transformation of a conventional building in a new Resilient Critical Structure, as it is foreseen in 

the framework of the new Resilience-Based Design, whose philosophy is to preserve the 

functionality of critical buildings and facilities after any natural hazard occurs (Cimellaro 2013, 

Matthew and Mehrdad 2019), or even when a vibration is induced in the concrete elements due to 

various artificial (Akbaş 2019, Akbaş 2020). In either case, adding a new coat over the lateral 

surface of a RC element has been an excellent solution in terms of construction practices, abating 

time and procedure’s complexity: whether they are pieces of the super structure or in foundations, 

it’s always easier to reinforce them with a coat as proposed by (Rabahi et al. 2020). Likewise, the 

over-coating can be performed with steel plates (Siu et al. 2011), fibreglass or any other material 

(Bideci et al. 2017), bonded to the outer element faces through the use of chemical adhesives, 

mechanical anchor bolts or simply mortar injection (Iglesias et al. 1985, Mac Gregor et al. 1997, 

Yang et al. 2015). Once installed, coating must provide confinement, control of cracking and a 

quick increase of RC resistance, based on the assumption that both materials (the existing one and 

the new one) are working well together. However, the success of the reinforcement relies on 

several mechanical aspects, like the ability of the bonding to transfer the internal efforts between 

the coat and the existing RC element (Al-Osta 2019, Mehdi et al. 2021); the suppression of sliding 

and decohesion between both surfaces; the harnessing of the combined bearing capacity; etc. 

Therefore, one question raises: how to estimate the new capacity of the strengthened RC element 

considering all these aspects before proceeding to reinforce? 

One possible answer could be to make some experimental tests accompanied by advanced 

numerical analysis (Shaw and Andrawes 2017). Unfortunately, not only these tasks become 

expensive and difficult to implement, but even worse, there are some physical issues related to the 

attachment/delamination phenomena that remains unsolved: if an engineer wants to study better 

the mixed behaviors of a reinforced element considering all these aspects through the construction 

of a finite element model, he will be confronted to the fact that there is not a specific finite element 

solution to simulate the physical problem of linking a rigid solid body with a flexible coat layer 

(Khandaker 2004, Mohebi et al. 2016, Daouadji 2017). For these reasons, most of the standard 

structural design codes prefer to recommend the use of simplified equations to estimate the bearing 

capacity of a strengthened RC element (CDMX 2017), instead of using complex numerical 

analysis (Pajand and Karimipour 2020). However, these simplified equations become inefficient 

for some cases as evaluating the real capacity of a damaged mixed structure after the occurrence of 

an earthquake, particularly if any delamination process has started between the concrete and the 

coat. In order to deal with all these lacks, it seems necessary to develop a robust numerical analysis 

of the mixed structure that includes the phenomenon of bonding/delamination between the 

concrete and the coat, taking care of the following issues: 

• The combined capacity of the reinforced element depends on the non-linear nature of the 

three components (concrete, coat and bond) and how they are correlated. In other words, the 

stiffness of each component is related to its material properties as well as its geometrical shape, 

affecting the flexibility and the non-linear response of the entire system; 

• Bonding between both materials is not perfect, so the integrity of the entire system cannot be 

guaranteed or prevented from deterioration along the time, inducing a sort of delamination 
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between the coat and the concrete; 

• The delamination phenomenon is an evolving process with at least four well-identified 

phases, where bonding can disappear completely in the last phase, allowing the coat behaves 

like a flexible body; 

• The numerical modelling of the three components (RC element, coat and bond) could lead to 

the deployment of special non-linear techniques as well as the use of specific finite elements 

for each component, which might be mutually incompatible. 

Prior to take on the development of a new numerical solution for over-coating and delamination 

of RC structures, some of the physical features of these phenomena will be reviewed in the 

following section. 

 

1.1 Physical description of the delamination phenomenon 
 

When over-coating is used, the bearing capacity of any strengthened RC element depends not 

only on the particular behaviour of the concrete and the coat, but also on the effectiveness of the 

bonding, which relies on another mechanical phenomenon that should be taken into account: 

delamination. Physically, delamination or ex-foliation corresponds to the separation of two or 

more individual layers of a heterogeneous material (Park et al. 2007) induced by the combined 

action of normal and shear stresses, which simultaneously produce decohesion and sliding at the 

interface of such materials (Tahar et al. 2020, Tahar et al. 2021). This situation might lead to a 

certain type of local failure in the structural element, where the additional confinement provided 

by the coating disappears while the loss of effective area increases, engendering a local hinge 

inducing the collapse of the structural element (Lee et al. 2019). Some theoretical and 

experimental tests focused on delamination of reinforced compounds of polymer fiber have been 

carried out to achieve a better understanding of the physical origin of hardness in delamination 

fracture (Limaiem et al. 2019). Taking as starting point that the bearing capacity of a coated RC 

element relies on the delamination’s progression, we can formulate the following hypothesis: the 

behaviour of the whole assembly mainly depends on the delamination mechanism’s state and not 

only on each component’s material behaviour, being a function of the severity of bonding’s 

damage. Moreover, we can identify at least four phases during the progression of the 

delamination’s phenomena: 

Phase 1 Bonding between RC element and the coat is perfect, so there is no additional strain 

energy at the interface. Therefore, the coat adopts the same configuration of the solid without any 

decohesion or sliding. Nevertheless, at the very beginning of the process, one of these three 

configurations can be adopted by the assembly: 

(a) The solid is very rigid and cannot develop any rotation on its surface, preventing any 

rotation on the coat. 

(b) The solid is very flexible and its surface can rotate as well as the coat, which remains 

attached to the solid. 

(c) The solid is very flexible but the coat is much stiffer, so the solid adopts the coat 

configuration. 

Phase 2 Bonding between RC element and the coat can develop a pseudo-material elastic 

behaviour, allowing small sliding or decohesion. The bonding interface plays a role in the total 

strain energy of the assembly. 

Phase 3 As a certain yield point is reached at bonding, the coat could be partially detached 

from the rigid solid in some points, but it is still connected in other regions, some of them perfectly 
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bonded. The coat might develop large rotations in some separated regions. 

Phase 4 The coat is detached from the rigid solid in large regions, as soon as a pseudo-

coalescence phenomenon occurs in different bonded points. 

Some numerical works have tried to deal with the problem of delamination, most of them for 

flexible layers of composite structures -almost none for a solid-layer combination. Nevertheless, 

one of the most recent developments for a problem of this type is the solid-like shell (De Borst and 

Remmers 2006), which is a volume element for thin-layered composite structures that exploits the 

Partition-of-Unity Principle to simulate the crack at any arbitrary location inside. However, its 

performance is still limited due to some disadvantages, as the emergence of spurious elastic 

deformations prior to delamination onset occurs. As it can be constated, the major difficulty 

involves how to simulate a hard (or flexible) solid body attached to a flexible (or rigid) shell 

through the use of a bonding interface (Sang and Aboutaha 2004), governed by different laws of 

deformability, behaviour and equilibrium. A current suggestion is to model the quasi-rigid body as 

a 2D/3D solid element, while the coating can be simulated with trusses or thin plates. 

Unfortunately, both finite element formulations are numerically incompatible when they share the 

same nodal points. Needless to say, that problem becomes much more complicated if bonding is 

considered into the global modelling. One possibility is to use bond interface elements or enriched 

solid elements (Dominguez et al. 2010), but another difficulty that is necessary to mention is the 

variation of constitutive laws according to the corresponding phase of delamination. For all these 

drawbacks, we propose to develop a new dedicated finite element as it is explained in subsequent 

sections. 

 

 

2. Mathematical formulation of the solid-layer element 
 

2.1 Underlying assumptions. 
 

The aim of the 2D solid-layer element introduced in this work, is to deal with the different 

kinematics and non-linear behaviour of the three components (rigid reinforced concrete (RC), 

flexible coating and transitional bonding), evolving according to the state of the delamination 

phases described previously. The 2D solid-layer element (or skin-element as we called) is the 

combination of three finite element formulations: a classical four-node quadrilateral element, a 

Hermitian beam element and an interface element intended to solve the incompatibility of 

Degrees-of-Freedom between the solid formulation (two translational DOF by node) and the beam 

formulation (with a third rotational DOF), avoiding the use of very tiny quadrilateral elements to 

represent the coat, improving its real behaviour in case to be detached from the solid. To illustrate 

how the solid-layer element functions, let’s take the case of an orange peel: At the beginning, the 

peel covers the whole orange’s internal body, attached through a set of tiny hairs forming a soft 

interface. As soon as an external loading is applied on the orange, the peel tries to separate from 

the orange’s body. Nevertheless, there are some “tiny hairs” that keep attached the peel to the 

body avoiding its free movement. If the tiny hairs are cut in some regions, the peel is fully 

detached, and it could start rolling up according to the flexibility of the skin. The aim of the “skin 

element” is to reproduce these different responses during delamination process. For this very first 

approach, the skin element is still limited to reproduce only three phases (see Fig. 1): 

• “Phase 1: perfect bonding”, taking into account two different body-coat relationships: rigid-

body/flexible-coat and flexible-body/flexible-coat); 
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(a) Phase 1: Mesh of solid-layer elements with 

the coat fully attached 

(b) Phase 2: Activation of the interface region to simulate 

coat’s partial detachment from the solid element 

 
(c) Phase 3: Coating freely detached from the solid element 

Fig. 1 Phases of the solid-layer element to reproduce joining and detachment of a flexible coat from a solid 

body, controlled by an internal interface element 

 

 

Fig. 2 Mesh construction coupling standard finite elements with solid-layer elements 

 

 

• “Phase 2: elastic threshold delamination”, defined by a simple yield point criteria; and 

• “Phase 3: partial detachment”, simulating detachment in some points of the mesh, as it is 

described later in the following sections. 

Since the point of view of a practical construction of meshing, the “skin element” can be 

incorporated to the set of standard finite elements as a region of enhanced finite elements (see Fig. 

2). 

 

2.2 Variational formulation. 
 

For the purposes of this work, we shall now consider delamination phenomenon as a 

bidimensional mechanism represented by a 2D linear elastic model, composed by a potentially 

cracked domain Ω and the boundary Γ, which in turn can be decomposed in Γ𝑢 (Dirichlet boundary 

conditions), Γ𝑡  (Neumann boundary conditions) and Γ𝑐  (Γ𝑐 = Γ𝑐+ ∪ Γ𝑐−)  (Cohesive boundary 

conditions). These boundary conditions must respect the Eq (1) 

Γ = Γ𝑢 ∪ Γ𝑡 ∪ Γ𝑐+ ∪ Γ𝑐−  and  Γ𝑢 ∩ Γ𝑡 ∩ Γ𝑐+ ∩ Γ𝑐− = 0 (1) 
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Fig. 3 Model of a solid-layer assembly subjected to traction forces on Γ𝑡 inducing delamination 

effects over Γ𝑐+ and Γ𝑐− 

 

 

In this model, Γ𝑢 is located at the non-cracked domain Ω̅, while Γ𝑡  is placed over a pseudo-

tissue, pulled away from the rest of the domain by a traction force applied over Γ𝑡 . A known 

displacement value is imposed on Γ𝑢 to guarantee the uniqueness of the displacement field (see 

Fig. 3). The crack tips are represented by Γ𝑐+  and Γ𝑐− , which appear as soon as delamination 

phenomenon starts. In order to solve the boundary-value problem we will use the following 

equilibrium equations 

∇  ⋅ σ +  b  =  0  (2) 

ε = ε(u) = ∇su  (3) 

σ = C: ε  (4) 

In the last set of equations, the balance between internal and external forces is represented by 

equation Eq. (2), where 𝜎 is the Cauchy stress tensor, 𝑢 corresponds to the displacement field, 𝑏 

are the body forces and 𝑛 is the boundary normal unitary vector. Eq. (3) refers to the kinematic 

relationship between the displacement field 𝑢(𝑥) and the strain field ϵ(𝑥), while the last Eq. (4) 

represents the constitutive behaviour law for a homogeneous isotropic elastic material (assumed as 

the only one for all of the components), where ∇𝑠(⋅) is the gradient operator’s symmetric part and 

𝐶  is Hooke’s fourth-order tensor. By combining Eqs. (3) and (4) with (2), we can solve the 

boundary-value problem of linear elastostatics with or without delamination (Ibrahimbegovic 

2010). Finally, we can apply the following boundary conditions for the problem without 

delamination 

𝑢 = �̅�  over  Γ𝑢 (5) 

σ ⋅ 𝑛 = 𝑡̅  over  Γ𝑡 (6) 

As soon as delamination phenomenon starts, we can assume that crack surfaces have no 

traction, so the following boundary conditions can be added for the decohesion zone 

σ ⋅ 𝑛 = 0  over  Γ𝑐+ (7) 

σ ⋅ 𝑛 = 0  over  Γ𝑐− (8) 
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Fig. 4 Internal composition of the solid-layer element including three subdomains (solid, 

bonding and coat) with the nodal distribution of Degrees-Of-Freedom 

 

 

3. Numerical implementation of the 2D solid-layer element 
 

3.1 Numerical development based on a shape function’s enhancement. 
 

For our purpose, the solid-layer element can be understood as a 2D enhanced-finite-element 

whose domain can be expressed as the assembling of three distinct sub-domains 

Ω𝑒 = Ω𝑠𝑜𝑙𝑖𝑑 ∪ Ω𝑏𝑜𝑛𝑑 ∪ Ω𝑐𝑜𝑎𝑡 (9) 

where Ω𝑒 is the enhanced-finite-element domain, Ω𝑠𝑜𝑙𝑖𝑑 is the solid domain, Ω𝑏𝑜𝑛𝑑 is the bonding 

or interface domain, and Ω𝑐𝑜𝑎𝑡 corresponds the coat domain. In terms of the global finite element 

formulation, the set of the standard shape functions corresponding to the classical elements are 

enhanced with the supplementary shape functions of the solid-layer element, as it is expressed in 

Eq. (10) 

𝑢ℎ(𝑥) = ∑ 𝑁𝐼(𝑥)𝑢𝐼

𝐼∈𝒩

+ ∑ 𝑁𝐽
̅̅ ̅(𝑥)𝑎𝐽

𝐽∈𝒩 𝓈𝓀𝒾𝓃

 (10) 

where 𝒩 is the set of all standard nodes with classical continuum approximation and 𝒩𝓈𝓀𝒾𝓃 is the 

set of enhanced nodes with special functions associated to the solid-layer element. In other words, 

the 2D solid-layer element is based on the union of a classical four-nodes quadrilateral element 

with two translational Degree-Of-Freedom in each node; a two-node Bernoulli beam element with 

three Degree-Of-Freedom in each node (two translational DOF and one rotational DOF); and a 

pseudo four-nodes interface element, coupling the beam nodes to the solid nodes as it is shown in 

Fig. 4. The enhanced element will have a total of 14 DOF, with their respective number of 

integration points for each sub-domain (Dominguez 2005). 

The formulation of the displacement field of the enriched solid-layer element can be written as 

follows 

uℎ(x)  =   ∑ 𝑁𝑖
𝑆𝑜𝑙𝑖𝑑

4

i=1

 (x) ⋅ u𝑖    
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+  [  ∑ 𝑁𝑖
𝐵𝑜𝑛𝑑(𝑥)

2

i=1

  ⋅ u𝑖   +   ∑ 𝑁𝑖
𝐵𝑜𝑛𝑑(𝑥)

4

i=3

  ⋅ αi ] + ∑ 𝑁𝑖
𝐶𝑜𝑎𝑡(𝑥)

2

𝑖=1

⋅ α𝑖 (11) 

In the last expression, u𝑖 is the set of nodal displacements associated to the continuous part of 

the solid elements, while α𝑖 corresponds to the set of degrees of freedom belonging to the coating, 

representing the total displacement of the skin when this one is liberated. On the other hand, 

𝑁𝑖
𝑆𝑜𝑙𝑖𝑑  are the standard bilinear shape functions for the domain Ω𝑠𝑜𝑙𝑖𝑑 ; 𝑁𝑖

𝐵𝑜𝑛𝑑  are the special 

shape functions for the domain Ω𝑏𝑜𝑛𝑑; and 𝑁𝑖
𝐶𝑜𝑎𝑡 are the standard Hermite shape functions for the 

domain Ω𝑐𝑜𝑎𝑡. 

 

3.2 Description of the shape functions 
 

The construction of the shape functions is done for each sub-domain on the space of the natural 

coordinates, being independents between each one. For the solid body with two DOF’s for node, 

we use the classical shape functions for a standard four-node quadrilateral element shown in Eqs. 

(12a)-(12d) (Hughes1987) 

N1
𝑠 =

1

4
⋅ (1 − ξ) ⋅ (1 − η) (12a) 

N2
𝑠 =

1

4
⋅ (1 + 𝜉) ⋅ (1 − 𝜂) (12b) 

N3
𝑠 =

1

4
⋅ (1 + 𝜉) ⋅ (1 + 𝜂) (12c) 

N4
𝑠 =

1

4
⋅ (1 − 𝜉) ⋅ (1 + 𝜂) (12d) 

For the coat, which is modeled as a beam element with three DOF per node, the shape 

functions are formulated as follows: the translational displacements u1 (projected on axis 𝑥(𝜉)) are 

interpolated using the classical Lagrangian polynomial; on the other hand, the translational 

displacements u2  (projected on axis 𝑦(𝜂) ) combined to the rotational displacements 𝜃 , are 

interpolated with the Hermite’s polynomial using Eqs. (13) and (14) 

ve(x)[1 x x2 x3] ∗ {

α1

α2

α3

α4

} = 𝐹(𝑥) (13) 

θ𝑒(𝑥) ≃
𝑑𝑣𝑒(𝑥)

𝑑𝑥
= [0 1 2𝑥 3𝑥2] ∗ {

𝛼1

𝛼2

𝛼3

𝛼4

} (14) 

The final Hermitian cubic shape functions are summarized in the set of Eqs. (15a)-15(f) with 

the corresponding curves indicated in Fig. 5. 
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Fig. 5 First Order Lagrangian and Third Order Hermitian shape functions 

 

 

N1𝑢𝑥
𝑏 =  

1

2
⋅ (1 −  ξ) ⋅ (η) (15a) 

N1𝑢𝑦
𝑏 =  

1

4
⋅ (2 +  3𝜉 −  𝜉3) ⋅ (𝜂) (15b) 

N1𝑢𝜃
𝑏 =  

1

4
⋅ (−1 − 𝜉 + 𝜉2 + 𝜉3) ⋅ (𝜂) (15c) 

N2𝑢𝑥
𝑏 =  

1

2
⋅ (1 +  𝜉) ⋅ (𝜂) (15d) 

N2𝑢𝑦
𝑏 =  

1

4
⋅ (2 −  3𝜉 +  𝜉3) ⋅ (𝜂) (15e) 

N2𝑢𝜃
𝑏 =  

1

4
⋅ (1 − 𝜉 − 𝜉2 + 𝜉3) ⋅ (𝜂) (15f) 

Concerning to the bonding region, this one is formulated as a very thin four-node quadrilateral 

element where three linear sides are combined with a curved side connected to the coat: this side 

will reproduce the displacement and rotation’s coat. The three sides are interpolated by using 

classical Lagrangian shape functions, while the curved side is interpolated with the same 

Hermitian cubic shape functions developed previously. The two nodes attached to the solid body 

conserve two DOF per node, while the nodes attached to the coat will have three DOF per node, in 

order to ensure the compatibility between the solid body and the coat. In other words, combining 

the shape functions of Eqs. (12) with Eqs. (15), we obtain a set of six shape functions (see Fig. 6) 

as it is shown in Eqs. (16a)-(16f) considering 10 DOF’s (see Fig. 7). 

N1
𝑏  =  

1

4
⋅ (1 −  ξ)  ⋅ (1 −  η) (16a) 

N2
𝑏  =  

1

4
⋅ (1 +  ξ)  ⋅ (1 −  η) (16b) 

N3𝑢
𝑏  =  

1

8
⋅ (2 +  3ξ −  𝜉3)  ⋅ (1 +  η) (16c) 

N3𝜃
𝑏  =  

1

8
⋅ (−1 − ξ + 𝜉2 + 𝜉3)  ⋅ (1 +  η) (16d) 

N4𝑢
𝑏  =  

1

8
⋅ (2 −  3ξ +  𝜉3)  ⋅ (1 +  η) (16e) 

N4𝜃
𝑏  =  

1

8
⋅ (1 − ξ − 𝜉2 + 𝜉3)  ⋅ (1 +  η) (16f) 
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(a) Node 1 

 
(b) Node 3 

 
(c) Node 3θ 

 
(d) Node 2 

 
(e) Node 4 

 
(f) Node 4θ 

Fig. 6 Graphic representation of translational and rotational shape functions for bonding 

 

 

Fig. 7 Shape functions for the Lagrangian-Hermitian bond interface 

 

 

 

Fig. 8 Comparison between a standard 8 × 8 stiffness matrix for a QUAD4 element and the enhanced 

14 × 14 stiffness matrix for the solid-layer element 

 

 

3.3 Construction of the solid-layer stiffness matrix 
 

In comparison to the classical 8 × 8 stiffness matrix of a standard QUAD4 element (see Fig. 

8(a)), the stiffness matrix of the solid-layer element is the result of assembling three elementary 

arrays: the standard array of a QUAD4 element, the Hermitian array of a 2-node beam, and the 

special local matrix of bonding. This array must include the coupling between the translational 

DOF of the solid and the translational/rotational DOF of the coat. Considering that 𝛼𝑖, 𝛽𝑖 and 𝜃𝑖  
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Fig. 9 Integration Gauss points in reference axis 𝜉 and 𝜂 

 

 

conform the set of enhanced DOF describing coat’s free configuration, it is possible to build a 

14 × 14 stiffness matrix for the whole solid-layer element as it is shown in Fig. 8(b). 

In order to ensure the compatibility between the rigid body (solid) and the flexible layer (coat), 

it was necessary to develop a special array in which the Lagrangian shape functions are coupled to 

the Hermitian functions, using the set of shape functions indicated in Eq. (16). 

 

3.4 Number and location of the integration points for the solid-layer element 
 

Concerning to the numerical integration of the solid-layer element, each domain will have its 

own set of integration points in a similar way as it is done in (Dominguez et al. 2010). In other 

words, a 2 × 2 Gauss quadrature is implemented for the solid body, while a two integration points’ 

array is adopted for the coat. Regarding to the bond region, a similar 2 × 2 Gauss quadrature array 

is adopted, being noteworthy that two integration points -those located near to the coat- are slightly 

relocated towards their closest nodes, due to the redistribution of energy induced by Hermitian 

shape functions (see Fig. 9). 

 

3.5 Decohesion yield criterion based on a strain function 
 

As explained throughout this document, cohesion’s integrity is one of the most important key-

points in the control of the combined behaviour of reinforced concrete and coat; nevertheless it 

could be damaged or deteriorated over time. For this reason, different non-linear models have been 

developed to simulate gradual decohesion, some of them based on Damage Mechanics or Fracture 

Mechanics (Turon et al. 2006, Ciavarella et al. 2008). Nevertheless, these approaches can be very 

complex to implement into our very first finite element proposal so we will adopt a simple 

criterion to determine two states of cohesion: Rigid Cohesion (RC)/Full Decohesion (FD). 

Likewise, instead of using a jump criteria based on absolute displacements (Camanho et al. 2008), 

we will use a simple criterion based on a strain yield function. In other words, when the bonding 

reaches certain normal strain on the perpendicular direction to the coat’s surface, the coat will 

detach from the solid body. The decohesion strain function can be formulated as follows 

𝜙(𝜀)𝑑𝑒𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = ⟨𝜀𝑏𝑜𝑛𝑑⟩ − 𝜀𝑦 (17) 

where ϕ(ε)𝑑𝑒𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 is the decohesion function, ⟨ε^{𝑏𝑜𝑛𝑑}⟩  is the normal traction strain 

evaluated on each bonded node (only if it is positive), while ε𝑦  is a decohesion strain yield  
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Fig. 10 Rigid Cohesion (RC) vs. Full Decohesion (FD): Node 𝑁𝑖 is still attached to the concrete 

body, while Node 𝑁𝑗 is fully separated 

 

 

constant. Therefore, the decohesion criterion evaluated on each bonded node can be stated as: 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝑆𝑡𝑎𝑡𝑒 {
𝑅𝐶   if   𝜙(𝜀)𝑑𝑒𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛  ≤  0

𝐹𝐷   𝑖𝑓    𝜙(𝜀)𝑑𝑒𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 >  0  
  

In the last expression, only when ϕ(ε)𝑑𝑒𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 exceeds zero, the coat will be fully detached 

from the concrete body. Fig. 10 describes very well this criterion: while the bonded node 𝑁𝑖 has 

not exceeded the strain limit, the bonded node 𝑁𝑗 has already been detached from the mesh and the 

coat moves freely with wide rotations. 

 

 

4. Numerical validation 
 

4.1 Testing and validation of bonding formulation 
 

The core of the solid-layer element is the bonding formulation. In order to perform a numerical 

validation, two patch tests will be implemented for the bonding, formulated solely as a single 

element: (a) in the first test, a traction force will be applied along the coat (see Fig. 11(a)); (b) in 

the second test, a bending moment will be applied on one coat’s edge (see Fig. 11(b)). The aim of 

both tests is to ensure that bonding transition reproduces simultaneously the combined 

translational displacement of coat and concrete, when they are fully attached. The tests are 

performed as it is shown in Fig. 11, with the following properties: Young’s modulus  𝐸 =
1000.0 N/cm2, Poisson’s ratio ν =  0.10, thickness 𝑡 = 1.0   cm, length 𝑙 = 10.0   cm, height ℎ =
10.0   cm. In both tests, the coat is placed on the upper side of the single element. 

 

4.1.1 Traction test 
In this test a distributed traction load of 10.0   N will be applied along one side of the single 

element; meanwhile, the opposite side is partially restrained to reproduce a homogeneous state of 

traction stress in the whole element. By the way, the traction test has two variants: in the first one, 

the traction force is placed on the upper side of the element (where the coat is attached), while the 

lower side is partially restrained as it is shown in Fig. 12(a). In the second variant, the traction load 

is applied on the element’s right side, while the left side is partially restrained as indicated in Fig. 

12(b): the coat remains attached to the upper side for the element. Both tests are solved  
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(a) Axial force on y (b) Bending moment around z 

Fig. 11 Numerical validation of the solid-layer bonding transition through the implementation of two 

patch-tests 

 

 
 

 
 

(a) Traction force applied on 𝑦 direction (variant A) (b) Traction force applied on 𝑥 direction (variant B) 

  
(c) Concentrated traction force on 𝑦  direction 

(variant A) 

(d) Concentrated traction force on 𝑥  direction 

(variant B) 

Fig. 12 Traction test on a 2D solid-layer bonding element, two variants: (A) vertical loading; (B) horizontal 

loading 

 

 

analytically using a plane stress assumption, obtaining similar results: 

• Traction load on Y direction: 

σ𝑦 = 1.0 N/cm2, ϵ𝑥 = −0.0001, ϵ𝑦 = 0.001 

• Traction load on X direction: 

𝜎𝑥 = 1.0 𝑁/cm2, 𝜖𝑥 = 0.001, 𝜖𝑦 = −0.0001 

The two variants of the traction test will be solved numerically as a 2D plane stress problem, 

using a special Hermite-Lagrangian Quad4 element with 10 DOF: two translational DOF on nodes 

1 to 4, and one extra-rotational DOF on nodes 3 and 4 (see Figs. 12(c), (d)). As a consequence, the  
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                   Table 1 Nodal displacements obtained on the traction test 

Node 
Variant A: Force on x axis Variant B: Force on y axis 

𝑢𝑥 𝑢𝑦 𝜃𝑧 𝑢𝑥 𝑢𝑦 𝜃𝑧 

1 0.000 0.000 - - 0.000 0.000 - - 

2 -0.001 0.000 - - 0.010 0.000 - - 

3 -0.001 0.010 0.000 0.010 -0.001 0.000 

4 0.000 0.010 0.000 0.000 -0.001 0.000 

 

  

(a) Displacement on x (b) Displacement on y 

Fig. 13 Numerical validation of the solid-layer bonding transition through the implementation of two 

patch-tests 

 

 

system of linear equations can be set up as follows 

{𝐮}(10×1) = [𝐊](10×10)
−1 ⋅ {𝐟𝑒𝑥𝑡}(10×1) (18) 

Accordingly, in order to include the effects of any external bending moment into the bond 

element nodes, it will be necessary to enhance the standard force array of 8 × 1 to a vector of 

10 × 1 in the following manner 

𝐟𝑒𝑥𝑡 =  [𝑓𝑥1 𝑓𝑦1 𝑓𝑥2 𝑓𝑦2 𝑓𝑥3 𝑓𝑦3 𝒎𝒛𝟑 𝑓𝑥4 𝑓𝑦4 𝒎𝜽𝟒] (19) 

The set of nodal displacements obtained by solving the matrix equation for the two variants of 

the traction test, is shown in Table 1. 

Likewise, the set of strains and stresses obtained at the first integration point for variant B is 

shown in the vectors (see Eq. (20)). It is important to highlight the change of position of some 

integration points as a consequence of the higher-dimensional integration associated to the special 

Hermite shape functions known as Hermite cubature (as it was shown in Fig. 9). In any case, the 

numerical results are identical to the analytical solution of the two variants of the traction test. 

𝝐𝒑𝒈𝟏 = [
−0.0001

0.001
0.0000

]          𝝈 = [
−0.10
𝟏. 𝟎𝟎
0.00

] (20) 

Finally, the deformed configuration of both variants (A and B) of the traction test are shown in 

Fig. 13. 

 

4.1.2 Bending moment test 
One of the main purposes of the bond formulation is the ability to impose bending moments on  
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             Table 2 Nodal displacements obtained on the moment test 

* 
Positive Moment Negative Moment 

𝒖𝒙 𝒖𝒚 𝜽𝒛 𝒖𝒙 𝒖𝒚 𝜽𝒛 

1 0.0000 0.000 - - 0.0000 0.0000 - - 

2 -0.0104 0.000 - - 0.0104 0.0000 - - 

3 -0.0010 0.0001 0.0979 0.0010 -0.0001 -0.0979 

4 -0.0094 -0.0001 -0.0934 0.0094 0.0001 0.0934 

             *Node 

 

  
(a) Displacement by (+) spin (b) Displacement by (-) spin 

Fig. 14 Displacement field for the two variants of the bending moment test on bond formulation 

 

 

one of the faces and reproduce any rotation; by applying a unitary bending moment on one of the 

nodes where the coat is attached, we will be able to obtain translational displacements on 𝑥 and 𝑦 

axis as well as the 𝜃 spin on these nodes. In order to verify it, a unitary bending moment will be 

applied on node 3, with two variants: in the first one, the moment turns clockwise, while in the 

second one it turns in anti-clockwise direction, as it is shown in their respective external force’s 

vector (see vectors on Eq. (21)). 

𝐟𝑒𝑥𝑡 = [0 0 0 0 0 0 +𝟏 0 0 𝟎] clockwise moment 

𝐟𝑒𝑥𝑡 = [0 0 0 0 0 0 −𝟏 0 0 𝟎]      anti-clockwise moment 
(21) 

In order to solve this problem, we will reuse the matrix Eq. (18). The nodal displacements 

(including translational and rotational displacements) induced by the two variants: the clockwise 

(positive) moment and the anti-clockwise (negative) moment, are summarized in Table 2. 

The deformed configuration of both variants (clockwise and anti-clockwise moments) is shown 

in Fig. 14. 

 

4.2 Testing the skin element: The assemblage of solid, bonding and coat 
 

In this study, we present on a simple cantilever beam. A similar numerical test was performed 

by (Tahar et al. 2021) but instead of simulating one phase, we studied the development of the three 

phases of coat’s detachment: phase 1 corresponds to perfect bonding; phase 2 represents the partial 

debonding at yield point; and phase 3 reproduces total debonding of the skin element. For that 

purpose, a cantilever concrete beam with elastic behaviour is modelled as it is shown in the Fig. 

15. 

For this test, the following material and geometrical characteristics were used: for concrete  
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Fig. 15 Modelling of a cantilever beam with a concentrated force on the edge 

 

  
(a) Mesh type 1 (b) Mesh type 2 

Fig. 17 Comparison of the structural response of cantilever beam’s four cases using meshes type 1 and 2 

 

 

body, an elasticity modulus 𝐸 = 2.2 × 104 MPa and a Poisson ratio ν =  0.10 with a transversal 

section of 30 × 55 cm; for the steel plate, an elasticity modulus 𝐸 = 2.0 × 105 MPa and thickness 

𝑒 =  1.3 cm. The length of the beam is 200 cm. 

The analytical solution of this problem gives the following results: the failure of the 

unreinforced concrete occurs when the allowable ultimate load reaches a value of 23,821.80 N, 

inducing a vertical deflection of 𝛿 =  0.069  cm; eventually, the load is increased to reach a 

positive strain criterion of 𝜀 =  0.001 on the nodes of coat/bond, indicating the end of the phase 1, 

starting phases 2 and 3 of debonding. By the way, in order to test the effectiveness of the solid-

layer element, we built two kind of meshes: the mesh shown in Fig. 16(a) consists in a set of four 

standard QUAD4 elements attached to 4 solid-layer elements, while the second mesh shown in 

Fig. 16(b) consists in a mixed mesh of 8 standard QUAD4 elements with 8 solid-layer elements. 

For our purposes, four cases are studied and compared for the numerical test: 

• Unreinforced concrete beam solved analytically; 

• Unreinforced concrete beam solved with Lag-Her Q4 elements; 

• Plate reinforced concrete beam solved with Lag-Her Q4 elements;  

• Plate reinforced concrete beam solved with Lag-Her Q4 elements and debonding activation; 

The aim of the first case is to deduce the maximum displacement at the edge of the cantilever 

beam using an analytical solution, to use it as a reference. At the same time, it allows to evaluate 

the elastic stiffness of the plane concrete beam without reinforcement. The second case tries to  
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(a) Mesh type 1 

 
(a) Mesh type 2 

Fig. 16 FEM Cantilever Beam to test bond element 

 
Table 3 Maximum displacement in cantilever beams 

Case Analytical FEM Conc. FEM C+P FEM C+P+B 

Mesh 1 0.06942 0.05289 0.03295 0.05658 

Mesh 2 0.06942 0.06667 0.03556 0.06963 

 

 

reproduce the analytical results using a standard mesh analyzed with the Finite Element Method. 

As attended, the FEM analysis shows a stiffer beam’s capacity, even if the second curve is very 

close to the first case’s curve. The third case represents a classical FEM simulation where the 

reinforcement or over coat is attached to the beam’s top face, without any possibility of 

decohesion: in this case, the stiffness of the combined beam (over coat and concrete) is greater 

than unreinforced concrete beam’s stiffness. In the third case (concrete beam reinforced with a 

covering steel plate), the maximum displacement diminishes, but this condition is only fulfilled if 

the perfect union between both materials is maintained. 

The fourth case intends to reproduce the damage of the bonding between the coat and the 

concrete, with the progressive detachment between them. This phenomenon is represented in the 

beam applying a strain criterion based on the sliding between both surfaces (Dominguez et al. 

2010). As soon as a yield decohesion criteria is surpassed in a node, the detachment starts. For this 

case, node 36 -which is in the edge of the beam- is the first node where decohesion occurs, 

reducing the stiffness of the beam in a certain proportion. As soon as detachment progresses in 

nodes 32, 28, 24, 20, 16 and 12, the capacity of the beam “jumps” and reduces its stiffness, 

reaching the capacity curve of the unreinforced concrete beam. 

A comparison of the structural capacity of the four cases is shown in Fig. 17(a) when a coarse 

mesh is used (Mesh type 1); Fig. 17(b) shows the same structural capacity’s comparison with a 

fine mesh (Mesh type 2). Meanwhile, the vertical displacements of the four cases obtained with 

both meshes are listed in Table 3. 

455



 

 

 

 

 

 

Arturo Suárez-Suárez, Norberto Domínguez-Ramírez and Orlando Susarrey-Huerta 

5. Conclusions 
 

The solid-layer element (or skin element) can be useful to describe the phenomenon of 

delamination between concrete and overcoating by reformulating in just one element the solid 

concrete body, the coat and the bonding zone, being able to reproduce the adhesive interface 

matrix that joins them. Adopting a strain criteria for debonding, it is possible to fully describe 

phases 1, 2, 3 and 4 of the delamination process. Another aspect of the solid-layer element to 

highlight is its ability to reproduce rotations on one face of a solid element. The solid-layer 

element allows us to calculate not only the translational displacements, but also the spin and 

curvature on one side of the element, caused by external forces/moments solicitations. Namely, 

this proposal aims to provide of a special finite element which serves as an interface between a 

solid with small deformations and a skin with large rotations. 

The extension of this work to dynamics can be accomplished by following the recent ideas 

presented in references (Mejia-Nava et al. 2021, Ibrahimbegovic and Mejia-Nava 2021). 
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