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Abstract.  In order to analyse the thermal performance of battery systems in electric vehicles complex simulation 
models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be 
developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery 
system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a 
meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows 
and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS 
Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in 
Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption 
and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time 
applicable model. 
 

Keywords:  battery cooling; CFD simulation; data driven model; data sampling; multiple input multiple 

output system 

 
 
1. Introduction 
 

In the development of battery systems for electric vehicles, simulation techniques have gained 

importance in order to evaluate the design and performance of the system for different scenarios. 

Especially the thermal behavior of the battery needs to be examined, to ensure safety and reliability 

of the system (Julien et al. 2016, Rao and Wang 2011). An important part of the thermal management 

is the cooling system, which is used to regulate the temperatures of the battery cells. Computational 

fluid dynamics (CFD) is commonly used to analyze such high dimensional systems. To evaluate the 

temperature inside the battery transient simulations over a certain driving cycle are necessary. 

However, such CFD-simulations are not always feasible due to their high computational cost.  

In order to be able to evaluate the temperatures inside the battery in real time, it is therefore 

necessary to create a lower dimensional model of the battery system. This model can then be used 
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on the battery management system for control and regulation (Szardenings 2022, Szardenings et al. 

2020, Sancarlos et al. 2020). One part of this reduced model is the cooling plate, which is the focus 

of this work. The cooling plate model is built to calculate the heat transfer from the thermal battery 

system into the cooling plate. 

Previous works focus on estimating the fluid parameters such as pressure drop and velocity using 

data driven models (Schenck and Fox 2018). For the estimation of heat transfer geometrical input 

parameters have been used for the meta models, using up to 15 input parameters (Xie et al. 2007, 

Islamoglu 2003, Park et al. 2006). 

However, here a fixed cooling plate geometry is considered and thus, input and output parameters 

differ from previous works. The aim is to create a real-time applicable model of the cooling plate. 

The model is created in order to calculate an accurate boundary condition from the cooling plate. 

Later this model can be coupled with a thermal model of the battery system. Much more input 

parameters are needed for this application compared to other heat transfer models which will be 

described in Section 3. Further, this paper proposes several assumptions and simplifications to the 

cooling plate. 

 

 

2. Data driven models 
 

In this section the design of experiments (DOE) methods and meta modeling methods for the 

development of a data driven model are described. The methods will be later used for the 

approximation of the cooling plate. 

 

2.1 Design of experiments 
 

The data set for the meta model is created using a DOE. In a DOE a set of input parameters is 

varied within its range in order to capture the design space of dimension k of the model. Simulations 

or experiments are carried out for each input parameter variation to generate a snapshot of output 

parameters. 

Different methods exist to define input parameter combinations for validation and test data. Here, 

a  large number of input parameters is necessary. One examined method is Latin hypercube sampling 

(LHS). LHS is a space filling sample design. From all input parameter permutations, the LHS 

chooses randomly a number of permutations, such that each sub interval of each parameter is only 

included once in the sampling size. This reduces the number of input parameter variations. Here the 

number of experiments ne is not dependent on the dimension of the design space k (Santner et al. 

2003). Further, central composite designs (CCD) are evaluated. CCD is based on a full fractional 

design, where two or more variations per model parameter xi with equidistant distance between those 

are examined, resulting in 2m experiments. This allows to examine main effects (x1, x2) and 

interactions (x1x2) between the input parameters. More practical are variations with a fractional 

factorial design, where 𝑚𝑙 parameter combinations are left out. In CCD the full fractional design is 

combined with star points in between to determine the curvature of the design space. A fractional 

design is built with two design points for each parameter (2k) and equidistant distance between those. 

Star points are added in a distance α from the center of the fractional design. For α = 1 this results 

in a face centered composite design (CCF). The advantage is that the full parameter space is 

examined and quadratic effects can be evaluated. The method results in a total of 2𝑚 + 2𝑚−𝑚𝑙  

experiments (Santner et al. 2003, Simpson et al. 2001, Noesis Solution 2020). 
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2.2 Meta modelling methods 

 

Data driven models approximate a correlation of inputs and outputs, for example based on 

simulation results, by using numerical methods. They can be built without knowing the physical 

equation of the underlying problem. Once trained they can be used to reproduce the outputs for 

various input  combination that can be different from the training data set. Also, the models tend to 

have much lower computational cost than a CFD simulation model itself (Kleijnen 2009). Various 

approaches have already been studied for the approximation of fluid and heat transfer models. For 

data driven models especially deep neural networks (DNN) for the approximation of the navier-

stokes equation and fluid dynamics have been emphasized (Schenck and Fox 2018, Kutz 2017). Also, 

other non- linear systems have been identified through neural networks (Prasad and Bequette 2003). 

For the approximation of heat transfer problems neural networks have been successfully applied 

using mul- tiple input and output parameters from test data or simulation (Peng et al. 2020, Islamoglu 

2003, Xie et al. 2007, Thibault and Grandjean 1991, Jambunathan et al. 1996). A further meta model 

in fluid dynamics and simulation is the kriging method, which is mostly used for optimization 

problem and is especially suitable for deterministic simulation models (Park et al. 2006, Kleijnen 

2009). 

In general, a meta model calculates an output �̂� = 𝒈(𝒙) that has a minimal error ϵ compared 

to the exact solution of the simulation 𝒚 = 𝑓(𝒙): 

𝒚 = �̂� + 𝜖 .                                  (1) 

Here, 𝒙 is a vector of n independent variables with upper and lower bounds that spans the design 

space of the model. The function 𝒈(𝒙) can be a combination of linear and non-linear functions and 

algorithms depending on the chosen method. The parameters of the meta model are trained using the 

input-output data set from a DOE. During the training process the meta model is designed not only 

to map the training data set but also all possible solutions in the design space of the simulation model 

(Santner et al. 2003, Giunta and Watson 1998). 

Interpolative models use polynomial functions to fit data points from original model in a certain 

interval. Kriging models are one example. Here, an output average µ for the parameter domain is 

calculated from the DOE and is extended through a noise function Z(x). This correlation function 

describes the correlation of the output to the mean value and its parameters can be computed through 

the evaluation of the correlation matrix of the data set. For an universal Kriging method the output 

average can also be replaced through a regression model 𝒈(𝒙), such as a polynomial function (Jeong 

et al. 2005, Ryu et al. 2002, Kleijnen 2009): 

�̂�(𝒙) =  𝒈(𝒙) + 𝒁(𝒙).                             (2) 

Another interpolative method is radial basis function (RBF). The meta model is built from the 

dis tance between two design points in the design space, in the assumption that neighboring values 

affect each other. This is done by calculating the euclidean norm between two points and applying 

a basis function to the norm: 

𝒈(𝒙) = ∑ 𝜆𝑖𝜙(||𝒙 −  𝒙𝑖||)𝑁
𝑖=1  .                        (3) 

Where 𝒙 are design points from the training data set, 𝜆𝑖 are the weights to be solved, 

𝑟 = ||𝒙 − 𝒙𝑖|| is the distance from the origin 𝒙𝑖  and 𝜙 is the basis function. The meta model 

builds a linear system  of equation for a n-dimensional problem of the form 𝑨𝜆 =  𝒃, where the 

elements of A are defined as  𝑎𝑖𝑗 = 𝜙(||𝒙𝑖 − 𝒙𝑗||).  Different polynomial approaches have been 
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studied for the kernel function 𝜙. Most commonly multi quadratic functions are used with 𝜙(𝑟) =

 √𝑟2 + 𝛾  with 𝛾 being a positive shape parameter (Skala 2017, Giunta and Watson 1998, Volpi 

et al. 2015, Buhmann 2000). 

Neural networks (NN) describe another method for creating meta models. In neural networks 

input  and outputs correlation are described through a concatenation of functions, whose parameters 

are trained by a set of training data. They consist of an input layer, containing an array of input 

parameters 𝒂[0] , 𝐿  hidden layers, defining the deepness of the network, and an output layer 

𝑓(𝒙) = 𝒂[𝐿]. Each of the hidden layer represents a linear or non-linear function h that is applied to 

the input vector 𝒛 of the layer 

𝒛[𝑙] = 𝑾[𝑙]𝒂[𝑙−1] + 𝒃[𝑙] 

𝒂[𝑙] = 𝒉[𝑙](𝒛[𝑙]) .                              (4) 

Where 𝒂[𝑙−1]  is the output from the previous layer, 𝑾[𝑙] are the weights and 𝒃[𝑙]  are the 

biases.  Other important parameters for the training of NNs are the learning coefficient (𝑎 ≤ 1) and 

the number of epochs E. E defines the number of times the NN is trained with a set of data from the 

defined pool of training data. 𝑎 defines how the parameters (weights and biases) of the NN are 

updated in an  epoch. Some advantage of NN’s are that they are able to represent high non-linear 

behavior of a data  sample and are able to handle many input and output parameters (Xie et al. 2019, 

White et al. 2019,  Goodfellow et al. 2016). Neural networks are often classified into shallow neural 

network (SNN) with only one hidden layer and deep neural networks (DNN) with an adaptive 

number of hidden layers greater than one. 

The data driven models can be evaluated by comparing the training error 𝜖𝑡𝑟𝑎𝑖𝑛, defining how 

good the model can replicate the training data set and the generalization error 𝜖𝑡𝑒𝑠𝑡, describing the 

ability to approximate data of the design space different from the training set (Goodfellow et al. 

2016). The errors are calculated in comparison with the results from the CFD simulation. 

 

 

3. Cooling plate model 
 

The considered CFD simulation model in our work is the cooling plate of a battery system which 

is placed beneath the battery cells. This bottom cooled system uses a water based coolant. The cooling 

plate consists of several channels that are optimized in their design to ensure a uniform temperature 

distribution in the battery system (Pesaran 2001, Rao and Wang 2011). 

 

3.1 CFD simulation model 
 

The cooling plate is simulated in a CFD software (ANSYS Fluent ® ), with the goal to calculate 

the heat transfer from the battery system into the fluid. Hence, several assumptions and 

simplifications can be made to the model. For the fluid a fully developed flow is assumed at every 

time step at a certain flow rate and temperature. A fluid volume needs approximately 3 sec. at 

maximum mass flow rate of 0.1776 kg/s to fully develop a steady flow in the channels. Vice versa 

when changing the mass flow to 0 kg/s the fluid is motionless in about 3 sec.. With this assumption 

a change to higher mass flow rate would result in slightly higher overall heat transfer, vice versa a 

change to a lower mass flow rate results in lower heat transfer. Thus, the errors would cancel out in a 

steady state simulation.  Further, the fluid is assumed to be laminar, with a maximal Reynolds Number 
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of 790 in the channels. A steady and stable flow pattern and no vortexes are expected (Baehr and 

Stephan 2006). Through this assumption it is possible to calculate the flow stationary, with velocity 

and pressure values inde- pendent from time. 

In the coupled battery system model the cooling plate and thermal battery system are coupled 

through the heat flow rate of neighbouring faces, satisfying the following equation (Annaratone 

2010, Weigand et al. 2013): 

�̇� = 𝛼 · (𝑇𝑝𝑙𝑎𝑡𝑒 − 𝑇𝑏𝑎𝑡) .                          (5) 

Where �̇� is the specific heat flow rate through a face of area A, 𝛼 the heat transfer coefficient, 

𝑇𝑝𝑙𝑎𝑡𝑒 is the temperature at the cooling plate top and 𝑇𝑏𝑎𝑡 is the temperature at the bottom of the 

battery system. When separating the cooling system from the thermal model, each of those values 

can be used as a conservative boundary condition. 

 

 

 
Table 1 Temperature deviation in thermal battery model for different BCs 

 BC HTC BC Heat flow rate BC Temperature 

 ∆T Abs. ∆T Rel. ∆T Abs. ∆T Rel. ∆T Abs. ∆T Rel. 

Average 0.77 K 0.9% 2.01 K 3.4% -0.23 K 0.8% 

Maximum 2.79 K 4.8% 4.41 K 7.5% 1.63 K 2.8% 

 

 

In the cooling plate model the values from Eq. (5) are calculated at the interface of the cooling 

plate to the battery modules. The values are averaged over three areas per module interface to 

represent the different flow sections of the cooling plate. The simplification is shown in Fig. 1. The 

three surfaces per module are chosen to depict the different areas under each module. This is sufficient 

for the correct calculation of the temperature in the battery system, as will be shown later. The 

approximation results in a total of 42 surfaces 

For validation, the thermal battery system was simulated with averaged boundary conditions 

(BC) from the cooling plate and the resulting temperatures are compared with a coupled model of the 

system (cooling plate and thermal system). The averaged values at the cooling plate faces are 

 

Fig. 1 Approximation of the cooling plate with averaged values (Here temperature T). Each surface beneath a 

battery module is split in three surfaces (S1, S2 and S3) on the cooling plate 
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obtained from separate simulations of the CFD model of the cooling plate. Three different types of 

boundary conditions are tested: fixed temperature, heat transfer coefficient (HTC), heat flow rate 

boundary. The results are shown in Table 1. The temperature BC shows the best results in the 

thermal model. 

Based on the previous assumptions an averaged error of -0.23 K is estimated in the batteries 

temperatures when comparing the full battery system model and the decoupled model. The maximal 

loca; temperature deviation in the thermal battery system is 1.63 K compared to the coupled system. 

The results also show, that an approximation of the cooling plate surface with three surfaces per 

battery module is sufficient. Hence, the cooling plate simulation model is set up to have the 

temperature at the plate as an output parameter. 

 

3.2 Approximation model 
 

To create a real-time applicable model of the cooling plate, data driven modelling methods are 

evaluated. In order to do so, snapshots are calculated from the fluid model for each input parameter 

set using a DOE. The collected training data is used to build the meta model. Further, the model is 

validated using a test data set different from the training data. The DOE and meta model is built in 

Optimus ® . The software is chosen as tool, since it can directly be coupled with Ansys Fluent ®  

simulations to generate the snapshots and is able to provide a solver independent functional mock up 

unit (FMU) of the model, that can be imported into any software and model of choice (Noesis 

Solutions 2019, Noesis Solution 2020). The work-flow is shown in Fig. 2. With an input array 

defined by the design point in the DOE the simulation set up is parameterized and applied to a CFD 

model loaded through case and data file. The simulation is performed on a high performance cluster 

and the output is written back into an array. As discussed in 3 the cooling plate surface is split into 42 

smaller surfaces. Here, input parameters are the fluid temperature at the inlet 𝑇𝑓𝑙𝑢𝑖𝑑, the mass flow 

rate at the inlet �̇�𝑓𝑙𝑢𝑖𝑑 and the 42 heat flow rates �̇�𝑐𝑜𝑜𝑙𝑖𝑛𝑔,𝑖 at the cooling plate surface boundary 

condition. The input parameter boundaries are shown in the Table 2 and define the design space for 

the DOE. As output parameters, the 42 averaged surface temperatures (𝑇𝑝𝑙𝑎𝑡𝑒,𝑖) at the cooling plate 

are evaluated through the CFD simulation as described in Fig. 1.  

 

 

 

Fig. 2 Input and output parameters of the data driven model with i={1, 2, ..., 42} 
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Table 2 Upper and lower boundaries of the input parameters, as well as nominal value 

Parameter Lower boundary Upper boundary Nominal 

Heat flow rate [W/m2] 0 4000 2000 

Mass flow rate [kg/s] 0 0.1776 0.1776 

Inlet temperature [K] 293.15 308.15 298.15 

 

 

Fig. 3 Optimus work-flow for the calculation of snapshots from the Ansys Fluent model 

 

 

Also, for validation reasons the average and outlet temperature of the cooling fluid are calculated. 

In total this results in 44 input and output parameters. In our case the simulation model used is 

deterministic, meaning, the output parameters for a fixed input parameter set is always the same.  

The schematic view of the data driven model with input and output parameters is shown in Fig. 

3. 

For comparison the following regression parameters and error measures are used in order to 

evaluate the quality of the meta model compared to the CFD simulation regarding the training and 

test data.  

The sum of squared errors defines the deviation between model and simulation 𝑆𝑆𝐸 =
∑ (𝑦 − �̂�𝑖)2𝑛

𝑖=1  and the total sum of squares the deviation from the mean data output �̅�  with 

𝑆𝑆𝑇𝑂𝑇 = ∑ (𝑦𝑖 − �̅�𝑖)2𝑛
𝑖=1 . The degree of determination (𝑅2) and the mean squared error (𝑀𝑆𝐸)with 

the number of experiments n and number of model parameters m are then defined as (Noesis 

Solutions 2019): 

 𝑅2 =
𝑆𝑆𝐸

𝑆𝑆𝑇𝑂𝑇
 

and 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛−𝑚
 .                                   (6) 

Further the mean deviation is calculated as 

Δ�̅�  =
∑ 𝑦𝑖−�̅�𝑖

𝑛
𝑖=1

𝑝
 .                                    (7) 

For a model validation, beside the training data, nine input parameter sets are defined as test data. 

Three parameter variations in the mass flow rate, the inlet temperature and the heat flux are 

evaluated. The meta model prediction is then again compared to the CFD results for this parameters. 

Here, the MSE and the temperature deviation are evaluated. 

 

 

4. Results and discussion 
 

In this section the results of the four most promising meta models are discussed. For the DOE a 
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CCF method was chosen and 87 design points are considered. Further, a LHC method with a total of 

300 experiments has been conducted, from which 252 points are considered. Both DOE methods are 

tested in combination with different meta modeling methods. 

The Table 3 shows the resulting mean square errors and degree of determination of the meta 

models evaluated with the training data set from a DOE sampling method. The best model quality 

with training data is achieved for the radial basis function (RBF) in combination with the face 

centered composite design (CCF). The Kriging method in combination with the CCF gives the least 

promising results. 

 

 
Table 3 Model accuracy for different DOE methods and meta models based on the training data 

 CCF RBF CCF Kriging LHC DNN LHC Kriging 

MSE 1.309e − 8 0.177 0.017 0.096 

R2 ≈ 1 0.909 ≈ 1 0.998 

 
Table 4 Model accuracy based on a test data set different from the training data defined through MSE and 

average temperature deviation between meta model and CFD simulation 

 CCF RBF CCF Kriging LHC DNN LHC Kriging 

MSE 0.82 0.83 12.18 2.53 

∆𝑇𝑚𝑒𝑎𝑛  [K] 0.44 ± 0.07 0.45 ± 0.08 2.64 ± 2.37 0.76 ± 1.52 

∆𝑇𝑚𝑎𝑥  [K] 3.54 3.54 11.05 15.38 

 

 

In Table 4 the meta models are evaluated for a parameter set different from the training data. 

MSE and temperature deviation between the CFD model and the meta model are displayed. Again 

the RBF and CCF combination gives the best results with an average temperature deviation of 

0.44 K. Further, the Kriging model with the CCF gives better results than the other two 

combinations, in contrast to Table 3. The DNN and Kriging with LHC show on average an acceptable 

model quality,  with 2.64 K and 0.76 K temperature deviation. However, the models fail to predict 

individual data points, with maximal deviations up to 11.05 K and 15.38 K. For the deep neural 

network it can be assumed that the good approximation of the training data and worse performance 

on the test data results from an over-fitting of the model. The DNN is set up with three hidden layer 

and a total of 1024 neurons, both parameters optimized by the software. A SNN in combination with 

the LHC show even lower model quality on average (∆𝑇𝑚𝑒𝑎𝑛= 4.41 K). An increase in the number 

of design points in the LHC sample to 412 does result in on average lower temperature deviation, but 

worsens significantly the temperature prediction for some input combinations. The optimal number 

of neurons and layers for the NN and the optimal training data set are to be evaluated in future 

investigations. So far the best results were obtained when the number of neurons was optimized 

through Optimus ®  by setting the accuracy-speed trade-off to accurate. Some tests were performed 

with a NN with less neurons and more layers, the models however showed a higher approximation 

error in the training as well as in the test data. 

RBF and Kriging are both constructed through the assumption of parameter correlations (Giunta 

and Watson 1998). Here, the temperatures and heat flux on neighbouring surface on the cooling plate 

are often similar and depending on each other. This can be one reason why the interpolating methods 

perform better than the NN on the cooling plate model. Further when comparing the number of 
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neurons in the NN (1024) to the number of weights 𝜆𝑖 in the radial basis function and number of 

parameters in the correlation matrix in the Kriging method, it can be assumed that the high number 

of neurons is related to the over-fitting of NN (Noesis Solution 2020). 

In general, the data generated from the CCF method gives a better model quality. One assumption 

is, that especially the maximal and minimal boundaries of the parameter space are important for the 

estimation of the temperatures on the cooling plate. With LHC random values are set for the inputs 

and thus, not all extrema of the design space are included in the training data and could result in the 

lower model quality. 

The evaluation of the DOE and the approximation models also showed that especially for lower 

mass flow rates the models are not able to approximate the temperatures correctly. Therefore, in the 

model generation and in the results above all data points with temperature above 333 K are 

excluded. This can be explained by set up of the CFD model, which has the cooling fluid as only 

heat sink. Hence, with very low mass flow rates and constant heat source the stationary solution of 

the simulation model results in very high temperatures. It could be noticed that temperatures are not 

physically reasonable below a mass flow rate ≈ 0.02 kg/s. Thus, the resulting approximation model 

is only valid for higher mass flow rates and the lower boundary needs to be adapted. 

To overcome this problem another approach is proposed for very lower mass flow rates as 

described in Fig. 4. Depending on the mass flow rate of the cooling fluid either the meta model as 

FMU is solved to calculate the cooling plate temperatures or a heat capacity model of the cooling 

plate and fluid is used. In the heat capacity model the following equation is solved: 

Δ𝑇 =  ∑�̇� ⋅  𝐴 ⋅
Δ𝑡

𝐶𝑝
                                         (8) 

 

 

 

Fig. 4 Decision tree for coupling the cooling plate with thermal model of the battery system based 

on a minimal mass flow rate µ 
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Where Cp is the total heat capacity of the cooling plate, A the total surface area, ∑ �̇� the sum of 

all heat fluxes and δT the resulting temperature change. The temperature change is then added to the 

mean cooling plate temperature that was calculated from the meta model or thermal capacity model 

in a previous step. The resulting temperature at the cooling plate (Tplate,i) is coupled in both cases 

with the battery system. 

 

 

5. Conclusions 
 

The main advantage of the proposed method is that the output from cooling plate model, mainly 

the boundary condition for the thermal model, can be reduced to few output values instead of a field 

value, resulting in an error of 0.23 K in the thermal model. The results show that it is possible to 

reconstruct the temperature behavior of the cooling plate through a data driven model with an 

accuacy of 0.44 K in the test data set. This is achieved by using a CCF design for the generation of 

the training data (88 experiments) and a RBF method as a meta modelling method. The Kriging 

method showed similarly good results (0.45 K) in combination with the CCF method. The neural 

network and Kriging model in combination with the LHC showed good results on the training data, 

but failed to predict the output parameters for the test data. The investigation also demonstrated that 

some approximation models are very sensitive to the training data and others are not. The results 

further showed that the meta model can only be used for higher mass flow rates above ≈ 0.02 kg/s. 

For lower mass flow rates a heat capacity model is proposed to approximate the temperature change 

due to a heat flux. 

 

 
6. Outlook 

 

The cooling plate model built in Optimus ®  can be exported as standalone FMU and then 

implemented into another simulation model, for example using Matlab and Simulink ® . The goal is 

to couple this model with thermal model of the battery system as described in Equation 5. The coupling 

with the thermal model still needs to be investigated. Also, adjustment in the training data set and 

simulation set up of the cooling plate model may be necessary. Especially the behavior at lower mass 

flow rates needs further evaluation. 

Finally, more validation and training are needed in order to understand the different behaviors of 

the meta models and further optimize their quality. 

The approach proposed in this paper can also be applied to other simulation models and physical 

problem, when inputs and output have a spatial dependency. The method is especially useful when 

only specific input-output correlations are of interest and the simulation model itself takes 

unacceptably long time to compute and contains much more information and data than necessary. 

The approximation model is able to predict linear as well non-linear correlation and is useful when 

the physical simulation model cannot be reduced. The models proposed in Hadzalic et al. (2020) or 

Moreno-Navarro et al. (2018) deal with structural deformations due to temperature or electric fields. 

Here, a data driven model approach could substitute the complex simulation model in order to 

compute for example the maximal displacement for different inputs. However, the effort for the 

development of such model needs to be compared to the reduction in the computational cost. 
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