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Abstract.  This paper presents a multiscale modeling method for sheet molding compound (SMC) composites 
through a novel bundle packing reconstruction algorithm based on a micro-CT (Computed Tomography) image 
processing. Due to the complex flow pattern during the compression molding process, the SMC composites show a 
spatially varying orientation and overlapping of fiber bundles. Therefore, significant inhomogeneity and anisotropy are 
commonly observed and pose a tremendous challenge to predicting SMC composites’ properties. For high-fidelity 
modeling of the SMC composites, the statistical distributions for the fiber orientation and local volume fraction are 
characterized from micro-CT images of real SMC composites. After that, a novel bundle packing reconstruction 
algorithm for a high-fidelity SMC model is proposed by considering the statistical distributions. A method for 
evaluating specimen level’s strength and stiffness is also proposed from a set of high-fidelity SMC models. Finally, the 
proposed multiscale modeling methodology is experimentally validated through a tensile test. 
 

Keywords:  composite materials; finite element method; multiscale modeling; reconstruction algorithm; 

sheet molding compound;  

 
 
1. Introduction 
 

Carbon-fiber sheet molding compound (CF-SMC) composites receive increasing attention due 

to their huge potential in lightweight automotive, shipbuilding, power plant, and aerospace 

applications (Wilkinson and Ryan 1998, Lu et al. 2005, Cabrera-Ríos and Castro 2006). SMC 

composites have a good balance between mechanical performance, formability, and manufacturing 

costs compared with other composites. SMC composites have been applied in structural 

components, especially in the automobile field, such as external panels, trunk floors, and body 

subframes. 

A compression molding process is utilized for the structural components (Abrams and Castro 

2003, Görthofer et al. 2019, Meyer et al. 2020). The initial charge, which is the preform of the SMC 
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composites, comprises carbon-fiber bundles and resin matrix. And then, it is compressed into the 

shape of the final product. Due to the complex flow pattern during the compression molding process, 

the final molded parts show a spatially varying distribution of fiber bundles. Therefore, significant 

inhomogeneity and anisotropy are commonly observed and pose a tremendous challenge to 

predicting SMC composites’ behavior in virtual tests (i.e., computational simulation). 

Numerous researches have been conducted on multiscale modeling approaches for short-fiber 

reinforced composites to account for these features of the SMC composites. The homogenization 

method is critically important to estimate the effective properties of micro/mesostructure. In a 

multiscale analysis, analytical and computational homogenization techniques are frequently utilized 

to obtain effective properties. The micromechanics-based analytical homogenization method has 

been developed based on Eshelby’s theory, for example, the self-consistent and Mori-Tanaka 

methods (Eshelby and Peierls 1957, Doghri and Ouaar 2003, Doghri et al. 2011, Lim et al. 2020). 

However, due to their limitations in simulating local damage occurrence in the microstructure, they 

are mainly used to simulate effective macroscopic behavior. There are various attempts to predict 

the mechanical properties of SMC composites through this technique. Anagnostou et al. (2018) 

adopted the hierarchical Mori-Tanaka scheme through a two-step homogenization. They firstly 

homogenized effective properties from the microstructure of the fiber bundle. After that, the 

macroscopic behavior of SMC composites was calculated through the second homogenization from 

the mesostructure. This hierarchical approach evaluated the effective viscoelastic behavior of fiber 

bundles and SMC plates by accounting for the time dependence. Görthofer et al. (2020) investigated 

the influence of the microstructural parameters through a sensitivity analysis. The parameters 

include the elastic moduli, volume fraction of the constituents, and the orientation of fiber. They 

figured out which parameters have a strong influence on overall behavior by constructing a heatmap. 

Recently, Tamboura et al. (2020) proposed the multiscale approach to predict the stiffness reduction 

of SMC composites subjected to low cycle fatigue. By considering the local cyclic normal and shear 

stress at the interface, the fiber-matrix interface damage criterion was introduced in the Mori-Tanaka 

method to predict the loss of stiffness. Although proven to be successful in predicting macroscale 

behavior through many studies, this analytical method still has a limitation in capturing local 

phenomena from a micro-scale point of view. Thus, it cannot express spatial variation and 

uncertainty in micro/mesostructure. 

At present, the finite element (FE)-based computational method defining the representative 

volume element (RVE) has become promising to predict composites’ behavior accurately. The 

CT(Computed Tomography)-based high fidelity RVE generation can reflect the characteristics of 

the microstructure in the most accurate way (Yu et al. 2017, Fládr et al. 2019, Lim et al. 2020, Lim 

et al. 2021). However, SMC composites have a more complex mesostructure unlike simple micro 

or mesostructures such as cross-ply laminate composites and particulate composites. Therefore, 

many attempts have been made to create statistically equivalent RVEs. For example, Li et al. (2018) 

studied a Voronoi diagram-based algorithm for modeling SMC mesostructures where each Voronoi 

cell corresponds to a fiber bundle with a distinct orientation. Next, using an algorithm of the random 

sequential adsorption (RSA), Chen et al. (2018) developed a framework for modeling SMC RVE 

based on a sequential bundle packing algorithm. They modeled the SMC fiber bundles by 

sequentially packing layer-by-layer, accounting for overlap between bundles through a rise and sink 

methodology. This method can efficiently reflect the features of SMC composites having high 

volume fraction and bent shape of the fiber bundle. However, they only considered the bundles’ 

orientation from an averaged orientation tensor, first introduced by Advani and Tucker (1987). More 

information is required for advanced high-fidelity modeling of the SMC composites. 
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Fig. 1 Micro-CT in-plane images of SMC composites with different magnifications 
 

 

This paper presents a micro-CT image processing and a novel bundle packing reconstruction 

algorithm to predict the mechanical properties of SMC composites. The orientation and dispersion 

of the fibers are characterized through micro-CT image processing. Because the only orientation-

based SMC modeling yields relatively monotonic results in modulus and strength, it is necessary to 

improve the heterogeneous high-fidelity SMC modeling (Kravchenko et al. 2019, Sommer et al. 

2020, Tang et al. 2020). Therefore, the dispersion of fibers is also considered in the reconstruction 

modeling. This idea comes from Kim and Yun (2018), which demonstrated the change in mechanical 

properties according to the dispersion of inclusion in particle-reinforced composites through 

principal component analysis (PCA). After that, a novel bundle packing reconstruction algorithm for a high-

fidelity SMC model is introduced based on the manufacturing setup and image processing input 

parameters. Multiscale modeling is also presented to bridge mechanical properties from microscale 

to meso and macroscale. Finally, the proposed multiscale modeling is validated through comparison 

with the experimental test and discussed based on the results thoroughly. 
 

 

2. Micro-CT image processing for statistical characterization of mesostructure 
 

Micro-CT test is performed using Xradia 620 Versa (Carl Zeiss, USA) equipment. The statistical 

distributions of the fibers’ orientation and local volume fraction are obtained from micro-CT images 

because they correlate with the mechanical properties (Kim and Yun 2018). Fig. 1 shows the in-

plane micro-CT images with different magnifications. The micro-CT images are composed of 

several stack images. The samples with a diameter 40 mm and thickness 3 mm are extracted at the 

center of the SMC plate. The enlarged images show that the longitudinal fibers in the fiber bundles 

have no curvature. In the series of CT images, it is hard to distinguish the individual fiber bundles. 

The segment in the image processing is conducted in the scope of microscopic constituents: fiber 

and matrix. 
 

2.1 Statistical distribution of fiber orientation 
 

In this section, the gradient method is utilized to obtain the orientation of fibers by calculating 

the grayscale change in the images (Miletić et al. 2020). Image processing procedures are performed 

using MATLAB Image Processing Toolbox and consist of three steps . First, the histogram 

equalization is conducted to distinguish the fiber from the matrix in the micro-CT image. By this 

pre-processing step, the accuracy of the gradient method is improved. After that, the gradient method 

is applied to the pre-processed micro-CT image. In this step, a MATLAB built-in function 
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Fig. 2 Procedures of calculating the normal vector 

 

 

Fig. 3 Overall image processing procedures: Calculation of the fiber orientation 
 

 

‘imgradient’ is used. Grayscale values of 3 by 3 pixels around the particular pixel are called from 

the micro-CT image to calculate the magnitude and normal vector at a specific pixel. Then, the image 

gradient (∇𝐼) and the gradient orientation are computed based on the change of grayscale values (𝜕𝐼) 

of X and Y-axis for each pixel (𝜕𝑥, 𝜕𝑦). 𝑀 and 𝐺 represent the magnitude and orientation of the 

image gradient calculated by Eq. (1). Through this operation, the magnitude and normal vector value 

of each pixel are computed. Detailed procedures of the gradient method are described in Fig. 2. 

𝛻𝐼 = [𝜕𝐼 𝜕𝑥⁄ 𝜕𝐼 𝜕𝑦⁄ ]T, 𝑀 = √(𝜕𝐼 𝜕𝑥⁄ )2 + (𝜕𝐼 𝜕𝑦⁄ )2,      𝐺 = 𝑡𝑎𝑛−1(
𝜕𝐼 𝜕𝑦⁄

𝜕𝐼 𝜕𝑥⁄
) (1) 

Finally, the orientation vector is calculated through the normal vector value by the gradient 

method. Overall image processing procedures to obtain fiber orientation are shown in Fig. 3. 

 

2.2 Statistical distribution of fiber local volume fraction 

 

The fiber local volume fraction is defined and computed using an image processing algorithm to 

evaluate the non-uniform distribution of the fibers in the SMC plate. First, the histogram equalization 

is performed as in the gradient method. Next, an image binarization is performed to differentiate 

between fiber and matrix. The grayscale value of the fiber and matrix was set to one and zero, 

respectively. In order to obtain statistical distribution data of the fiber local volume fraction, 1000 

local sampling points & areas are randomly generated for each 2D micro-CT image. After that, the 

local fiber volume fraction in each sampling area is calculated to generate the distribution. In this 

case, the sampling area was set as a square with a side length of 200 pixels. The image processing 

procedures of calculating the local fiber volume fraction are summarized in Fig. 4. 

The orientation and local volume fraction distribution are summarized in Fig. 5. Fig. 5(a) is the  
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Fig. 4 Computation procedures of the local volume fraction at randomly preset sample points 
 

  
(a) (b) 

Fig. 5 Statistical distributions from micro-CT image processing: (a) Orientation (b) local volume fraction 
 

 

orientation distribution in the probability density function (PDF). It has uniform probabilities at 

every angle, indicating that the SMC composites have randomly oriented bundles. Fig. 5(b) exhibits 

the local volume fraction distribution. It has a shape of Gaussian distribution with the COV = 0.133. 

The fiber volume fraction from the micro-CT image processing is 55%, set as input quantity. The 

distributions of the orientation and local volume fraction are directly utilized in the reconstruction 

algorithm to generate high-fidelity SMC models. 
 

 

3. A multiscale modeling of sheet molding compound for FE analysis 
 
3.1 Input parameters and bundle repository 

 

Through bundle packing, a novel reconstruction algorithm is developed to generate high-fidelity 

SMC models in a voxelated square space. For the reconstruction algorithm, manufacturing-

dependent parameters are selected as inputs. It includes the sizes of the bundles and the plates, the 

bundle volume fraction, and the targeted statistical distributions of the bundles’ orientation and 

local volume fraction. Among the input parameters, the targeted statistical distributions of bundles’ 

orientation and local volume fraction in cumulative distribution function (CDF) are from micro-CT 

images. Statistical distribution of the bundle local volume fraction within a preset domain is 

determined from the prescribed random sample points. The sample points are prescribed randomly 

at the beginning of the algorithm. These locations of sample points do not change during the 

reconstruction algorithm. Thus, the distribution of the local volume fraction changes depending on 
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Table 1 List of the input parameters for the proposed SMC reconstruction algorithm 

Classification Symbol 

The initial charge setup 

Plate size 𝐿𝑝𝑙𝑎𝑡𝑒  

Number of the layers in the plate 𝑛𝑙𝑎𝑦𝑒𝑟  

Length of the bundle 𝐿𝑏𝑢𝑛𝑑𝑙𝑒  

Width of the bundle 𝑊𝑏𝑢𝑛𝑑𝑙𝑒 

The volume fraction of the bundles 𝑉𝑏𝑢𝑛𝑑𝑙𝑒 

The compression molding 
Orientation of bundles 𝐹𝑜𝑟𝑖(𝑥) 

The local volume fraction of bundles 𝐹𝑙𝑜𝑐𝑎𝑙(𝑥) 

 

 

the location of bundle packing. The input parameters are summarized in Table 1 by classifying them 

into two. 

Before bundle packing, the pre-processing is performed to build a repository of bundles based 

on the targeted orientation statistical distribution, as shown in Fig. 6. The number of bundles is 

computed in terms of SMC plate size, bundle sizes and the volume fraction of the bundles. In Eq. 

(2), 𝑁𝐵𝑙𝑎𝑦𝑒𝑟 and 𝑁𝐵𝑝𝑙𝑎𝑡𝑒 denote the number of bundles in a layer and plate, respectively 

𝑁𝐵𝑙𝑎𝑦𝑒𝑟 = [
𝐿𝑝𝑙𝑎𝑡𝑒

2 𝑉𝑏𝑢𝑛𝑑𝑙𝑒

𝑊𝑏𝑢𝑛𝑑𝑙𝑒𝐿𝑏𝑢𝑛𝑑𝑙𝑒

] , 𝑁𝐵𝑝𝑙𝑎𝑡𝑒 = 𝑁𝐵𝑙𝑎𝑦𝑒𝑟 ∙ 𝑛𝑙𝑎𝑦𝑒𝑟 (2) 

 

3.2 Modified-RSA based stochastic reconstruction algorithm 

 

The random sequential adsorption (RSA) algorithm for a multi-layer voxelated system is utilized 

(Feder 1980, Pan et al. 2008, Zhou et al. 2016). The RSA method sequentially packs arbitrary objects 

into space at random locations while avoiding overlapping until a desired number of objects are 

packed or a pre-specified iteration number is reached. The RSA-based reconstructed models have 

been widely used for composite modelings, such as short fiber reinforced composites (Pan et al. 

2008, Luchoo et al. 2011, Zhao et al. 2020). The modified RSA algorithm presented by Chen et al. 

(2018) was utilized to express the undulation between fiber bundles. It dynamically moves the 

bundle segments to upper and lower layers to increase space utilization. Based on the input 

parameters in Section 3.1, fiber bundles are packed into a unit layer of the SMC plate. As a result, 

3D SMC plates can be modeled by piling up multiple bundle-packed layers. There are two conditions 

in the bundle packing process in order to mimic the actual geometry of composites. 

The first condition is to check the location feasibility of the bundles during the bundle packing 

process. Compared to the conventional RSA algorithm, in which overlapping is not allowed, the 

proposed packing algorithm is modified so that bundles can intersect at one location maximally. This 

restriction on the number of overlaps is because bundles tend to be uniformly distributed when 

compressing the initial charge of SMC composites. Additionally, if the allowable amount of 

overlapping has too much in the modeling, the SMC composites’ shape could be distorted due to a 

bias of bundles’ location. 

Second, the local volume fraction of the SMC is calculated at the prescribed random sample 

points during the bundle packing process. It is repeatedly compared with the local volume fraction’s 

targeted statistical distribution, whether it is within the tolerance range. Otherwise, a candidate of 

the bundle location would be altered and newly checked the conditions from the first condition. 
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Table 2 Pseudocode for bundle packing reconstruction algorithm 

Numerical implementation 

Input: 𝐿𝑝𝑙𝑎𝑡𝑒 , 𝐿𝑏𝑢𝑛𝑑𝑙𝑒 , 𝑛𝑙𝑎𝑦𝑒𝑟 , 𝐹𝑙𝑜𝑐𝑎𝑙(𝑥), 𝐹𝑜𝑟𝑖(𝑥), 𝑉𝑏𝑢𝑛𝑑𝑙𝑒, 𝑊𝑏𝑢𝑛𝑑𝑙𝑒 

Output: 3D reconstructed model, the local orientations of bundles 

1 for i = 1: 𝑛𝑙𝑎𝑦𝑒𝑟  

2  Initialize internal variables and start to pack fiber bundles on the (i)-th layer 

3  Define random sample points for the local volume fraction 

4  while |𝑉𝑏𝑢𝑛𝑑𝑙𝑒
𝑡𝑎𝑟𝑔𝑒𝑡

− 𝑉𝑏𝑢𝑛𝑑𝑙𝑒
(𝑖)

| ≤ 𝑡𝑜𝑙 

5   Build fiber bundle repository using Eq. (2) and 𝐹𝑜𝑟𝑖(𝑥). 

6   for j = 1: 𝑁𝐵𝑙𝑎𝑦𝑒𝑟  

7    Define the bundle location: (𝑥𝑏𝑢𝑛𝑑𝑙𝑒 , 𝑦𝑏𝑢𝑛𝑑𝑙𝑒) 

8    if location feasible 

9     overlapped parts: pack on the (i+1)-th layer 

10     overhanging parts: pack on the (i)-th layer 

11    else not feasible 

12     go to line 7 

13    end if 

14    Calculate the local volume fraction distribution of (i)-th layer: 𝐹𝑙𝑜𝑐𝑎𝑙
(𝑖) (𝑥) 

15    if |𝐹𝑙𝑜𝑐𝑎𝑙
(𝑖)

− 𝐹𝑙𝑜𝑐𝑎𝑙| ≤ 𝑡𝑜𝑙 

16     continue the packing 

17    else 

18     cancel the packing and go to line 7 

19    end if 

20   end for 

21   Calculate the volume fraction on the (i)-th plate: 𝑉𝑏𝑢𝑛𝑑𝑙𝑒
(𝑖)

 

22  end while 

23  Check the orientation distribution with the target 

24 end for 

25 Stacking up the reconstructed layers 

 

 

During the bundle packing process, the calculated distribution of the local volume fraction has to be 

lower than the targeted CDF. Therefore, the relocation of a bundle occurs only when a value 

(probability) in a specific range (bin) of the CDF is larger than the corresponding targeted CDF 

value. 

If these two conditions are satisfied, the bundle packing is conducted on the layer. A rise and sink 

process is applied during the bundle packing to represent the undulation by raising the overlapping 

parts to the upper layer. On the other hand, the overhanging parts of the bundle sink to the current 

layer. It is noted that this process creates the bent geometries of the bundles. As a result, the proposed 

bundle packing reconstruction algorithm can reflect physical features accurately. Finally, a 

computational procedure for the bundle packing reconstruction algorithm is summarized as 

Pseudocodes in Table 2. The overall flow chart is also depicted in Fig. 6. 
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Fig. 6 A flow chart of bundle packing SMC reconstruction algorithm 
 

 

The proposed reconstruction algorithm generates more realistic high-fidelity SMC models based 

on the direct statistical distributions of the orientation and local volume fraction. The proposed 

algorithm holds apparent advantages over the existing SMC modeling, which matches only the 

orientation of the bundle with an averaged orientation tensor (Chen et al. 2018). The input 

parameters in Table 3 are employed to create the single-layer SMC models using the proposed 

reconstruction algorithm. The statistics of bundles’ orientation and the local volume fraction are 

generated through the Gaussian distribution by adjusting the mean and coefficient of variation 

(COV). First, Fig. 7 shows the reconstructed SMC models generated by varying the mean and COV 

of different orientations and assuming a uniform local volume fraction. 

Fig. 7 shows that the reconstructed models change the trends of bundles’ direction according to 

the mean values of the Gaussian distribution. COV values can control the randomness of fiber 

bundles. Fig. 8 exhibits the reconstructed models according to the local volume fraction’s 

distribution. The volume fraction and orientation of the fiber bundle are assumed to be 55% and 

random, respectively. Reconstructed models are generated by varying the COV values of the local 

volume fraction distribution. When the COV is 0.1, it has a relatively uniform dispersion. In the  
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Table 3 The input parameters for the SMC reconstruction algorithm 

Description Value 

Plate size 300mm × 300mm 

Bundle size 25mm × 5𝑚𝑚 

The volume fraction of the bundle 55% 

 

 

Fig. 7 Reconstructed models in different orientations with Gaussian distribution: 𝜇  (mean), COV 

(coefficient of variation) 
 

 

Fig. 8 Reconstruction models in different dispersions with Gaussian distribution: void (red circle) 
 

 

case of more than 0.2, voids with large sizes are generated within the SMC plate. Further increment 

of the COV makes more voids resulting in highly biased bundle distributions. 

By changing the statistical parameters of the proposed reconstruction algorithm, multiple layers 

of the SMC composites are generated. The high-fidelity SMC model is composed in the 3D 
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(a) (b) (c) 

Fig. 9 FE modeling from reconstruction model: (a) Stack of SMC reconstructed models (b) C3D8 FE models 

with different views (c) Defining the local orientation for fiber bundles 
 

 

Fig. 10 Dimensions of a tensile specimen 
 

 

voxelated cuboid space by stacking up the reconstructed layers. The voxels in the reconstruction 

model are converted into a solid element for FE simulation. Moreover, since each bundle is aligned 

at a specified angle, the elements corresponding to the bundle have a local orientation. In this study, 

nodes and connectivity of a C3D8 element are created according to Abaqus/Standard input format. 

All the process for FE modeling is depicted in Fig. 9. 
 

 

4. Experimental validation of the SMC stiffness and strength 
 
4.1 Tensile testing 

 

An experimental tensile test is performed to obtain the mechanical properties of SMC 

composites. An initial charge with 200mm × 200mm is subjected to a compression molding 

process to fabricate the SMC composites plate with a size of 300mm × 300mm × 3 mm. The 

fiber bundles in the SMC plate have a quasi-isotropic orientation as observed in the micro-CT image 

processing. Tensile specimens are extracted from the molded plate with a 35mm width following 

the ASTM D3039. Considering the size of the fiber bundle, the specimen is designed to have a large 

enough width. Dimensions of the tensile specimen are depicted in Fig. 10. Sandpapers are attached 

to 40mm long grip regions at both ends of the specimens to prevent slipping during the testing. 

Therefore, the gage length of the tensile specimen becomes 170mm. From trimming the boundary  
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(a) 

 
(b) 

Fig. 11 Experimental tensile specimens: (a) before testing (b) after testing 
 

  
(a) (b) 

Fig. 12 Stress-Strain curves from experiments: (a) Crosshead-based strain (b) DIC-based strain 

 

 

of specimens, five specimen samples are prepared. The displacement-controlled uniaxial tensile test 

is performed with a 30 kN MTS material test machine with a 2 mm/min crosshead rate. The tensile 

specimens’ photographs before and after testing are shown in Fig. 11. After failure, as shown in Fig. 

11(b), it is observed that the matrix failure is dominant in the SMC specimen because the fiber 

bundles have their geometry even after specimen breakage. This failure pattern was also reported in 

the SMC composites’ study (Martulli et al. 2019). 

The experimental tensile tests are conducted by Seoul national university (SNU) and Hyundai 

motors group, with different strain measurement methods. In SNU, the strain is measured by 

dividing the crosshead displacement by the gage length of the tensile specimen. On the other hand, 

the average strain on the specimen surface using digital image correlation (DIC) equipment in the 

Hyundai motors group is measured. It is noted that the different strains are estimated depending on 

the strain measurement techniques (Motra et al. 2014). Generally, the crosshead strain is 

significantly greater than the DIC measurement. As a result, the crosshead-based modulus 

underestimates compared with the DIC-based measurement. The stress-strain curves are plotted in 

Fig. 12. Notably, because of the heterogeneity of the SMC composites, the difference in results 
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Fig. 13 Stress-strain curve of pure vinyl-ester resin from the tensile experimental test 
  

 

Fig. 14 Multiscale modeling of the SMC composites 
 

 

between the two measurement techniques becomes more salient. Both stress-strain curves show 

linear behavior. The nominal stress is computed by dividing the force by the cross-sectional area of 

the tensile specimen. The elastic modulus is calculated by the curve’s initial slope and measured in 

the 0.05 to 0.25% strain range. Likewise, the strength is measured based on ultimate maximum 

strength, which is the maximum stress of the stress-strain curve. 
Fig. 13 shows the stress-strain curves of pure vinyl-ester resin from the tensile test. The vinyl-

ester resin is utilized as the matrix in the SMC composites. The properties are employed in the 

simulation.  

 

4.2 Tensile specimen modeling and measurement 
 
Uniaxial tensile simulations are conducted with the reconstructed SMC models. The SMC plate 

and fiber bundle size are designed to have 300 mm × 300 mm × 3 mm and 50.8 mm × 20 mm, 

respectively. The fiber volume fraction in the SMC plate is 55%, as revealed from micro-CT image 

processing. Therefore, the fiber bundle is assumed to comprise 78% fiber, and a unit layer is assumed 

to have a 70% fiber bundle volume fraction to match to 55% fiber volume fraction by 70% × 78% 

= 55%. 

The microstructure of the fiber bundle is shown in Fig. 14. The computational homogenization 

technique is required to obtain the effective properties of the fiber bundle. The details on the 

computational homogenization refer to the previous works (Zhu et al. 2018, Choi et al. 2019, Jeong 

et al. 2019). The microscale RVE with unidirectional fibers is shown in Fig. 14. The constituents 

are T700 carbon fiber and vinyl-ester resin. The mechanical properties of the constituents are from  
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Table 4 Mechanical properties of SMC composites 

 T700 Vinyl-ester Bundles’ effective properties 

𝐸1 (MPa) 240000 3480 203292 

𝐸2 (MPa) 14700  11639 

𝐺12 (MPa) 6400  5027 

𝐺23 (MPa) 5400  4206 

𝜈12 0.3 0.3 0.01737 

𝜈23 0.35  0.349 

 

 

literature and experimental tests (Martulli et al. 2018). The mechanical properties of constituents 

and the effective properties are summarized in Table 4. 

The reconstruction algorithm uses the statistical distributions from micro-CT image processing 

to generate an SMC model with a 70% bundle volume fraction. As a result, a series of reconstructed 

layers are obtained, as shown in Fig. 15(a). After that, Fig. 15(b) shows that tensile specimens are 

extracted from the reconstructed SMC model. A total of 15 tensile specimens are prepared from the 

five reconstructed SMC models. A coupling constraint is applied to elements at both ends of the 

specimen with reference points for the tensile simulation. After that, boundary and loading 

conditions are applied to the reference points that correspond with the parts of grip and fixture in the 

tensile testing system, as shown in Fig. 15(c). 

For strain measurement in the tensile simulation, two different methods are performed. The first 

is to measure the strain based on the crosshead displacement. Like the experiment, the strain from 

the simulation is obtained by dividing displacement by the gage length. The calculations of uniaxial 

strain and stress are expressed in Eq. (3).  

𝜀1 =
𝑢∗

𝐿𝑔𝑎𝑔𝑒 
, 𝜎1 =

𝑅𝐹1

𝑤𝑡
 (3) 

The second strain measurement method is by the digital image correlation (DIC) equipment. The 

effective strain is calculated by applying the volume-averaging scheme in terms of strain fields after 

tensile simulation. Although DIC is measured only on the surface of the specimen, the volume-

averaging in simulations can be performed over the entire specimen domain. It is because of 

obtaining a more averaged strain in the specimen. The equation can be expressed as Eq. (4). 

𝜀1 =
∫ 𝜀1̂𝑑𝛺

𝛺

∫ 𝑑𝛺
𝛺

, 𝜎1 =
𝑅𝐹1

𝑤𝑡
 (4) 

Herein, 𝛺 is the total element domain of the specimen. This domain does not include the jig 

parts, which is also not ROI in the DIC measurement. 𝜀1̂ is the uniaxial strain value at Gaussian 

points. With different types of strain measurement, the comparison of tensile modulus can be 

achieved with experimental results. 
 

 

4.3 Experimental validation 

 

Static finite element analysis is performed on the reconstructed SMC models subjected to tensile 

loading. Based on the strain mentioned above and stress measurements, the modulus of the SMC  
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(a) 

 
(b) 

 
(c) 

Fig. 15 High-fidelity SMC modeling: (a) Reconstructed models for each layer (b) orientation contour and 

specimen extraction (c) boundary condition for tensile test 
 
Table 5 Mean and COV of elastic modulus with different number of layers (unit: GPa) 

 5 layers 7 layer 10 layers 13 layers 15 layers 

 Crosshead DIC Crosshead DIC Crosshead DIC Crosshead DIC Crosshead DIC 

Mean 20.2 31.6 21.2 34.5 30.5 48.5 33.3 54.7 35.6 57.3 

COV 0.26 0.37 0.22 0.25 0.16 0.17 0.14 0.14 0.12 0.13 

 

 

composites is calculated from the initial slope of the stress-strain curve. Fig. 16 shows the modulus 

change according to the number of layers constituting the ASTM 3039 specimen with 3 mm 

thickness. Increment of the SMC modulus is observed in thinner layers in both strain measurement 

methods, as shown in Table 5. It is because of the increasing heterogeneity of the SMC mesostructure 

through the thickness. The deformation in the Z-direction due to the different properties of 

constituents occurs significantly during the tensile simulation. Thus, increasing the number of layers  
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Fig. 16 Effect of the number of layers on the tensile modulus 
 
 

improves the stress transfer between layers in the Z-direction and makes the SMC specimen stiffer. 

These investigations have also been handled in the literature to ensure the mechanical performance 

of SMC composites (Feraboli et al. 2009, Kravchenko et al. 2019). In addition, as the number of 

layers increases, the quasi-isotropy seems to increase, increasing the uniformity in the local volume 

fraction and orientation with the reduced sample-to-sample variability in effective properties. 

Despite the same statistical parameters, the different mesostructures between reconstructed models 

are obtained. Therefore, simulations make such variability denoted by a standard error in the graph.  

Comparing with the experiments, both crosshead and DIC measurements seem to fit well with 

experimental tests in the case of 5~7 layers. Since carbon fiber tows have 200~300 g/m2 fiber 

areal weight (FAW), they are assumed to have a 0.2 mm~0.3 mm  thickness. From the bundle 

thickness, the ideal lamination in the fiber bundles could be 10~15 layers for 3 mm specimen 

thickness when the resin is excluded. However, the number of layers becomes 5.5~8.25 when 

applied 55% fiber volume fraction to the number of the ideal lamination. Therefore, it is validated 

that the prediction with tensile simulation has a good agreement with experimental results. 

Next, a method is introduced for predicting tensile strength through the FE static simulation. The 

tensile strength of SMC composites is mainly dependent on the matrix based on the existing reports 

and our inspection of failure patterns in Fig. 11 (Martulli et al. 2019). Therefore, this study proposes 

that the strength of the SMC composite is predicted based on the matrix strength. In the previous 

section, the vinyl-ester resin has a strength of 65~80 MPa from tensile tests. An assumption is made 

that failure of SMC composites yields when the volume-averaged stress of the matrix region in the 

simulation models reaches the pure vinyl-ester’s strength from the experimental test. The volume-

averaged stress of the matrix region is computed as follows. 

𝜎𝑀𝑎𝑡𝑟𝑖𝑥 =
∫ �̂�1𝑑𝛺𝑀𝑎𝑡𝑟𝑖𝑥𝛺𝑀𝑎𝑡𝑟𝑖𝑥

∫ 𝑑𝛺𝑀𝑎𝑡𝑟𝑖𝑥𝛺𝑀𝑎𝑡𝑟𝑖𝑥

 (5) 

The volume-averaged stress in the matrix region is calculated when the uniaxial stress level of 

the specimen calculated in Eq. (3) reaches 260MPa, the tensile strength from the experimental tests. 

Fig. 17 shows the volume-averaged stress of the matrix for the different number of layers at the 

moment of reaching the experimental strength (260MPa). It is noted that decreasing the matrix 

volume-averaged stress with the increasing number of layers implies the decreasing load-carrying 
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Fig. 17 Volume average stress in the matrix region for the number of layers (red band: strength from the 

experiment) 
 

 
(a) 

 
(b) 

Fig. 18 Engineering principal strain contours: (a) SMC simulation (b) DIC measurement. 
 

 

by the matrix and increasing load-carrying by the fiber bundles. The higher modulus of the SMC 

specimen with the increasing number of layers, as shown in Fig. 16, seems to be attributed to this 

mechanism. The red band in Fig. 17 represents the range of pure resin strength from the experimental 

test. The matrix volume-averaged stress from the simulation matches with the experimental strength 

with 5~7 layers. This match sufficiently supports the proposed strength evaluation method using the 

high-fidelity SMC composite models. In Fig. 18, the heterogeneous strain distribution can be 

identified in the simulation, which is also observed in the experiment. It shows the influence of the 

spatially varying distribution of fiber bundles. In conclusion, it is demonstrated that the proposed 
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SMC reconstruction algorithm can directly reflect the mesostructure of the actual SMC composites, 

and also, the proposed strength and stiffness evaluation method can accurately predict the 

mechanical properties of actual SMC composites. 
 

 

5. Conclusions 
 

This paper proposed a novel multiscale modeling method for SMC composites using micro-CT 

image processing procedures and a novel bundle packing reconstruction algorithm. Different 

measurement techniques were adopted when predicting the SMC composites’ elastic modulus and 

successfully validated the prediction against the experimental results. Furthermore, the prediction 

of SMC composites’ strength and modulus through static FE simulations are investigated, and the 

following conclusions are made: 

• The micro-CT image processing was presented to obtain statistical distributions for the fiber 

bundle orientation and local volume fraction. 

• The reconstruction algorithm can efficiently generate high-fidelity SMC models directly 

utilizing the targeted statistical distribution from micro-CT image processing of actual specimens.  

• Experimental tensile tests were conducted, and corresponding FE simulations were 

demonstrated. 

• The effect of the number of layers in the predictions of strength and modulus of actual 

specimens was discussed, and the comparison was successfully conducted with experimental results 

measured differently: crosshead-based and DIC-based. 

• The strength prediction for SMC composites was proposed based on the volume-averaged stress 

in the matrix region and had a good agreement with experimental results. 
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