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Abstract.  This paper investigates an alternative way to the Raleigh formula to catch con- tributions of damping 
effects. Nowadays, thanks to the power of new software and effi- cient computational methods, there exist possibility 
to implement new analysis of damping through multiscale approach. The corresponding homogenization of a 
representative elemen- tal volume of concrete is used to calculate the effective properties of the composite, since energy 
dissipation properties such as viscoelasticity are not taken into account. At the end of this work, these methodologies 
are incorporated into a column of a building subject to seismic action. More precisely, with concrete as a composite 
material (aggregate+cement), we can use homogenization methods to calculate its effective properties by using the 
classical approach of a representative elemental volume. This can help to take into account properties of energy 
dissipation, such as produced by viscoelasticity. Finally, for illustration, the pro- posed methodology is applied to 
structural analysis of a column under the most unfavorable conditions in a building subject to earthquake action. 
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1. Introduction 
 

In the dynamic analysis of structures, damping has a very important role as it is directly related 

to the dissipation of energy during an earthquake. At the present, it is difficult to quantify damping, 

as it is considered proportional to the mass and stiffness of the system (Rayleigh damping). Based 

on this hypothesis, simplified models have been formulated, employing a damping ratio associated 

with the type of material: 5% for concrete and 2% for steel. However, with the need to make more 

realistic assessments and predictions of structural response to earthquakes, it is necessary to 

reformulate the concept of damping depending on the mechanical properties of materials as well as 

different mechanisms of dam- age that can be activated. In the reformulation context, which will be 

presented damping, is a function of a nonlinear dissipative phenomenon. This work presents a multi-
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scale strat- egy computation that incorporates not only the visco-elastic effects in the overall concrete 

structural damping system under earthquake but also calculates the mechanical parameters (Young’s 

modulus) from the heterogeneity of the material. By considering that concrete is a non-homogeneous 

material, mainly composed of cement and fine and coarse aggregate. Bearing in mind that cement 

and fine aggregate have more viscous properties than coarse aggregate, at the mesoscale it is 

intended to apply different methods of homogenization to obtain the mechanical properties of a 

representative volume element (RVE) of concrete. The issue of homogenization result for elasticity 

modulus is the most classical; namely, the lower and upper bound of Reuss and Voigt can be 

averaged is order to provide the improved value of elasticity module. Similar path has to be followed 

for quantifying the contribution of viscosity to damping effects. Preliminary results show that the 

heterogeneity can induce significant changes in the mechanical parameters of the material, and 

therefore have an effect on the structural response of the system (e.g., Clough and Penzien 1995, 

Abbas et al. 2014). The strategy applied in this research was the following: first, an alternative 

methodology is proposed to obtain the damping matrix of a structure, in a similar way to the stiffness 

matrix of each element, applying multiscale methodology based on the heterogeneity of the material 

to obtain the mechanical parameters (modulus of elasticity and coefficient of viscosity). Then the 

adequate finite element mesh of a representative volume element (RVE) of concrete is established, 

taking into account that there are two different materials: cement and sand which form the RVE 

matrix, while the coarse aggregate is modeled as a single inclusion. In this model, the bounds of 

Reuss and Voigt, along with standard homogenization method are applied to obtain an average 

Young’s Modulus. Finally, an illustrative example of concrete frame structure under earthquake was 

presented, with modeling and design carried out in agreement with the standard engineering design 

code. Once the calculation was done a critical column was chosen. On the top of the column 

displacements that were caused by an earthquake were imposed. The column was modeling 

independently incorporating the viscoelastic effects in the material first with a rectangular finite 

element mesh and later with the RVE. Finally, the stress versus deformation curves were obtained 

from the two analyzes and presented. 

 

 
2. Preliminary remarks on current approach to dynamics 
 

2.1 Rayleigh formula 
 

The currently dominant approach in engineering practice when studying dynamic vibra- tion of 

engineering structures or systems relies upon well-known equations of motion (e.g., Clough and 

Penzien 1995, Ibrahimbegovic and Ademovic 2019). For forced vibrations of an undamped system, 

the equations of motion can be written in the form 

𝑀�̈� + 𝐶�̇� + 𝐾𝑢 = 𝑓(𝑡)                             (1) 

where M and K are structure mass and stiffness matrix respectively, F(t) is applied dynamic force 

(e.g., earthquake, wind, explosions, etc.) and u(t) is the corresponding dynamic response. The main 

advantage of such an approach is that it allows for very efficient computations by applying the 

classical mode superposition approach (e.g., Clough and Penzien 1995, Chopra 2014) where the 

equations of motion are uncoupled in terms of modal response (representing the motion of a complex 

structure in a particular mode of free vibrations) and solved easily, either analytically or numerically, 

(e.g., Ibrahimbegovic 2009). Each equation is solved independently. The critical damping value is 
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𝐶𝑐  =  2𝑚𝜔                                 (2) 

To evaluate the response, it is convenient to express the damping in terms of the damping ratio, 

which is given by 

ξ =  
c

𝐶𝑐
=  

𝑐

𝑚𝜔
                                 (3) 

In order to account for damped vibrations (which certainly corresponds to reality, since the 

vibrations eventually stop due to different energy dissipation mechanisms), one then uses the well-

known Rayleigh damping (e.g., Clough and Penzien 1995, Ibrahimbegovic and Ademovic 2019). 

The latter assumes that the damping phenomena are proportional to vibration velocities, with the 

coefficient of proportionality, so-called damping matrix C, that can be constructed as a linear 

combination of mass and stiffness matrix 

C =  M𝑎0 + K𝑎1                               (4) 

where two coefficients, or Rayleigh parameters α and β, are obtained from the chosen damping 

coefficient 𝜉 that characterize a typical attenuation of vibration amplitudes with typical choices of 

5 % for concrete and 2% for steel structures; see Ibrahimbegovic and Ademovic (2019) on how to 

simply obtain the Rayleigh parameters according to 

(
𝑎0

𝑎1
) =  

2ξ

𝜔𝑛+𝜔𝑚
(

𝜔𝑛𝜔𝑚

1
)                           (5) 

where 𝜔𝑛 is the chosen frequency that should be damped with precisely the chosen amount of 

damping. Given the two Rayleigh parameters, further improvement can be done by choosing two 

different frequencies 𝜔𝑛 and 𝜔𝑚 while making sure that the chosen damping coefficients would 

precisely apply to those two modes. However, one has to realize that all other frequencies would be 

damped in a way that is quite unrealistic, either somewhat less (inside the interval between chosen 

frequencies) or much more, see Fig. 1 for illustration (Ibrahimbegovic and Ademovic 2019). 

 

2.2 What we propose as a more material-scale-base damping model for dynamics 
capable of representing different phases of dynamic response 
 

In this paper, we seek to construct and develop a very new damping concept obtained from 

 

 

 

Fig. 1 Relationship between damping ratio and frequency for Rayleigh damping (Clough and Penzien 1995) 
 

265



 

 

 

 

 

 

Rosa Adela Mejia-Nava et al. 

 
 

(a) Three damping phases (b) Experimental result for cyclic behavior of concrete 

Fig. 1 Mesh grid of topographic model 

 
 
material scales, which can provide a much better correlation with the dynamics response of real-life 

structures, under complex loading such as earthquakes. More precisely, a very typical response to 

earthquake (see Fig. 2) passes through three different phases: i) small vibration amplitudes for mild 

earthquake, ii) strong shaking with large vibration amplitudes for the dominant phase of earthquake 

excitation, and iii) free vibrations of the damaged structure produced by an earthquake. 

At the same time to take into account the material homogenization it is necessary to in- corporate 

energy dissipation characteristics such as viscoelasticity, damage, plasticity, and others (see 

Ibrahimbegovic et al. 2014a, Lee et al. 1999). 

Hybrid-stress formulation gives us the possibility to compute the inverse of the stiffness matrix, 

where the effects of plasticity and damage mechanisms are uncoupledIbrahimbegovic, Mejia-Nava 

(2021). Hybrid-stress formulation is based upon the consistent variational formulation, which allows 

constructing independent discrete approximation for stresses and displacements. In this way, we can 

obtain the inverse of the stiffness matrix or elasto-visco- plastic-damage compliance. The advantage 

of the inverse of the stiffness matrix for plasticity and damage is that we can keep each energy-

dissipation mechanism uncoupled from each other, which allows to integrate them in the most 

efficient manner; see Ibrahimbegovic, Mejia-Nava (2021). 

 
2.3 Multiscale modeling 
 

Due to their macroscopic nature, current models have difficulties in correctly describing the 

physical mechanisms (mechanisms of fracture, damage, and transport) that take place on finer scales 

and that involve macroscopic observations (see Ibrahimbegovic and Papadrakakis 2010, Marenic et 

al. 2012, Markovic et al. 2005). Emphasizing that the objective is to study the phenomenon of 

damping in concrete, it is considered that it is possible to study it as a multiscale phenomenon. With 

this type of approach, the phenomenological models are replaced by refined models of inelastic 

behavior built on two scales: macroscale that repre- sents the homogenized behavior of the material 

for the computation of the response of the global structure, and the microscale that allows us to 

capture fine details of microstructure by multiple heterogeneous phases of the materials (see Fig. 

3). The advantage of this type of approach is that it offers a more realistic interpretation of the 

mechanisms of inelastic behavior (see Rukavina et al. 2019, Rukavina et al. 2019). From this 

perspective, multi-scale strategies seek to establish a (numerical) link between the initial constituent  
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Fig. 3 Macro-scale and micro-scale model 

 

 

 
(a) Maxwell Model (b) Kelvin-Voigt model 

Fig. 4 Mechanical representation of viscous and elastic behavior 

 

 

properties and the resulting mechanical properties on a macro scale. A bridge of this type would 

require, on the one hand, a very precise and exact description of the microstructure of the material 

exhibiting various phases and, on the other hand, the ability to use such a description in ad-hoc 

numerical methods such as, for example, a finite element model (see Benkemoun et al. 2012). The 

way which should be followed for the modeling of a strutural system inspired by multi-scale 

strategies consists of: first, obtain the elastic behavior with the micro-scale modeling where the 

homogenized modulus of elasticity and the viscous behavior can be obtained separately, obtain the 

viscosity constant, and finally couple this with the global structure on the macro-scale that represents 

the homogenized behavior of the material. 

 
2.4 Linear viscoelastic behavior 

 

The viscoelastic behavior of materials lies somewhere between the viscosity for Newton’s fluids 

and Hooke’s elastic solids. The first are generally fluids in which the resistance to shear stress tends 

to zero or is zero. Therefore when applying a load, its deformations become unlimited, and once it 

is removed, it does not show recovery from its deformation. The latter are those, when applying the 

load there are limited deformations, and when removing the load the solid returns to its original 

state. Ideally, a material with viscoelastic behavior recovers all of the deformations that it acquires 

after the application of a load (see Ibrahimbegovic 2009). The best-known mechanical 

representations of viscoelastic behavior are Kelvin’s scheme and Maxwell’s scheme as follow. 
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The following shows the formulation used in the finite element program (FEAP) for a 

viscoelastic material. The stresses and strains for a linear viscoelastic material can be expressed as 

follows 

σ =  s + mP                                   (6) 

ϵ =  e +
1

3
mθ                                  (7) 

where σ are the Cauchy stresses, s is the deviating stress, P is the principal stress ϵ is the deformation, 

℮ it is the deviatoric strain, and θ is the corresponding volume change. Linear viscoelastic behavior 

is represented in a differential equation or integral form of the equation. In the differential equation 

of the constitutive model, the behavior can be characterized as 

P(s) = 2GQ(e)                                 (8) 

where P and Q are differential operators expressed as 

P = p𝑚
𝜗𝑚

𝜗𝑡𝑚 + p𝑚−1
𝜗𝑚−1

𝜗𝑡𝑚−1 + ⋯ + p0                          (9) 

Q = q𝑚
𝜗𝑚

𝜗𝑡𝑚 + q𝑚−1
𝜗𝑚−1

𝜗𝑡𝑚−1 + ⋯ + q0                        (10) 

G =
𝐸

2(1−𝑣)
                                   (11) 

G is identical to the elastic shear modulus, the operator s can be written as 

s = 2G(𝜇0e + ∑ 𝜇𝑖𝑞𝑖𝑁
𝑖=1 )                             (12) 

This form of representation is equivalent to a generalized Maxwell model (a set of Maxwell’s 

models in parallel). The set of first-order differential equations can be integrated for specific 

deformations e. The integral for each term is given by the homogeneous differential equation 

𝑞𝑖(t) = ∫ 𝑒
−

𝑡−𝜏

𝜆𝑖  �̇�(𝜏)𝑑𝜏 
𝑡

−∝
                             (13) 

The relaxation modulus function is defined in terms of an idealized experiment in which at time 

zero (t=o), a specimen is subject to a strain constant 𝑒0, and the stress response is recorded, s(t). In 

this way, a unique relationship is obtained that is independent of the magnitude of the applied stress. 

This relationship can be written as 

𝑠(t) = ∫ G(𝑡 − 𝜏)�̇�(𝜏)𝑑𝜏 
𝑡

−∝
                            (14) 

It can be seen that the above formula is a generalization of Maxwell’s model. In fact, the form of 

the integral equation can be defined as a generalization of the Maxwell model, assuming the 

relaxation of the shear modulus in the form of the Prony series (see Taylor 2008) 

𝐺(t) = G (𝜇0 + ∑ 𝜇𝑖𝑒
−𝑡

𝜆𝑖𝑁
𝑖=1 )                           (15) 

Where 

𝜇0 + ∑ 𝜇𝑖
𝑁
𝑖=1 = 1                                (16) 

With this form, the integral equation is identical to the model of the differential equation for the 

generalized Maxwell model. 

268



 

 

 

 

 

 

Viscoelastic behavior of concrete structures subject to earthquake 

2.5 Homogenization theory 
 

At the micro-scale level, it is important to take into account aspects such as the heterogeneity of 

the material at the microstructural scale. In the case of concrete, it is a mixture of cement, gravel, 

sand, and water, which goes through a process of setting and hardening; the aggregates represent 

between 60% to 70% of the total volume of concrete, these aggregates have different properties, 

therefore, the contribution to the dissipation of the forces to which it is subjected is different for each 

type of material. With the homogenization method, we can obtain a representative value, consistent 

with the properties of the materials. The modelling of the inelastic behaviour of heterogeneous 

materials is strongly related to the scale of observation. From a macro-scale point of view, the usual 

engineering approach considers most of these materials as homogeneous (see Benkemoun et al. 

2012). In the classic problem of homogenization, where the macro and micro scales do not 

necessarily have permanent communication, we can carry out a separate analysis, and establish the 

properties averaged on the micro-scale. The micro-scale analysis is done by studying the so-called 

Representative Elemental Volume (RVE) in order to identify the best adequate phenomenological 

model of constitutive behavior capable of representing all the pertinent details of the inelastic 

behaviour of a given material (see Ibrahimbegovic 2009). In the case of elastic homogenization with 

an inclusion, two theories can be combined: the Reuss homogenization used to obtain a minimum 

modulus of elasticity as follows 

𝐸𝑚𝑖𝑛 =
δ𝑀

2

2𝑤
                                  (17) 

Where 

δ𝑀 =
1

𝑉
 ∑ A𝑖

𝑒𝑙δ𝑖
𝑚𝑒𝑖

𝑖=1                              (18) 

Similarly, the Voigt homogenization (see Eq. (17)) used to obtain a maximum modulus of 

elasticity 

𝐸𝑚𝑖𝑛 =
2𝑤

ε𝑀
2                                  (19) 

Where 

ε𝑀 =
1

𝑉
 ∑ A𝑖

𝑒𝑙ε𝑖
𝑚𝑒𝑖

𝑖=1                             (20) 

With both, we can find an average modulus of elasticity, increase the growing volume 

percentages of Emax and Emin until reaching the same value. This value is substituted into the 

constitutive Kelvin equation for viscoelastic behavior. According to the variation of the total energy 

of the potential, we have that the double of this energy is equal to the sum of the efforts by the 

deformations by the area between the total volume as follow 

2𝑤 =
1

𝑉
 ∑ (δ11

𝑚 ε11
𝑚 + δ22

𝑚 ε22
𝑚 + δ33

𝑚 ε33
𝑚 + δ12

𝑚 ε12
𝑚 )𝜃𝑖

𝑖=1 𝐴𝑒𝑙                (21) 

 
 
3. Numerical examples 

 
3.1 Homogenization 
 
In order to illustrate how to apply the homogenization theory, we conducted an example for a  
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(a) RVE Reuss (b) RVE Voigt 

Fig. 5 Meshes of a representative elemental volume 
 

 

Fig. 6 Mesh with multiple RVEs, with homogeneous distribution 

 

 

concrete building. The first step to analyze an RVE is to find the appropriate mesh to represent the 

material, which in this case is concrete, consisting of cement and aggregate as two different 

materials. The size of the RVE depends on the homogenized equivalent properties, the minimum 

aggregate size being 4.75 mm and the maximum being 90 mm. In this case, the aggregate size was 

taken as 50 mm, leading to the matrix of size 150 mm×150 mm. The chosen mesh is represented in 

Fig. 5 where the domain is made up of two materials having a different modulus of elasticity, 

distributed as shown in Fig. 5: material 1 represents cement, with the modulus of elasticity E1=10 

GPa, and material 2 represents the coarse aggregate with modulus elasticity E2=70 GPa. 

In order to obtain a correct modulus of elasticity of the material, it is necessary to elaborate a set 

of regions made up of a certain number of RVE meshes, increasing the number of RVE in both 

directions vertically (N) and horizontally (M) as follows. 

Finite Element Analysis Program (FEAP) was used to obtained the results for Reuss and Voigt 

models (see Fig. 7) using one Representative Elemental Volume. The following results were 

obtained. 
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(a) Emin=12.5618 (b) Emax=12.8091 

Fig. 7 Results with FEAP 
 
Table 1 Homogenization results 

Model M N Emin (GPa) Emax (GPa) Difference 

1 1 1 12.5618 12.8091 0.2473 

2 2 1 12.6116 12.8227 0.2111 

3 10 5 12.6702 12.8358 0.1656 

4 20 10 12.6767 12.8364 0.1597 

5 30 15 12.6790 12.8367 0.1577 

6 40 20 12.6800 12.8366 0.1566 

7 50 25 12.6806 12.8366 0.1560 

8 60 30 12.6810 12.8366 0.1556 

9 70 35 12.6813 12.8366 0.1553 

10 80 40 12.6815 12.8366 0.1551 

11 90 45 12.6817 12.8366 0.1549 

12 100 50 12.6818 12.8366 0.1548 

13 110 55 12.6819 12.8366 0.1547 

 

 

Thirteen models were tested. The dimensions in M and N (see Fig. 6) are shown in Table 2.1 as 

well as the values obtained for the maximum and minimum modulus of elasticity, and the difference 

between them is shown in the last column. 

In Fig. 6 we can see how Emax stabilizes at a value of 12.8. The initial difference of Emax with 

respect to Emin is 24%. The value that is changing is Emin and it is approaching the already stabilized 

value of 12.8. It has a variation with respect to the values of a single RVE, as the starting difference 

was 15%. 

 

3.2 Practical applications 
 
To evaluate the proposed strategy, in the first stage a building was designed (see Figs. 9 and 10), 

and then the structure was exposed to an earthquake. It is a concrete frame structure with secondary  
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Fig. 8 Homogenization results difference between Emax and Emin 

 

  
(a) First level (b) Second level 

Fig. 9 Geometry in the construction plant 
 

 

Fig. 10 Structure elevation 

 

 

beams located in an unfavorable direction. The buildings consist of 3 floors, the first with a height 

of 4 m and the other two of 3.5 m. The construction concept pertains to column supported slabs, 

that are weakened by the holes at the second and third story levels. Concrete quality of f’c=350 

kg/cm2 was used for each frame components (longitudinal girders, transverse girders, secondary 

girders and square columns) and for the slab f’c=250 kg/cm2, while for the reinforcing steel of the  
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Fig. 11 Critical column superior displacements 

 

  
(a) Mesh column RVE (b) Rectangular mesh column 

Fig. 12 Geometry in the construction plant 
 

 

entire structure grade f’c=4200 kg/c m2 was applied. 

Once the results were obtained and analyzed the most critical column was chosen. In Fig. 11 the 

displacements in time of the most unfavorable column are shown. The maximum displacement of 

1.95504 cm is reached at 12.8 seconds, and in the case of the minimum or negative displacement, 

the displacement is -2.44647 cm which was reached at 12.5 seconds. 

For the structural analysis performed subsequently, we chose the column having the most 

unfavorable conditions with respect to the given loading and structural elements. In this case, it was 

column 5C (see Fig. 9). First, homogenization analysis was performed by taking into account 

different characteristics of the material. Based on this choice, we make two different analyses: i) 

first with viscoelastic material, by studying the parameters that can affect the behavior of the 

column; the finite element used was a quadrilateral element with four nodes (QUAD4) and four 

Gaussian points (see Fig. 12(b)); ii) second with a mesh for RVE which is analyzed by the  
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Fig. 13 Time deformation curve increasing relaxation time 

 

 

Fig. 14 Stress time curve increasing relaxation time 

 
 

Homogenization Method (see Fig. 12(a)); in this case, we used viscoelastic material for cement and 

elastic material for aggregate, with the same finite element used as in the first analysis. Finally, a 

comparison of the behavior of the two previous analyzes is presented. In all the models, the boundary 

conditions of the column were: constrained at the level of lower nodes and with imposed 

displacements caused by the earthquake at the level of upper region. 

 
3.2.1 Analysis of viscoelastic parameters with rectangular mesh 
In this analysis we used viscoelastic material, intending to study the viscosity parameters that can 

affect the behavior of the column. The mesh is presented in Fig. 12(b). First, the value µ1=0.7 of the 

Prony series was kept constant, and the time relaxation parameter was changing between the values 

of .1, 1, and 10 as follows. 

Fig. 15 shows the effects of varying the relaxation parameter over time of the material. It can be 

seen that by reducing this value, the hysteresis loops of the model increase their width and thus the 

energy dissipation. 

Below is a variation of the relaxation time parameter for viscoelastic material in the range of .1 

to 1 with increments of .2 where there is an considerable dissipation. 
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Fig. 15 Stress-strain curve increasing relaxation time 

 

 

Fig. 16 Stress-time curve variation of relaxation time in the range of .1 to 1 

 

 

Fig. 17 Strain-time curve variation of relaxation time in the range of .1 to 1 

 

 

3.2.2 Mesh with RVE 
The analysis of the mesh with viscoelastic material of the most unfavorable column 5c (see Fig. 

9) is presented in the flowing paragraphs. The mesh is with RVE (see Fig. 12(a)) and sizes vary in 

the following proportions NxM (see Fig. 6) 5×10, 10×20, 10×50 and 15×50. In Fig. 21 we can see  
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Fig. 18 Stress-strain curve variation of relaxation time in the range of .1 to 1 

 

 

Fig. 19 Stress time curve 

 

 

Fig. 20 Time strain curve 

 

 

that from the 10×50 mesh the stresses and strains are practically the same. 

 
3.2.3 Comparison of the two types of mesh 
A comparison of the results obtained for column 5C is presented. On one side the column with a 
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Fig. 21 Stress strain curve 

 

 

Fig. 22 Time force curve 

 

 

Fig. 23 Time displacement curve 

 

 

10×50 mesh with rectangular elements having viscoelastic properties, and on the other side with a 

mesh based on the RVE elaborated in chapter 2. In this case, the mesh has elastic properties in the 

part that corresponds to the coarse aggregate and viscous properties for cement and sand. In Fig. 24  
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Fig. 24 Force displacement curve 

 

 

we can see how the column meshed with the RVE presents broader hysteretic cycles than the one 

created with a single material. 

 

 

4. Conclusions 
 

In this paper, we have applied homogenization methods by using the classical representative 

volume element approach in order to study viscoelastic behavior of concrete. This strategy belongs 

intrinsically to multiscale approach with scale separation. Regarding the choice of the most 

appropriate multiscale strategy, it can be concluded that concrete materials can be studied at the 

mesoscale (with visible separation between aggregate and cement) in order to determine their 

behavior at the macro-scale. 

The homogenization procedure can be successfully used in order to facilitate the determination 

of the structure response and give better results for homogenized structure properties. Both macro-

scale and micro-scale models can successfully be analyzed by using the finite element method, 

where data transfer is possible between scales in order to provide an efficient algorithm similar to 

those used for parallel computations. 

Regarding homogenization strategies, we can conclude that the main advantage of using 

homogenized materials pertains to ability to account more precisely for the material characteristics 

of each phase (aggregate versus cement). It is thus much easier providing the corresponding mixture 

properties that are representative of the structure heterogeneity (which cannot be included for 

homogeneous material) by using the correct percentage for each material phase to provide the 

characteristics of the homogenized material. 

We showed that quite reliable values of representative properties could be obtained through such 

homogenization, both for elastic and for viscous response, in order to characterize the heterogeneous 

materials with the homogenization theory through an RVE on the micro-scale, and successfully 

incorporate into the macro-scale. The resulting damping coefficient values are closer to reality when 

they are estimated with multiscale methods. 

Regarding the viscoelastic analysis, we can conclude the following: the viscoelastic behavior 

depends on the relaxation time of the material, which directly affects the amount of dissipated 

energy. In this work, the relaxation time from which the material presents its greatest contribution 

to the energy dissipation was detected, along with the corresponding maximum value that can be 

determined iteratively. 
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