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Abstract.  The present research deals with the investigation of the effect of hall current in an orthotropic magneto-
thermoelastic medium with two temperature in the context of multi-phase-lag heat transfer due to thermomechanical 
sources. The bounding surface is subjected to linearly distributed and concentrated loads(mechanical and thermal 
source).Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement 
components, stress components and conductive temperature are derived in transformed domain and further in physical 
domain with the help of numerical inversion techniques. The effect of rotation and hall parameter has shown with the 
help of graphs. 
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1. Introduction 
 

During the past few years a lot of attention has been given to the generalized theories of 

thermoelasticity, which admits finite speed of propagation of heat signals rather than the old 

thermoelasticity theories based on the classical Fourier law. These theories of generalized 

thermoelasticity are more realistic and appropriate than the conventional old theories. A material 

body deforms due to the action of external forces acting on it or due to exchange of heat with the 

surroundings. Temperature change results in thermal effects on materials like thermal stress, strain 

and deformation. When an external load is applied to a material body the mechanical waves are 

produced through thermal expansion. The interaction between the external applied magnetic field 

and the thermoelastic deformations give rise to the coupled field of magneto-thermoelasticity. The 

effect of magnetic field on elastic media under thermal loadings attracted several researchers due to 

its various applications like in electrical power engineering, in nuclear devices, optics, plasma 

physics, propagation of different types of waves under the influence of magnetic field, in study about 

the earth’s rotation, moon and other planets where magnetic field experiences. The study of 

interaction between mechanical and thermal fields is one of the most extensive and productive area 

of continuum dynamics. The present model is helpful for finding the type of interaction between 

mechanical and thermal forces, as most of the structural elements of heavy industries are frequently 
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related to mechanical and thermal stresses at a higher temperature. Chen and Gurtin (1968), Chen et 

al. (1968) and Chen et al. (1969) formulated a theory of two temperature thermoelasticity for 

deformable bodies which shows that heat conduction equation depends upon two different 

temperatures the conductive temperature  (𝜙)  and the thermodynamical temperature (T). The 

difference between these two temperatures is proportional to the heat supply. For time independent 

problems the two temperatures are same in the absence of heat supply. For time dependent problems, 

the two temperatures are different regardless of the presence of heat supply. Marin (1994) developed 

Lagrange’s identity method in microstructural thermoelastic bodies. Marin (1995) proved existence 

and uniqueness theorem in thermoelasticity for micropolar bodies. Marin (1997) proved uniqueness 

of solutions of initial-boundary value problem in thermoelasticity for bodies with voids. Youssef 

(2006) formulated a new theory of generalized thermoelasticity by taking into account two-

temperature generalized thermoelasticity theory for a homogeneous isotropic body without energy 

dissipation. Abbas and Youssef (2009) studied the problem of finite element analysis of two-

temperature generalized magneto-thermoelasticity. Marin (2010) examined the vibrations in dipolar 

thermoelastic bodies. Othman et al. (2011) studied the effect of rotation on propagation of plane 

waves in fiber-reinforced thermoelastic half space using finite element method. Abbas et al. (2011) 

studied the propagation of plane waves in a fiber-reinforced anisotropic thermoelastic half space 

under the effect of magnetic field. Abd-alla and Abbas (2011) solved a two dimensional problem of 

an elastic cylinder of infinite length in the presence of constant magnetic field. Zakaria (2012) 

studied the effect of hall current and rotation on magneto- micropolar generalized thermoelasticity 

due to ramp-type heating. Kumar and Abbas (2013) studied a two dimensional problem of 

micropolar thermoelastic material with two temperature in the context of Lord- Shulman theory. 

Sharma and Marin (2014) studied the reflection and transmission of waves from imperfect boundary 

between two heat conducting micropolar thermoelastic solids. Abbas (2014) analyzed nonlinear 

transient thermal stress in a thick walled FGM cylinder. Ezzat et al. (2014) constructed the two 

temperature magneto-thermoelastic theory by using fractional order heat conduction equation. 

Sharma et al. (2015) studied the effect of inclined load in transversely isotropic thermoelastic 

medium with two-temperature and without energy dissipation.  Das and Lahiri (2015) presented 

the theory of generalized magneto-thermo-elasticity to a 2D problem of a conducting thick plate 

under the heat source and magnetic and electric intensities. Marin et al. (2016) studied the mixed 

initial-boundary value problems for micropolar porous bodies. Kumar et al. (2016) studied effect of 

rotation in transversely isotropic magneto-thermoelastic medium with two- temperature, vacuum 

and with and without energy dissipation. Biswas et al. (2017a) studied the effect of thermal shock 

in magneto-thermoelastic orthotropic medium with the help of three phase lags theory. Kumar et al. 

(2017a) studied the effect of hall current and two temperatures in a transversely isotropic magneto-

thermoelastic with and without energy dissipation due to ramp type heat. Biswas et al. (2017b) 

studied the propagation of Rayleigh waves in a homogeneous orthotropic thermoelastic half-space 

in the context of three-phase-lag model of thermoelasticity. Kumar et al. (2017b) investigated the 

Rayleigh waves in a homogeneous transversely isotropic magneto-thermoelastic in the presence of 

two temperature, hall current and rotation. Abbas (2018a, 2018b) studied the fractional order theory 

in thermoelastic half-space under thermal loading and free vibrations of nano-scale beam under two-

temperature Green-Naghdi model. Lata and Kaur (2018) studied the effect of hall current in 

transversely isotropic magneto thermoelastic rotating medium with fractional order heat transfer due 

to normal force. Biswas and Abo-Dahab (2018) studied the effect of phase lags on Rayleigh wave 

propagation in initially stressed magneto- thermoelastic orthotropic medium. Lata (2018) studied 

the effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium of 
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uniform thickness, with combined effects of two temperature, rotation and Hall current in the context 

of GN Type-II and Type-III theory of thermoelasticity. Lata and Kaur (2019a, 2019b, 2019c) studied 

various thermoelastic problems in transversely isotropic thermoelastic medium. Lata and Zakhmi 

(2019) studied the effect of fractional order in homogeneous orthotropic thermoelastic medium due 

to thermomechanical sources. Riaz et. al. (2019) studied the effect of heat and mass transfer in the 

eyring power model of fluid which is propagating through a rectangular compliant channel. Bhatti 

et al. (2019) studied the effect of hall current and heat on the sinusoidal motion of solid particles. 

Abualnour et al. (2019) studied the thermomechanical analysis of antisymmetric laminated 

reinforced composite plates using a new four variable trigonometric refined plate theory. Belbachir 

et al. (2019) studied the bending analysis of anti-symmetric cross-ply laminated plates under 

nonlinear thermal and mechanical loadings. Draiche et al. (2019) predicted the Static analysis of 

laminated reinforced composite plates using a simple first-order shear deformation theory. Matouk 

et al. (2020) investigated the free vibrational behavior of the FG nano-beams integrated in the hygro-

thermal environment and reposed on the elastic foundation by using a novel integral Timoshenko 

beam theory (ITBT). Chikr et al. (2020) studied a novel four- unknown integral model for buckling 

response of FG sandwich plates resting on elastic foundations under various boundary conditions 

using Galerkin’s approach. Refrafi et al. (2020) analyzed the effects of hygro-thermo-mechanical 

conditions on the buckling of FG sandwich plates resting on elastic foundations. Rahmani et al. 

(2020) studied the effect of boundary conditions on the bending and free vibration behavior of FGM 

sandwich plates using a four-unknown refined integral plate theory.    

Zenkour (2020) studied Magneto-thermal shock problem of a fiber-reinforced anisotropic half-

space by using refined multi-dual-phase-lag model. Bousahla et al. (2020) investigated buckling and 

dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation 

theory. Kaddari et al. (2020) studied the structural behaviour of functionally graded porous plates 

on elastic foundation using a new quasi-3D model. Tounsi et al. (2020) studied the static behavior 

of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic 

foundation and subjected to a nonlinear hygro-thermo-mechanical load. Alzahrani and Abbas (2020) 

studied the photo-thermal interactions in a semiconducting medium with spherical cavity and two-

temperature. Lata and Zakhmi (2020) studied the orthotropic thermoelastic problem of generalized 

thermoelasticity with fractional order heat transfer due to time harmonic sources. 

Inspite of this a lot of research has been done in the area of thermoelasticity, but not much work 

has been done in an orthotropic magneto-thermoelastic medium with combined effects of rotation, 

hall current and two temperatures. Most of the large and solid bodies like earth and moon have a 

property of rotation with some angular velocity, so in this attempt we study the effect of rotation and 

hall current in two dimensional homogeneous magneto-thermoelastic orthotropic medium with two 

temperature in the context of multi-dual-phase-lag of generalized thermoelasticity. The effect of hall 

current and rotation has been examined on displacement components, stress components and 

conductive temperature with the help of graphs. 

 

 
2. Basic equations 
 

Following Chawla and Kumar (2014) the constitutive relations and basic governing equations 

for anisotropic thermoelastic model in the absence of body forces and heat sources are the following 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑚𝑒𝑘𝑚 − 𝛽𝑖𝑗 T,                           (1) 
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Equation of motion as described by Schoenberg and Censor (1973) for a thermoelastic medium 

rotating uniformly with an angular velocity 𝛀  = Ωn , where n is a unit vector representing the 

direction of axis of rotation and taking into account Lorentz force is given as 

                     𝜎𝑖𝑗,𝑗 + 𝐹𝑖  = 𝜌 [ �̈�𝑖  + (𝛀 × (𝛀 × �⃗� ))𝑖 + ( 2 𝛀 × �⃗� ̇)𝑖]              (2)  

Here 𝐹𝑖 = 𝜇0    ( 𝐽 ×  �⃗⃗� 0 )𝑖   are the components of Lorentz force           (3) 

The above equations are supplemented by generalized Ohm’s law for media with finite 

conductivity and including the Hall current effect 

J = 
𝜎0

1+𝑚2  [ E + 𝜇0   ( �̇�   × 𝑯 − 
1

𝑒𝑛𝑒
  𝑱 ×  𝑯𝟎 ) ] ,               (4) 

Following Zenkour (2020) and Youssef (2006), the heat conduction equation with two 

temperature and multi-dual-phase lag is given by 

𝐾𝑖𝑗  ℒ𝜃  ∇
2𝜙𝑖𝑗 = ℒ𝑞  

𝜕

𝜕𝑡
 [ ρ 𝐶𝐸  𝑇 + 𝛽𝑖𝑗𝑇0𝑢𝑖,𝑗 ],                    (5) 

Where  𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛼𝑖𝑗,  𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗, 𝐾𝑖𝑗 = 𝐾𝑖 𝛿𝑖𝑗 ,  (𝑖 , 𝑗  =1, 2, 3); 𝑖   is not summed and 𝛿𝑖𝑗  is 

Kronecker delta. 

ℒ𝜃  = 1 + ∑
𝜏𝜃
𝑟

𝑟!

𝑅1
𝑟=1

𝜕𝑟

𝜕𝑡𝑟  ,  ℒ𝑞  = 𝜚 + 𝜏0
𝜕

𝜕𝑡
+ ∑

 𝜏𝑞
𝑟

𝑟!

𝑅2
𝑟=2

𝜕𝑟

𝜕𝑡𝑟,               (6) 

Generally, the value of 𝑅1 = 𝑅2 = 𝑅 may be reach 5 or more according to refined multi-dual-

phase-lag (RPL) theory required while ϱ is a non-dimension parameter (= 0 or 1 according to the 

thermoelasticity theory). ℒ𝜃  and ℒ𝑞  are the two-time differential parameters in which 𝜏𝑞  and  𝜏𝑡 

are the phase lag of the heat flux and phase lag of the temperature gradient respectively. 

The strain displacement relations are 

 𝑒𝑖𝑗= 
1

2
 (𝑢𝑖,𝑗 +𝑢𝑗,𝑖), 𝑖, 𝑗 = 1,2,3.                         (7) 

Following Youssef (2006) the two temperature relation is taken as 

𝑇 = 𝜙 − 𝑎𝑖𝑗𝜙,𝑖𝑗,                              (8) 

Here, in all the above equations dot (.) represents the partial derivative w.r.t time and (,) denote 

the partial derivative w.r.t spatial coordinate, 𝑐𝑖𝑗𝑘𝑚 (=𝑐𝑘𝑚𝑖𝑗 =𝑐𝑗𝑖𝑘𝑚 =𝑐𝑖𝑗𝑚𝑘 ) is the tensor of elastic 

constant, ρ is the density, 𝑇0   is the reference temperature such that  |
𝑇

𝑇0
  ≪ 1 ,  𝑢𝑖  are the 

components of displacement vector  𝒖 , 𝐶𝐸   is the specific heat at constant strain, 𝐹𝑖  are the 

components of Lorentz force, 𝜎𝑖𝑗= (𝜎𝑗𝑖) and are the components of stress tensor. T is the absolute 

temperature, 𝜙  is the conductive temperature, 𝛽𝑖𝑗  are tensor of thermal moduli, 𝐾𝑖𝑗   are the 

components of thermal conductivity. H is the magnetic strength, J is the current density vector, E is 

the intensity vector of electric field, m is the hall parameter given by   𝑚 =  𝜔𝑒 𝑡𝑒   = 
𝜎0𝜇0𝐻0

𝑒𝑛𝑒
  

where 𝑡𝑒   is the electron collision time where 𝜔𝑒  =  
𝑒𝜇0𝐻0

𝑚𝑒
   is the electron frequency, 𝜎0 =

 
𝑒2𝑡𝑒𝑛𝑒

𝑚𝑒
  is the electrical conductivity, e is the charge on electron, 𝑚𝑒 is the mass of electron and 

𝑛𝑒 is the no of density of electrons. 

Following Chawla and Kumar (2014) the stress strain relations for an orthotropic medium are 
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given by 

 𝜎11=  𝐶11 𝑒11 + 𝐶13 𝑒33 − 𝛽1T,                          (9)  

𝜎33 =  𝐶13 𝑒11 +  𝐶33 𝑒33 − 𝛽3T,                        (10)  

𝜎13 = 2 𝐶55 𝑒13,                              (11)  

Where 𝑒11 =  
𝜕𝑢

𝜕𝑥
 , 𝑒33 = 

𝜕𝑤

𝜕𝑧
, 𝑒13 = 

1

2 
(
𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑥
), 

and 

 𝑇 =  𝜙 − (𝑎1
𝜕2𝜙

𝜕𝑥2 + 𝑎3
𝜕2𝜙

𝜕𝑧2).                          (12) 

 
 

3. Formulation of the problem 
 

We consider a two dimensional perfectly conducting homogeneous orthotropic-magneto-

thermoelastic medium which is rotating with an angular velocity 𝛀= Ωn  initially at uniform 

temperature 𝑇0 with two temperature in the context of refined multi-dual-phase-lag-model with an 

initial magnetic field �⃗⃗� = ( 0, 𝐻0 ,0) acting in the y-axis direction. The rectangular coordinate axis 

(𝑥, 𝑦, 𝑧) with z-axis pointing vertically downwards into the medium is introduced. The surface of 

the half-space is subjected to thermomechanical sources. For two dimensional problem in xz-plane, 

the components of displacement vector u, v and w and the conductive temperature 𝜙 have the form 

𝑢 = 𝑢 (𝑥, 𝑧, 𝑡), 𝑣 = 0, 𝑤 = 𝑤(𝑥, 𝑧, 𝑡), and  𝜙 = 𝜙( 𝑥, 𝑧, 𝑡),           (13) 

Let us assume that 

𝑬 = 0, 𝛀 = ( 0, Ω, 0),                          (14) 

The generalized ohm’s law 

𝐽2 = 0,                                 (15) 

And the current density components by using eq (4) is given by 

𝐽1  = 
𝜎0𝜇0𝐻0

1+𝑚2
(𝑚

𝜕𝑢

𝜕𝑡
− 

𝜕𝑤

𝜕𝑡
) ,                             (16) 

                 𝐽3  = 
 𝜎0𝜇0𝐻0

1+𝑚2 ( 
𝜕𝑢

𝜕𝑡
+ 𝑚 

𝜕𝑤

𝜕𝑡
),                             (17) 

Eqs. (2) and (5) with the aid of (1), (4), (9)-(12) and (13)-(17) reduce to the form 

𝐶11
𝜕2𝑢

𝜕𝑥2+ 𝐶55
𝜕2𝑢

𝜕𝑧2 + (𝐶13 +𝐶55) 
𝜕2𝑤

𝜕𝑥𝜕𝑧
− 𝛽1

𝜕

𝜕𝑥
{𝜙 − ( 𝑎1

𝜕2𝜙

𝜕𝑥2 + 𝑎3
𝜕2𝜙

𝜕𝑧2  )} −  𝜇0 𝑗3𝐻0 

= ρ (
𝜕2𝑢

𝜕𝑡2 − Ω2 𝑢 + 2Ω
𝜕𝑤

𝜕𝑡
),                         (18) 

(𝐶13 +𝐶55)
𝜕2𝑢

𝜕𝑥𝜕𝑧
 +𝐶55

𝜕2𝑤

𝜕𝑥2 + 𝐶33
𝜕2𝑤

𝜕𝑧2 − 𝛽3
𝜕

𝜕𝑧
 {𝜙 − ( 𝑎1

𝜕2𝜙

𝜕𝑥2 + 𝑎3
𝜕2𝜙

𝜕𝑧2  )} + 𝜇0 𝑗1𝐻0 

= ρ (
𝜕2𝑤

𝜕𝑡2 − Ω2 𝑤 − 2Ω
𝜕𝑢

𝜕𝑡
 ),                        (19) 

ℒ𝜃  (𝐾1 
𝜕2𝜙

𝜕𝑥2  + 𝐾3  
𝜕2𝜙

𝜕𝑧2  ) = ℒ𝑞  
𝜕

𝜕𝑡
 [𝑇0 ( 𝛽1  

𝜕𝑢

𝜕𝑥
+ 𝛽3

𝜕𝑤

𝜕𝑧
 ) + ρ 𝐶𝐸𝑇],         (20) 

To facilitate the solution the following dimensionless quantities are used:- 
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𝑥 ,= 
𝑥

𝐿 
  , 𝑧 , =  

𝑧

𝐿 
  , 𝑢,= 

𝜌𝑐1
2

 𝐿𝑇0𝛽1
𝑢 , 𝑤 , =

𝜌𝑐1
2

 𝐿𝑇0𝛽1
w, 𝑡 , = 

𝐶1

𝐿 
 t, 𝜎33 

,
=

𝜎33

𝑇0𝛽1
 , 

 𝜎31
,

=
𝜎31

𝑇0𝛽1
,𝑇 , =

𝑇

𝑇0
 ,  𝑎1

,= 
𝑎1

𝐿 
 ,  𝑎3

,= 
𝑎3

𝐿 
 , Ω, = 

𝐿

𝐶1
Ω , 𝜙 , = 

𝜙

𝑇0
 .          (21) 

Where 𝑐1
2 = 

𝑐11

𝜌
 and L is a constant of dimension of length. 

Using dimensionless quantities given by (21) in Eqs. (18)-(20) and suppressing the primes for 

convenience yield 

( 
  𝜕2𝑢

𝜕𝑥2  + 𝛿1
𝜕2𝑢

𝜕𝑧2+𝛿2
𝜕2𝑤

𝜕𝑥𝜕𝑧
 ) −  𝑀 ( 

𝜕𝑢

𝜕𝑡
+ 𝑚 

𝜕𝑤

𝜕𝑡
 ) – 

𝜕

𝜕𝑥
{𝜙 − ( 

𝑎1

𝐿

𝜕2𝜙

𝜕𝑥2 +
𝑎3

𝐿

𝜕2𝜙

𝜕𝑧2  ) 

=
𝜕2𝑢

𝜕𝑡2  − Ω2 𝑢 + 2Ω
𝜕𝑤

𝜕𝑡
 ,                        (22) 

(𝛿3  
𝜕2𝑤

𝜕𝑧2 + 𝛿1
𝜕2𝑤

𝜕𝑥2  + 𝛿2
𝜕2𝑢

𝜕𝑥𝜕𝑧
 ) +  𝑀 ( 𝑚 

𝜕𝑢

𝜕𝑡
−

𝜕𝑤

𝜕𝑡
) − 휀 

𝜕

𝜕𝑧
{𝜙 − ( 

𝑎1

𝐿

𝜕2𝜙

𝜕𝑥2 +
𝑎3

𝐿

𝜕2𝜙

𝜕𝑧2  ) 

= ( 
𝜕2𝑤

𝜕𝑡2  − Ω2 𝑤 − 2Ω
𝜕𝑢

𝜕𝑡
 ),                        (23) 

ℒ𝜃  (𝐾1
𝜕2𝜙

𝜕𝑥2+ 휀1 
𝜕2𝜙

𝜕𝑧2  )=ℒ𝑞  휀2 
𝜕

𝜕𝑡
 ( 

𝜕𝑢

𝜕𝑥
+  휀

𝜕𝑤

𝜕𝑧
)+ℒ𝑞  휀3 

𝜕

𝜕𝑡
 {𝜙 − (

𝑎1

𝐿

𝜕2𝜙

𝜕𝑥2 +
𝑎3

𝐿

𝜕2𝜙

𝜕𝑧2)},    (24) 

Where  𝛿1 = 
𝑐55

𝑐11
, 𝛿2 = 

𝑐13+𝑐15

𝑐11
, 𝛿3 = 

𝑐33

𝑐11
 , 휀1 = 

𝐾3

𝐾1
 , 휀2 = 

𝛽1
2𝑇0𝐿

𝜌𝐶1𝐾1

 , 휀3 = 
𝜌𝐶𝐸

𝐾1
 , M = 

𝜎0𝜇0
2𝐻0

2𝐿

𝜌𝐶1(1+𝑚2)
 , 

휀 =  
𝛽3

𝛽1
 . 

Apply Laplace and Fourier transforms defined by  

𝑓 ̅(𝑥, 𝑧, 𝑠) = ∫ 𝑓
∞

0
(𝑥, 𝑧, 𝑡)𝑒−𝑠𝑡  𝑑𝑡,                      (25) 

𝑓(𝜉, 𝑧, 𝑠) = ∫ 𝑓 ̅
∞

−∞
(𝑥, 𝑧, 𝑠)𝑒і𝜉𝑥 𝑑𝑥,                      (26) 

On Eqs. (22)-(24), we obtain a system of three homogeneous equations. These resulting equations 

have non-trivial solutions if the determinant of the coefficient matrix (�̂�,�̂�,�̂�) vanishes, which yields  

 (P𝐷6 + 𝑄𝐷4 + 𝑅𝐷2 + 𝑆 ) (�̂�, �̂�, �̂�) = 0,                   (27)  

Where 

D=
𝑑

𝑑𝑧
 ,  

P=휁2휀1  ℒθ
, + ℒq

, ( 휀3  s 휁2휁3 + 𝛿2휀2  휀
2휁3 s), 

Q= ℒθ
,  ( − 𝛿1

2휁8 − 𝜉2휁2 − 𝛿1휀1  휁7 − 𝛿3휁8 − 𝛿3휀1  휁7 + 휁12휀1  ) +  ℒq
, {휁13  ( − 휁11휁3 − 휁2 휁5 −

 𝛿1휁3휁7 − 𝜉2휁3𝛿3 − 𝛿3휁3휁7 + 휁12휁3 ) −휁14 ( 휁5𝛿2 + 𝜉2휁3 + 휁3휁7) + 𝜉2휀2  𝑠 휁3 + 2 휀 (𝛿2 −
 𝛿3)}, 

R= ℒθ
, {𝜉2 (휁11 + 𝛿1(휁7 + 휁8)) + 𝛿3𝜉

2(휁7 + 𝜉2) + 휁7휁8 + 𝛿1휁8휁7 + 휁6 (s + 2 휁10 − 2휁9) −

휁9 (2 s2 − Ω2 )+ 휁10(s
2 +

𝜁6
2

𝑠2 𝑚2 +4m Ω   
𝜁6

𝑠
 +4 Ω2)} + ℒq

, {휁13휁5(휁11 + 𝛿1휁7) + 휁13 𝜉
2 {(𝛿3휁5 +

휁3휁7) +  𝛿1휁3 (𝜉
2 + 𝑠 )} +휁13 𝛿3휁6휁5  + 휁6 휁13 휁3휁7 − 휁13 𝛿3Ω

2휁5 − 휁13 Ω
2휁3 휁7 − 𝛿1𝜉

2휁13 휁3  ( 

𝑠2 − Ω2)  + 휀3  𝑠
3(𝛿3휁5 + 휁7) +  휁14 𝜉

2휁5  + 휁14휁7휁5  −  휁12  휁13 휁5 − 𝛿2휀휀2𝑠 𝜉
2휁5  + 

휁6
2휁13 𝑚

2휁3 + 4𝑠 m휁13 휁6  Ω 휁3  + 4Ω2𝑠2휁13 휁3 − 𝛿2휀휀2𝑠 𝜉
2휁5 + 휀2𝑠 𝛿3𝜉

2휁5  + 휀2𝑠 𝛿1𝜉
4휁3  + 

휀2𝑠 𝜉
2휁3휁7}, 

S=ℒθ
, {− 𝛿1𝜉

6 − 𝜉4휁7(1 + 𝛿1) − 𝜉2휁7
2  − 𝜉2휁6

2𝑚2 − 2𝜉2𝑠2(Ω𝑀, 𝑚 + 2Ω2)} 
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+ℒq 
, {− 𝛿1𝜉

4휁13 휁5 – 𝜉2휁5휁13 휁7 − 𝛿1𝜉
2휁13 휁6+2휁13 휁6 휁5 휁7 + 𝛿1𝜉

2Ω2휁13 휁5 − 𝛿1𝜉
2𝑠2휁13 휁5 

−휁5휁6 휁13 𝑠
2 − 휁5휁13𝑠

4 − 휁6
2휁13 휁5 𝑚

2 − 4𝑚Ω𝑠2휁6휁13휁5 − 3𝑠2Ω2휁5휁13 − 𝛿1휀2𝑠𝜉
4휁5 −

휀2  s𝜉
2휁7 − 휀2𝑠𝜉

4휁1 휁7 }. 
Where  

휁1 = 
𝑎1

𝐿
, 휁2  = 𝛿1𝛿3 , 휁3  = 

𝑎3

𝐿
  , 휁4  = 휀1 𝛿3  ,휁5 =(1 + 𝜉2 𝑎1

𝐿
) , 휁6  = 𝑀,  s , 휁7 = (𝑠2 + 휁6 −

 Ω2 ), 휁8 = 𝜉2휀1,  

휁9 = Ω2휀1  , 휁10 = s2휀1  ,휁11 = 𝜉2𝛿1
2, 휁12 = 𝜉2𝛿2

2 , 휁13 = 휀3  𝑠 , 휁14 = 휀2  𝜖
2s,  

ℒ𝜃
, = 

1

𝑠
+ ∑

𝜏𝜃
𝑟

𝑟!

𝑅1
𝑟=1 𝑠𝑟,  

ℒ𝑞
, = 

𝜚

𝑠
+

𝜏0𝐶1

𝐿
𝑠 ∑

𝜏𝑞
𝑟

𝑟!

𝑅2
𝑟=2 𝑠𝑟.  

The above Eq. (27) can be written as [(𝐷2 − 𝜆1
2)(𝐷2 − 𝜆2

2) (𝐷2 − 𝜆3
2)] (�̂�, �̂�, �̂�) =  0, 

Where ±𝜆𝑖( 𝑖 = 1,2,3 ) are the roots of the Eq. (27), the solution of the equation satisfying the 

radiation conditions can be written as 

�̃� = 𝐴1𝑒
−𝜆1 𝑧+𝐴2𝑒

−𝜆2𝑧 + 𝐴3𝑒
−𝜆3 𝑧,                     (28)  

�̃� =  𝑑1𝐴1𝑒
−𝜆1𝑧 + 𝑑2𝐴2𝑒

−𝜆2𝑧 + 𝑑3𝐴3𝑒
−𝜆3𝑧,                 (29) 

�̃� =  𝑙1𝐴1𝑒
−𝜆1𝑧 + 𝑙2𝐴2𝑒

−𝜆2𝑧+𝑙3𝐴3𝑒
−𝜆3𝑧 ,                 (30)  

Where 

𝑑𝑖 =
𝜆𝑖
4   𝐴∗+ 𝜆𝑖

2 𝐵∗ +𝐶∗

𝜆𝑖
4𝐴′+  𝜆𝑖

2𝐵′+ 𝐶′ ; i = 1, 2, 3                         (31)  

𝑙𝑖 = 
𝜆𝑖
4𝑃′+ 𝜆𝑖

2𝑄′+ 𝑅′

𝜆𝑖
4𝐴′+ 𝜆𝑖

2𝐵′+ 𝐶′  ; i = 1, 2, 3                         (32)  

Where 

𝐴∗ = ℒθ
, (𝛿1  𝜖1) + ℒq

, (𝛿1  휁13 휁3 ), 

𝐵∗=ℒθ
, {−𝜉2(𝛿1  + 𝜖1) − 𝜖1휁7} + ℒq

,  ( −𝛿1  휁13 휁5 − 휁13 휁3 𝜉
2 − 휁13 휁3 휁7 − 휁3 휀2𝑠 𝜉

2), 

𝐶∗=ℒθ
, { 𝜉4 + 𝜉2휁7 } + ℒq

, { 𝜉2휁13 휁5 + 휁13 휁6 휁5 휁7 + 휀2𝑠 𝜉
2휁5 }, 

𝐴′ = {ℒθ
, 휁4+ ℒq

, (휁3휁14)}, 

𝐵′=ℒθ
, {𝜉2(−𝛿1  𝜖1 − 𝛿3  ) − 𝜖1휁7 } + ℒq

, ( −𝜉2𝛿1  휁13 휁3 − 휁13 𝛿3 휁5 − 휁13 휁3 휁7 − 휁14 휁5 ), 

𝐶′=ℒθ
, {𝜉4𝛿1  + 𝜉2휁7} + ℒq

, {𝜉2𝛿1  휁13 휁5 + 휁13 𝛿3휁3 + 휁6휁13휁5 + 휁13휁5𝑠
2 − 휁13 휁5Ω

2}, 

𝑃′={ 𝛿1𝛿3}, 

𝑄′ = {휁12 − 휁11 − 𝛿1휁7 − 𝛿3  𝜉
2  − 𝛿3  휁7}, 

𝑅′={𝜉2휁7 + 𝛿1 𝜉
4 + 𝛿1 𝜉

2휁7 + 휁6
2 + 2휁6(𝑠

2 − Ω2) + 𝑠4 + Ω4 + 𝑚2휁7
2 + 4Ω𝑠2𝑚𝑀, + 2Ω2𝑠2}. 

 

 
4. Boundary conditions 

 

Following Kumar et al. (2016), we apply a normal force and thermal source on the half-space 

surface (z=0). The boundary conditions are given by 

    𝜎33 = − 𝐹1𝜓1 (𝑥) 𝛿 (𝑡),                         (33)  

    𝜎31 = 0,                               (34)  
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 𝜕𝑇

𝜕𝑧
= 𝐹2𝜓2(𝑥) 𝛿 (𝑡) 𝑎𝑡  𝑧 = 0.                      (35)  

Where 𝐹1   is the magnitude of force applied, 𝐹2  is the constant temperature applied on the 

boundary, 𝜓1 (𝑥) and 𝜓2 (𝑥) are the source distribution function along 𝑥-axis. 

By applying Laplace and Fourier transform defined by (25)-(26) on the boundary conditions 

(33)-(35) and with the help of Eqs. (9)-(12),(21),(28)-(30), we obtain components of displacement, 

normal stress, tangential stress and conductive temperature as 

�̃� =  − 
𝐹1 �̃�1 (𝜉)

𝛥
 ( Δ1 𝑒

−𝜆1𝑧 + Δ2𝑒
−𝜆2𝑧 + Δ3 𝑒

−𝜆3𝑧 ) + 

 
𝐹2 �̃�2 (𝜉)

𝛥
 ( 𝛥1

∗𝑒−𝜆1𝑧 + 𝛥2
∗  𝑒−𝜆2𝑧 + 𝛥3

∗  𝑒−𝜆3𝑧 ),                  (36) 

�̃� =  − 
𝐹1 �̃�1 (𝜉)

𝛥
 (d1Δ1 𝑒

−𝜆1𝑧 + d2 Δ2𝑒
−𝜆2𝑧 + d3Δ3 𝑒

−𝜆3𝑧 ) + 
𝐹2 �̃�2 (𝜉)

𝛥
 (d1𝛥1

∗𝑒−𝜆1𝑧 

+ d2𝛥2
∗  𝑒−𝜆2𝑧 + d3𝛥3

∗  𝑒−𝜆3𝑧 ),                        (37) 

�̃� =  − 
𝐹1 �̃�1 (𝜉)

𝛥
 ( l1Δ1 𝑒

−𝜆1𝑧 + l2 Δ2𝑒
−𝜆2𝑧 + l3Δ3 𝑒

−𝜆3𝑧 )  

 +
𝐹2 �̃�2 (𝜉)

𝛥
 ( l1𝛥1

∗𝑒−𝜆1𝑧 + l2𝛥2
∗  𝑒−𝜆2𝑧 + l3𝛥3

∗  𝑒−𝜆3𝑧 ),             (38)  

𝜎33̃ = − 
𝐹1 �̃�1 (𝜉)

𝛥
 ( Δ11  Δ1 𝑒

−𝜆1𝑧+Δ12 Δ2 𝑒
−𝜆2𝑧 + Δ13Δ3 𝑒

−𝜆3𝑧) 

+ 
𝐹2 �̃�2 (𝜉)

𝛥
 (Δ11𝛥1

∗𝑒−𝜆1𝑧 + Δ12𝛥2
∗  𝑒−𝜆2𝑧 + Δ13𝛥3

∗  𝑒−𝜆3𝑧 ),             (39)  

𝜎13̃ = − 
𝐹1 �̃�1 (𝜉)

𝛥
 ( Δ21 Δ1 𝑒

−𝜆1𝑧 + Δ22 Δ2𝑒
−𝜆2𝑧 + Δ23Δ3 𝑒

−𝜆3𝑧 ) 

+ 
𝐹2 �̃�2 (𝜉)

𝛥
 (Δ21𝛥1

∗𝑒−𝜆1𝑧 + Δ22𝛥2
∗  𝑒−𝜆2𝑧 + Δ23𝛥3

∗  𝑒−𝜆3𝑧 ),            (40)  

Where 

Δ=Δ11 ( Δ22Δ33 − Δ32Δ23 ) −  Δ12(Δ21Δ33 − Δ23Δ31) + Δ13(Δ21Δ32 − Δ22Δ31), 
Δ1

∗ =(Δ12Δ23 − Δ13Δ22) ,  𝛥2
∗  =  (Δ13Δ21 − Δ11Δ23) , 𝛥3

∗  =  (Δ11Δ22 − Δ12Δ21), 

Δ1j =
𝐶13   𝜉і

𝜌𝑐1
2 −

𝐶33𝑑𝑗𝜆𝑗

𝜌𝑐1
2 − 휀 𝑙𝑗 − 휀𝑎1𝜉

2𝑙𝑗 +  휀𝑎3𝜆𝑗
2𝑙𝑗 ;   j= 1, 2, 3    

Δ2j =
𝐶55  

𝜌𝑐1
2  [−𝜆𝑗 +  ᵢ 𝜉𝑑𝑗];  j= 1, 2, 3. 

 

4.1 Thermal source on the surface of half-space 

 

Taking 𝐹1=0 in Eqs. (36)-(40), we obtain the components of tangential stress, normal stress, 

displacement components and conductive temperature due to thermal source. 

 

4.2 Mechanical force on the surface of half-space 

 

Taking 𝐹2=0 in Eqs. (36)-(40), we obtain the components of tangential stress, normal stress, 

displacement components and conductive temperature due to mechanical force. 
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5. Applications 
 

5.1 Linearly distributed force 
 

The solution due to linearly distributed force is obtained by setting 

{𝜓1(𝑥),  𝜓2(𝑥)}  =  {
1 𝑖𝑓 |𝑥|  ≤ 𝑚

0 𝑖𝑓  |𝑥| > 𝑚 
},                    (41) 

In Eqs. (33) and (35). The Laplace and Fourier transforms of 𝜓1(𝑥) and 𝜓2(𝑥) with respect to 

the pair (x, 𝜉) in case of linearly distributed load of non-dimensional width 2m applied at origin of 

co-ordinate system 𝑥 = 𝑧 = 0 is given by 

{ 𝜓1 
̂(𝜉),   𝜓2 

̂ (𝜉) }  =  [2 (1 − 𝑐𝑜𝑠(𝜉𝑚)/ 𝜉2𝑚]  , 𝜉 ≠ 0.          (42) 

Using (42) in (36)-(40), we get the components of tangential stress, normal stress, tangential 

displacement, normal displacement, conductive temperature. 

 

5.2 concentrated force 
 

The solution due to concentrated normal force is obtained by setting 

𝜓1(𝑥)= 𝛿(𝑥), 𝜓2 (𝑥)= 𝛿(𝑥),                        (43)  

In Eqs. (33) and (35). Here 𝛿(x) is the Dirac delta function. By applying Laplace and Fourier 

transformations defined in Eqs. (21)-(22) on (43), we get 

𝜓1̂(𝜉) = 1,   𝜓2 
̂ (𝜉) = 1.                         (44)  

Using (44) in (36)-(40), we obtain the components of tangential stress, normal stress, 

displacement and conductive temperature. 

 

 
6. Inversion of transformation 

 
To obtain the solution of the problem in physical domain, we must invert the transformations in 

Eqs. (36)-(40). Here the displacement components, tangential and normal stresses and conductive 

temperature are functions of z, the parameters of Laplace and Fourier transforms s and 𝜉 

respectively and are of the form f (𝜉, z, s). To obtain the function f (𝑥, 𝑧, 𝑡) in the physical domain, 

we first invert the Fourier transform using  

𝑓(̅𝑥, 𝑧, 𝑠) =  
1

2𝜋
∫ 𝑒𝑖𝜉𝑥1

∞

−∞
𝑓 (𝜉, z, s) d𝜉 = 

1

2𝜋
∫ |cos(𝜉𝑥) 𝑓𝑒 −  𝑖𝑠𝑖𝑛(𝜉𝑥)𝑓0|

∞

−∞
 d𝜉,     (45) 

Where 𝑓0 and 𝑓𝑒 are respectively the odd and even parts of 𝑓(𝜉, z, s). Thus the expression (45) 

gives the Laplace transform 𝑓(̅𝑥, 𝑧, 𝑠)  of the function f(𝑥, 𝑧, 𝑡)  Following Honig and Hirdes 

(1984), the Laplace transform function 𝑓̅(𝑥, 𝑧, 𝑠) can be inverted to f(𝑥, 𝑧, 𝑡).The last step is to 

calculate the integral in Eq. (45). The method of evaluating this integral is described in Press et al. 

(1986). It involves the use of Romberg’s integration with adaptive step size. This also uses the results 

from successive refinements of the extended trapezoidal rule followed by extrapolation of the results 

to the limit when the step size tends to zero. 
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7. Numerical results and discussion  
 

Following Biswas et al. (2017b), the following values of relevant parameters for cobalt material 

are taken 

𝑐11=3.071× 1011Kg𝑚−1𝑠−2,𝑐13=1.650× 1011Kg𝑚−1𝑠−2, 𝑎1 = 0.05 ,  𝑎3 = 0.08, 𝜇0 =
1.2571 × 106 H𝑚−1, 𝑐33 =3.581 × 1011 Kg𝑚−1𝑠−2 , 𝑐55 =1.510× 1011 Kg𝑚−1𝑠−2, 𝑇0=0.293 

× 103K, 𝐶𝐸 = 4.27 × 102 𝐽/𝐾𝑔𝐾, 𝛽1=7.04 N𝑚2𝐾−1, 𝛽3=6.90 N𝑚2𝐾−1, 𝜌=8.836×
103 Kgm−3, 𝐾1=0.690× 102W𝑚−1𝐾−1, 𝐾3=0.690× 102W𝑚−1𝐾−1, 𝜏0 = 2.0 ×

10−7 s, 𝜏𝜃=1.5×10−7 s, 𝜏𝑞 =2.0×10−7 s, 𝐻0 = 1 Jm−1nb−1,  휀0 = 8.838 × 10−12 Fm−1, 

L=1, 𝜚 = 1 . 

Using above values of parameters, the graphical representation of components of tangential 

stress, normal stress, tangential and normal displacements and conductive temperature with distance 

′𝑥 ′ has been derived for an orthotropic body by using two different values of hall parameter 𝑚=0.25 

and m=0.5 with and without rotation i.e., Ω=4, 0 respectively. 

(1) The red solid line with centre symbol diamond (◊) for an orthotropic material corresponds 

to hall parameter 𝑚=0.25 with Ω=0. 

(2) The green solid line with centre symbol plus (+) for an orthotropic material corresponds to 

hall parameter 𝑚=0.25 with Ω=4. 

(3) The blue solid line with centre symbol circle (∆) for an orthotropic material corresponds to 

hall parameter m=0.5 with Ω= 0. 

(4) The pink solid line with centre symbol circle (○) for an orthotropic material corresponds to 

hall parameter m=0.5 with Ω=4. 

 
 
8. Particular cases 
 

1. If 𝜏𝜃 = 𝜏𝑞=𝜏0 = 0 and 𝜚=1 in the Eq. (5), the resulting equation with two parameters ℒ𝜃 =

1 and ℒ𝑞=1 represents heat equation for coupled theoryof thermoelasticity (1956).  

2. The heat conduction Eq. (5) for the case of Lord Shulman theory (1967) is obtained by setting 

𝜚 = 1 and 𝜏𝜃 , 𝜏𝑞→0, 𝜏0 > 0 and ℒ𝜃 = 1 and ℒ𝑞=1 + 𝜏0
𝜕

𝜕𝑡
 , 

3. The heat conduction Eq. (5) reduces for the case G-N theory of type II (1993) by setting  

𝜏𝜃 , 𝜏𝑞→ 0, 𝜚= 0 and 𝜏0 = 1 in Eq. (5) and ℒ𝜃 = 1,  ℒ𝑞=
𝜕

𝜕𝑡
 ,  

4. The simplest form of the heat equation with dual-phase-lag (1995), is applied by setting ℒ𝜃 

=1 + 𝜏𝜃
𝜕

𝜕𝑡
, ℒ𝑞=1 + 𝜏𝑞

𝜕

𝜕𝑡
 ,  in Eq. (5). 

5. Additional refined dual-phase-lag (RDPL) theory appeared in the literature (1995) is defined 

by including the effect of the term containing 𝜏𝑞
2 in the above equations as 

ℒ𝜃 = 1 + 𝜏𝜃
𝜕

𝜕𝑡
  , ℒ𝑞= 1 + 𝜏𝑞

𝜕

𝜕𝑡
+ 𝜏𝑞

2 𝜕2

𝜕𝑡2.                  (46)  

Above Eq. (46) represents the first type of present refined multi-dual-phase-lag (RPL) theory 

with 𝜚=1, 𝜏0→𝜏𝑞 and 𝑅1 = 1, 𝑅2 = 2 additional types are presented here for 𝑅1 = 𝑅2 = 𝑅 ≥ 2 . 
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Fig. 1 Variation of displacement u with distance x 

(linearly distributed thermal source) 

Fig. 2 Variation of normal displacement w with 

distance x (linearly distributed thermal source) 

 

  

Fig. 3 Variation of conductive temperature 𝜙 with 

distance x (linearly distributed thermal source) 

Fig. 4 Variation of tangential stress 𝛔𝟑𝟏  with 

distance x (linearly distributed thermal source) 

 

 
9. Deformation due to thermal source 
 

9.1 linearly distributed thermal source 
 

In linearly distributed thermal source, we examined the variations of all the components with 

distance 𝑥 for two values of hall parameter m=0.25 and m=0.5 with Ω=0 and Ω=4 respectively. 

Fig. 1 displays the variation of displacement 𝑢 with distance 𝑥. We observe that for both values 

m=0.25 and m=0.5 it increases gradually then decreases. It attains a peak value in the range 4≤ 𝑥 ≤
5 and in the rest behaves in oscillatory manner, for m=0.25 amplitude of oscillations are higher as 

compared to m=0.5 with Ω=0, 4 respectively. Fig. 2 interprets the variation of normal displacement 

𝑤 with distance 𝑥. We noticed that variations are similar as in case of displacement u. It also follows 

an oscillatory pattern for m=0.25 and m=0.5 with Ω=0, 4 in the whole range with minimum and 

maximum amplitudes. The variation of conductive temperature 𝜙 with distance 𝑥 has shown in 

Fig. 3. We see that for m=0.25 and Ω=0, 4 in the range 0≤ 𝑥 ≤ 4 near the loading surface there is a 
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Fig. 5 Variation of normal stress 𝜎33 with distance x 

(linearly distributed thermal source) 

Fig. 6 Variation of displacement u with distance x 

(concentrated thermal source) 

 

  

Fig. 7 Variation of normal displacement w with 

distance x (concentrated thermal source) 

Fig. 8 Variation of conductive temperature 𝜙 with 

distance (concentrated thermal source) 

 

 

sharp increase with increasing value of 𝑥. It has a maximum value near 𝑥=5 after that it decreases 

in the range 6≤ 𝑥 ≤ 8 then a smooth increase is observed i.e., behavior is oscillatory. For m=0.5 and 

Ω=0, 4 it varies from minimum to maximum value in the range 0≤ 𝑥 ≤ 2 then a sudden decrease 

with increase in the value of 𝑥, and all the curves meet each other at 𝑥=9. Fig. 4 and Fig. 5 exhibits 

the trends of tangential stress 𝜎31 and normal stress 𝜎33 with distance 𝑥. In Fig. 4 it can be seen 

that the trends are similar oscillatory with difference in magnitude of oscillations, but amplitude of 

oscillations are higher in case of m=0.5 as compared to m=0.25 with Ω=0, 4 respectively. Fig. 5 

describes that the value of normal stress decreases near the loading surface with m=0.25 and Ω=0, 

4 and increases near the loading surface with m=0.5 and Ω=0, 4 i.e., it follows a smooth oscillatory 

pattern in the whole range of distance. It is clear from the graphs that the behavior is oscillatory with 

minimum and maximum amplitudes of oscillations in the whole range or we can say that rotation 

forces to move in oscillatory manner. 
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Fig. 9 Variation of tangential stress σ31  with 

distance x (concentrated thermal source) 

Fig. 10 Variation of Normal stress σ33  with 

distance x (concentrated thermal source) 

 

  

Fig. 11 Variation of displacement u with distance x 

(linearly distributed mechanical force) 

Fig. 12 Variation of normal displacement w with 

distance x (linearly distributed mechanical force) 

 

 

9.2 Concentrated thermal source 
 

In concentrated thermal source, Fig. 6 depicts the variation of displacement u with distance 𝑥. 

The value of displacement u decrease sharply near the loading surface and follow a little oscillatory 

pattern for all the four curves in the whole range of 𝑥 with Ω=0, 4 and m=0.25, 0.5 respectively. 

The variation of normal displacement with distance 𝑥 has shown in Fig 7. It can be seen that its 

value reduces continuously in the range 0≤ 𝑥 ≤ 6 for m=0.25 and Ω=0, 4 respectively. Whereas 

for m=0.5 and Ω=4 it decreases first in the range 0≤ 𝑥 ≤ 4 then increases smoothly in the rest of 

the range and follow a little oscillatory pattern. Fig. 8 displays the change in the value of conductive 

temperature with distance 𝑥. we observed that it also follow the same pattern as in case of normal 

displacement i.e., firstly it decreases in the range 0≤ 𝑥 ≤ 4 and increases in the whole range with 

increasing value of 𝑥. Fig. 9 and Fig. 10 gives the variation of tangential and normal stresses. It can 

be seen that the behavior is quite similar with the above discussed cases. It is observed that the 

variations for both follow a small oscillatory pattern with difference in the amplitude of oscillations. 
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Fig. 13 Variation of conductive temperature  𝜙 with 

distance x (linearly distributed mechanical force) 

Fig. 14 Variation of tangential stress σ13  with 

distance x (linearly distributed mechanical force) 

 

  

Fig. 15 Variation of normal stress 𝜎33 with distance 

x (linearly distributed mechanical force) 

Fig. 16 Variation of displacement u with distance x 

(concentrated mechanical force) 

 
 
10. Deformation due to mechanical force 
 

10.1 Linearly distributed mechanical force 
 

In linearly distributed mechanical force, Figs. 11-15 describes the effect of hall parameter on 

various components with and without rotation. Fig. 11 and Fig. 12 display the nature of 

displacements with distance 𝑥 for two different values of hall parameter m=0.25, m=0.5 and Ω=0, 

4 respectively. In Fig. 11 it can be seen that for m=0.25 and Ω=0, 4in the beginning the value of 

displacement u decreases in the range 0≤ 𝑥 ≤ 4  afterwards increases and shows an oscillatory 

behavior for the rest of the range. For m=0.5 it also decreases in the beginning near the loading 

surface and follow an oscillatory pattern with small amplitude of oscillations with Ω=0, 4 

respectively. Fig. 12 gives the behavior of normal displacement with distance 𝑥. We see that value 

of normal displacement varies in the same manner as the displacement u varies with little difference 

in the magnitude of oscillations and approaches to maximum value with increasing value of 𝑥. The 

variation of conductive temperature with distance 𝑥 has shown in Fig. 13. It can be noticed that  
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Fig. 17 Variation of normal displacement w with 

distance x (concentrated mechanical force) 

Fig. 18 Variation of conductive temperature 𝜙 with 

distance x (concentrated mechanical force) 

 

  

Fig. 19 Variation of tangential stress 𝛔𝟏𝟑  with 

distance x (concentrated mechanical force) 

Fig. 20 Variation of normal stress σ33  with 

distance x (concentrated mechanical force) 

 

 

for m=0.25 and m=0.5 with Ω=0, 4 the curve attains its maximum value in the beginning then 

suddenly falls down near 𝑥 = 4 , whereas for m=0.5 and Ω=4 it decreases in the range 2≤ 𝑥 ≤
4 after that all the three curves begin to coincide when  𝑥 approaches to its maximum value. Fig. 

14 and Fig. 15 gives the variation of tangential and normal stresses with distance 𝑥. We observed 

that the distribution curves for both the stresses (tangential and normal) for m=0.25, m=0.5 and Ω=0, 

4 is oscillatory in nature with different amplitude of oscillations. 

 

10.2 Concentrated mechanical force 
 

Figs. 16-20 shows the characteristics for concentrated mechanical force. It is clear from the 

graphs that the distribution curves for displacement u, normal displacement w, conductive 

temperature 𝜙, tangential stress 𝜎13 and normal stress 𝜎33 follow the same trends as in case of 

concentrated thermal source for both values of hall parameter and rotation i.e., m=0.25, m=0.5 and 

Ω=0, 4 respectively. 
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11. Conclusions 
 

In the present investigation, we have examined the effect of hall current on all the physical 

quantities with and without rotation in the presence of two temperature in generalized 

thermoelasticity. It is noticed that the hall current and rotation has a major impact on the stress 

components, displacement components and conductive temperature. We observed that the trends of 

all the components are almost oscillatory with difference in amplitude of oscillations. The magnitude 

of oscillations are either increasing or decreasing with increasing value of distance. In this problem 

we consider the heat conduction equation with refined multi-dual-phase-lags. Nowadays, this model 

is more appropriate to solve some practical problems of physical processes. The finding of this paper 

gives an inspiration to study about magneto-thermoelastic materials as an innovative domain of 

applicable thermoelastic solids. The results are also beneficial in real life problems and for their 

practical applications like in geophysics, geomagnetic etc. The validity of results is approved by 

comparing the temperature, displacements and stresses according to the present refined multi-phase-

lag theory with those due to other thermoelasticity theories. 
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