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Abstract.  In this article, stress analysis of laminated composite and sandwich cylindrical shells is presented using 
equivalent single layer higher-order shell theories. A theoretical unification of the several shell theories is presented 
using a generalized shell theory. A theory is independent of the choice of shape function associated with the transverse 
shear stress. The present theory satisfies traction free conditions on the top and bottom surfaces of the shell. The 
principle of virtual work is employed to formulate governing equations and boundary conditions. Closed-formed 
analytical solutions are obtained using the Navier’s solution technique. Numerical results are obtained for simply 
supported laminated composite and sandwich cylindrical shells. 
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1. Introduction 
 

Shell type structures carries loads and moments by a combined membrane and bending actions. 

Therefore, they are widely used in many engineering applications such as aerospace, automotive, 

civil, mechanical, etc. The stress analysis of laminated composite and sandwich cylindrical shells is 

of general interest to the researchers. The laminated shells made up of fibrous composite materials 

have high strength-to-weight and stiffness-to-weight ratios. Due to low transverse shear moduli of 

fibrous composite materials, transverse shear deformation is more significant in the kinematics of 

laminated and sandwich shells. Equivalent single layer (ESL) theories are widely used for the 

analysis of laminated composite beams, plates and shells. ESL beam, plate and shell theories are 

mainly classified into classical theory (Kirchhoff 1850), first order shear deformation theory 

(Mindlin 1951) and higher order shear deformation theories (Sayyad and Ghugal 2015, 2017a, Liew 

et al. 2011, Qatu and Asadi 2012). Classical shell theory and first first order shear deformation theory 

are inaccurate to predict correct bending behaviour of thick shells made up of composite materials 

in which transverse shear deformation is more significant. Therefore, researchers have developed 

higher order shear deformation theories to predict accurate bending behaviour of thick laminated 
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composite and sandwich shells. Higher order ESL theories are classified into 1) parabolic shear 

deformation theories (Bhimaraddi 1984, Kant and Khare 1997, Khare et al. 2005, Reddy 1984a, b, 

Ghumare and Sayyad 2019, Naik and Sayyad 2019) 2) trigonometric shear deformation theories 

(Levy 1877, Touratier 1991, Ghugal and Sayyad 2013, Sayyad and Ghugal 2013, 2014a, b, 2017b, 

Mantari et al. 2012a, Neves et al. 2012a) 3) hyperbolic shear deformation theories (Soldatos 1992, 

Akavci 2010, Neves et al. 2012b) 4) exponential shear deformation theories (Karama et al. 2009, 

Aydogdu 2009, Sayyad 2013, Sayyad and Ghugal 2014c) 5) mixed shear deformation theories (Thai 

et al. 2014) etc. 

Soldatos and Timarci (1993) and Timarci and Soldatos (1995) have presented static and vibration 

analysis of laminated composite cylindrical shells using various shear deformation theories. Zenkour 

and Fares (2000) presented modified first order shear deformation theory for the thermal analysis of 

laminated composite cylindrical shells. Alibeigloo (2009) presented static and free vibration analysis 

of angle-ply laminated cylindrical shells using the three-dimensional theory of elasticity by making 

use of state space differential quadrature method. Khdeir (2011) presented static and free vibration 

analysis of cross-ply laminated cylindrical panels and circular cylindrical shells using first order 

shear deformation theory. Solutions are obtained for different sets of boundary conditions using the 

state space method. Asadi et al. (2012) presented static and free vibration analysis of laminated 

cylindrical shells using first order shear deformation theory. Khalili et al. (2012) have developed 

higher order shear and normal deformation theory for the free vibration analysis of homogenous 

isotropic circular cylindrical shells. Mantari et al. (2011, 2012) and, Mantari and Soares (2012, 2014) 

presented static and free vibration analysis of laminated composite plates and shells using higher-

order shear deformation theories. Viola et al. (2013) presented static analysis of doubly-curved shells 

using various higher order shear deformation theories. Tornabene et al. (2012a, b) and Tornabene 

and Viola (2013) presented a new procedure to obtain through-the-thickness distributions of strains 

and stresses in laminated composite and sandwich singly-curved and doubly-curved shells. 

Tornabene et al. (2014) presented static flexural analysis of doubly curved anisotropic shell panels 

using differential quadrature method based on Carrera’s unified formulation. Tornabene et al. 

(2015a, b, c, 2016, 2017) presented a new procedure to recover inter-laminar stresses in singly-

curved and doubly-curved laminated composite and functionally graded shells.  

Carrera and Brischetto (2008, 2009) have presented analysis of laminated composite and 

sandwich shells using various kinematic models. Carrera et al. (2011) presented a comparison of 

various shell theories for the free vibration analysis of multi-layered, orthotropic cylindrical shells 

using Carrera’s unified formulation. Carrera et al. (2013, 2015) have presented mechanical and 

thermal analysis of cylindrical and doubly-curved laminated composite and sandwich shells using 

Carrera’s unified formulation. Recently, Sayyad and Ghugal (2019) presented static and free 

vibration analysis of laminated composite and sandwich spherical shells using a generalized shell 

theory.  

 

1.1 Objectives of present study  
 

A generalized shell theory is presented in this study with the following objectives.    

1) To present a theoretical unification of equivalent single layer higher order shell theories using 

a generalized shell theory. The parabolic shear deformation shell theory (PSDST) of Reddy (1984), 

trigonometric shear deformation shell theory (TSDST) of Levy (1877), hyperbolic shear 

deformation shell theory (HSDST) of Soldatos (1992), exponential shear deformation shell theory 

(ESDST) of Karama et al. (2009), first order shear deformation shell theory (FSDST) of Mindlin 
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(1951) and classical shell theory (CST) of Kirchhoff (1850) are recovered from the present 

generalized shell theory.   

2) To present transverse deflection and through-the-thickness distributions of stresses of 

laminated composite and sandwich cylindrical shells.   

3) To recover transverse shear stresses from 3D stress equilibrium equations of elasticity to 

ascertain continuity at layer interface/s.     

Governing equilibrium equations of the present theory are derived using the principle of virtual 

work. Closed-formed analytical solutions are obtained using the Navier’s solution technique for 

simply supported boundary conditions of cylindrical shells. A computer code is developed in Fortran 

77 to determine displacemnts and stresses. All numerical results are obtained for isotropic, laminated 

composite and sandwich cylindrical shells and are presented in non-dimensional form. Numerical 

results for the plates are compared with 3D elasticity solutions presented by Pagano (1970) whereas 

numerical results for the cylindrical shells are compared with previously published results in the 

literature.  

      

 
2. Theoretical formulation 
 

2.1 Cylindrical shell under consideration 
 

A cylindrical shell of rectangular planform of width a,length b, thickness h shown in Fig. 1 is 

used in the theoretical formulation. x, y, z represent laminate axes and 1, 2, 3 represent material axes. 

R denotes the principal radius of curvature of the middle plane along the chordwise (i.e., x)  

direction. The planform is bounded by the region 0 , 0  and 2 2x a y b h z h    −   . Laminated 

composite shell is made up of orthotropic composite material and composed of a N number of layers. 

All layers are assumed to be perfectly bonded together. Laminated shell is subjected to uniform load.   

 

2.2 Kinematics of the present unified shell theory 
 

A generalized shell theory is developed for the stress analysis of laminated composite and 

 

 

 

Fig. 1 Geometry of the cylindrical shell with rectangular planform and coordinate systems 

105



 

 

 

 

 

 

Atteshamuddin S. Sayyad and Yuwaraj M. Ghugal 

sandwich cylindrical shells. In-plane displacement field uses extension, bending and shear 

components. Transverse displacement is assumed to be function of x and y coordinates only i.e., 

effect of transverse normal strain is neglected. Polynomial, trigonometric, hyperbolic and 

exponential type transverse shear strain functions are used to account for the effect of transverse 

shear deformation. Hence, the displacement field of the present generalized shell theory is 

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

0

0

0

0

0

,
, , 1 , ,

,
, , , ,
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u x y z u x y z z x y
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 

 

 
= + − + 

 


= − +



=

                (1) 

Here u, v and w are the displacements of any point of shell in the x-, y- and z-directions, 

respectively; 
0 0 0, ,u v w  are the displacements of any point on the middle plane of the shell in the x-

, y- and z-directions, respectively; ( )z  represent shape functions associated with the transverse 

shear strain along the shell thickness. Following shape functions are used in Eq. (1) to recover 

classical and higher-order shell theories such as PSDST, TSDST, HSDST, ESDST, FSDST and CST. 

PSDST: ( ) ( )( )
2

1 4 3z z / z , z z / h  = − =
 

 

TSDST: ( ) ( ) ( )sinz h / z  =  

HSDST: ( ) ( ) ( )cosh 1 2 sinhz z / h z = −  

ESDST: ( ) ( )
2

2 z
z z e

−
=  

FSDST: ( )z z =  

CST: ( ) 0z =  

Normal and shear strain components ( ), , , ,x y xy xz yz       of the present displacement field 

stated in Eq. (1) are derived using following strain-displacement relations. 

0

, , ,

,

x y xy

xz yz

u w v v u

x R y x y

uw u w v

x z R y z

  

 

   
= + = = +
   

   
= + − = +
   

                     (2) 

Following are the strain components obtained using Eqs. (1) and (2) 

( )
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0
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=
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                            (3) 
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where 

2
0 1 2 00 0 0 0

2

2
1 2 00 0 0

2

2
1 2 0 00
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                 (4) 

 
2.3 Constitutive relations 

 

The following constitutive relations are used to obtain stress components of the kth layer of the 

laminated composite and sandwich shells composed of N number of layers. 

( ) ( ) ( )
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                   (5) 

where Qij are the stiffness coefficients and expressed in-terms of engineering constants as follows 

1 21 1 2
11 12 22

12 21 12 21 12 21

66 12 55 13 44 23

,
1 1 1

, ,

E E E
Q , Q , Q

Q G Q G Q G



     
= = =

− − −

= = =

                  (6) 

 

2.4 Governing equations 
 

The principle of virtual work stated in Eq. (7) is used to formulate governing equations. 

0ij ij
dV dA

dV q wdA  − =                             (7) 

where   is the variational operator. Eq. (7) can be written in following form    

( ) ( ), 0x x y y zx xz yz yz xy xy
V A

dV q x y wdA          + + + + − =         (8) 

Substituting strain components ( ), , , ,x y xy xz yz     from Eq. (3) into the Eq. (8), one can get Eq. 

(9). 

 ( ) ( ) ( )

( ) ( )  ( )
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+ + − =




   (9) 

After performing integrations with respect to z coordinate and, introducing the force and moment 
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resultants into Eq. (9), one can get 


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where expressions for force and moment resultants can be obtained using following relations. 

Superscript b is used for the resultants due to bending whereas superscript s is used for the resultants 

due to shear deformation. 

  ( ) 

  ( ) 

  ( ) 

    ( )

1

1

1

1

1

1

1

1

1

1

1

k

k

k

k

k

k

k

k

N hT Tb s k

x x x x
h

k

N hT Tb s k

y y y y
h

k

N hT Tb s k

xy xy xy xy
h

k

N hT T

x y xz yz
h

k

N M M z z dz

N M M z z dz

N M M z z dz

Q Q ' z dz

 

 

 

  

+

+

+

+

=

=

=

=

=

=

=

=









                  (11) 

By substituting the stresses from Eq. (5) into Eq. (11), the following expressions of the force and 

moment resultants can be obtain 
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where , , , , , ,ij ij ij ij ij ij ijA B D As Bs Ass Acc  are the cylindrical shell stiffnesses, defined as follows 
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Following governing equations of the present generalized shell theory are obtained by integrating 

the Eq. (10) by parts and setting the coefficients of
0 0 0 andu , v , w ,     equal to zero.  
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The boundary conditions along edges x=0 and x=a obtained are of the following form 
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 and along y=0 and y=b edges, the boundary conditions are as follows 

0 or is specified
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           (17)          

Using expressions of force and moment resultants from Eqs. (12) and (13) into the Eq. (15), the 

governing equations of the present theory in terms of five unknowns ( 0 0 0 andu ,v , w ,  ) can be 

written as follows 
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    (22) 

 

 
3. Closed-formed analytical solutions for cylindrical shells  
 

Closed-formed analytical solutions for the simply supported laminated composite and sandwich 

cylindrical shells are obtained using Navier’s technique. Following are the simply supported 

boundary conditions.  

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

0 0
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x y

b b

x y

s s

x y

N x x a N y y b

v x x a u y y b
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x x a y y b
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M x x a M y y b

 

= = = = = =

= = = = = =

= = = = =

= = = = = =

= = = = = =

= = = = = =

                     (23) 

The uniform transverse load acting on the cylindrical shell is presented in the following form. 

110



 

 

 

 

 

 

Stress analysis of laminated composite and sandwich cylindrical shells using a generalized shell theory 

( ) 0

1 22
1 1

16
, sin sin

m n

q
q x y x y

mn
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

 

= =

=                        (24) 

where, α1=mπ/a, α2=nπ/a; q0 represents the intensity of the load and (m, n) are odd integers. To 

satisfy simply supported boundary conditions stated in Eq. (23), the unknown variables of the 

present generalized shell theory are presented in the following Fourier series.  
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                (25) 

where umn, vmn, wmn, ϕmn, ψmn are the unknown coefficients of the respective Fourier series. Using 

transverse load from Eq. (24), assumed displacement variables from Eq. (25) and governing Eqs. 

(18)-(22), one can get the following systems of equations.  

    K F =                               (26) 

Displacements and stresses in laminated composite and sandwich shells are determined using 

solution of Eq. (26). Elements of stiffness matrix [K] are given below.  
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          (27) 

Since the stiffness matrix [K] is a symmetric matrix, K21=K12, K13=K31, K23=K32, K14=K41, 

K24=K42, K34=K43, K15=K51, K25=K52, K35=K53, K45=K54. Elements of displacement and force vectors 

are as follows. 
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4. Numerical results and discussions 
 

In this section, displacements and stresses of isotropic, laminated composite and sandwich 

cylindrical shells under uniform loading is presented. Numerical results are presented in Tables 1 

through 4 and graphically in Figs. 2 through 13. The following material properties are used to 

obtained numerical results: 

Material 1 

( )
1 2 3 13 23 12 12 32 31210 0 3

2 1

E
E E E GPa ,G G G G , .   


= = = = = = = = = = =

+
      (29)  

Material 2 

1 2 3 13 23 12 12 32 310 04 0 5 0 06 0 016 0 25E E . , E . , G G . , G . , .  = = = = = = = = =        (30) 

Material 3 

3 13 231 12
12 13 23

2 2 2 2 2

25 1 0 5 0 2 0 25
E G GE G

, , . , . , .
E E E E E

  = = = = = = = =            (31)  

The following non-dimensional forms are used to present the displacements and stresses. 
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   
= =   

   

     
= = =     

     

      (32) 

where E3 is modulus of elasticity of middle layer in z-direction. Following three types of cylindrical 

shells are analyzed in the present study. 

1. Isotropic cylindrical shell 

2. Laminated cylindrical shell (0°/90° and 0°/90°/0°) 

3. Sandwich cylindrical shell (0°/core/0°)  

All graphical results are plotted for R/a=5 and a/h=4. 

 
4.1 Recovery of transverse shear stresses 

 

In multilayered laminated composite structures, if interlaminar transverse shear stresses are 

obtained using the constitutive relations it leads to the discontinuity at the layer interface and thus 

violates the equilibrium conditions. Therefore, in the present study, the transverse shear stresses are 

evaluated by direct integration of three-dimensional stress equilibrium equations of theory of 

elasticity neglecting the body forces.  
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Table 1 Non-dimensional transverse displacements (10 w ) for laminated cylindrical shells under uniform load 

with (a=10h) 

R/a Model Theory Isotropic 0°/90° 0°/90°/0° 0°/core/0° 

0.5 

Model 1 PSDST 11.022 5.6951 4.6324 9.6018 

Model 2 TSDST 11.022 5.6947 4.6474 9.6175 

Model 3 HSDST 11.022 5.6947 4.6310 9.5996 

Model 4 ESDST 11.022 5.6927 4.6637 9.6175 

Model 5 FSDST 11.024 5.0992 4.4113 7.6574 

Asadi et al. (2012) FSDTQ 12.108 5.9687 4.4754 --- 

Asadi et al. (2012) 3D-FEM 12.242 5.9629 4.7425 --- 

Tornabene et al. (2012) FSDT-GDQ --- 5.9627 4.4752 --- 

1 

Model 1 PSDST 26.325 12.164 8.1755 13.486 

Model 2 TSDST 26.324 12.157 8.2240 13.519 

Model 3 HSDST 26.325 12.150 8.1710 13.482 

Model 4 ESDST 26.328 12.072 8.2679 13.519 

Model 5 FSDST 26.222 12.394 7.4570 9.8544 

Asadi et al. (2012) FSDTQ 28.333 12.738 7.8589 --- 

Asadi et al. (2012) 3D-FEM 28.415 12.679 8.6399 --- 

Tornabene et al. (2012) FSDT-GDQ --- 12.736 7.8587 --- 

2 

Model 1 PSDST 39.188 16.771 10.064 14.966 

Model 2 TSDST 39.185 16.755 10.138 15.007 

Model 3 HSDST 39.188 16.741 10.057 14.961 

Model 4 ESDST 39.194 16.571 10.203 15.007 

Model 5 FSDST 38.926 17.432 8.9857 10.594 

Asadi et al. (2012) FSDTQ 40.956 17.141 9.5159 --- 

Asadi et al. (2012) 3D-FEM 40.875 17.009 10.661 --- 

Tornabene et al. (2012) FSDT-GDQ --- 17.139 9.5157 --- 

 

 

The transverse shear stresses of kth lamina can be obtained by integrating of Eq. (33) with respect 

to the thickness coordinate i.e., z. The layerwise integration of Eq. (33) is need to be performed. The 

integration constants (C1 and C2) are determined by imposing the continuity conditions at layer 

interface as well as shear stress boundary conditions at top and bottom surfaces of the shell. 

 

4.2 Discussion on numerical results 
 

A comparison of non-dimensional transverse displacement for isotropic, laminated composite 

and sandwich cylindrical shells subjected to uniform load is shown in Table 1. The present results 

are compared with those presented by Asadi et al. (2012) and Tornabene et al. (2012). The numerical 

results are obtained for different R/a ratios and a/h=0. It can be seen from Table 1 that the present 

results are in good agreement with those available in the literature for isotropic and laminated 

cylindrical shells. Numerical results for sandwich cylindrical shells are not presented by Asadi et al. 

(2012) and Tornabene et al. (2012).  

Values of non-dimensional displacements and stresses for the isotropic cylindrical shell subjected 

to uniform load are presented in Table 2. Numerical results are obtained using six displacement  
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Table 2 Non-dimensional displacements and stresses of isotropic cylindrical shell under uniform load with 

(a=10h) 

R/a Model Theory w  x  y  
xy  

xz  yz  

5 

Model 1 PSDST 4.5284 0.2578 0.2571 0.2182 0.4752 0.4747 

Model 2 TSDST 4.5281 0.2580 0.2572 0.2185 0.4742 0.4737 

Model 3 HSDST 4.5284 0.2578 0.2570 0.2182 0.4753 0.4741 

Model 4 ESDST 4.5292 0.2584 0.2576 0.2193 0.4803 0.4789 

Model 5 FSDST 4.4926 0.2562 0.2571 0.2214 0.4841 0.4836 

10 

Model 1 PSDST 4.6309 0.2756 0.2752 0.2103 0.4834 0.4832 

Model 2 TSDST 4.6305 0.2757 0.2753 0.2105 0.4824 0.4823 

Model 3 HSDST 4.6309 0.2756 0.2751 0.2103 0.4835 0.4827 

Model 4 ESDST 4.6317 0.2761 0.2757 0.2114 0.4885 0.4870 

Model 5 FSDST 4.5933 0.2738 0.2752 0.2135 0.4922 0.4921 

20 

Model 1 PSDST 4.6572 0.2830 0.2828 0.2052 0.4855 0.4854 

Model 2 TSDST 4.6569 0.2831 0.2829 0.2054 0.4845 0.4845 

Model 3 HSDST 4.6572 0.2830 0.2827 0.2052 0.4856 0.4849 

Model 4 ESDST 4.6580 0.2835 0.2833 0.2063 0.4906 0.4891 

Model 5 FSDST 4.6192 0.2811 0.2828 0.2085 0.4943 0.4943 

50 

Model 1 PSDST 4.6647 0.2869 0.2868 0.2018 0.4861 0.4860 

Model 2 TSDST 4.6643 0.2870 0.2869 0.2020 0.4851 0.4851 

Model 3 HSDST 4.6647 0.2869 0.2867 0.2018 0.4862 0.4855 

Model 4 ESDST 4.6655 0.2875 0.2874 0.2029 0.4912 0.4899 

Model 5 FSDST 4.6265 0.2850 0.2868 0.2051 0.4949 0.4949 

100 

Model 1 PSDST 4.6657 0.2881 0.2881 0.2006 0.4862 0.4861 

Model 2 TSDST 4.6654 0.2882 0.2882 0.2008 0.4852 0.4852 

Model 3 HSDST 4.6657 0.2881 0.2881 0.2006 0.4863 0.4863 

Model 4 ESDST 4.6665 0.2887 0.2886 0.2017 0.4913 0.4911 

Model 5 FSDST 4.6275 0.2862 0.2881 0.2039 0.4950 0.4950 

∞ (Plate) 

Model 1 PSDST 4.6661 0.2893 0.2893 0.1994 0.4862 0.4862 

Model 2 TSDST 4.6657 0.2894 0.2894 0.1996 0.4852 0.4852 

Model 3 HSDST 4.6661 0.2893 0.2893 0.1993 0.4863 0.4863 

Model 4 ESDST 4.6669 0.2898 0.2898 0.2005 0.4913 0.4913 

Model 5 FSDST 4.6279 0.2893 0.2893 0.2027 0.4950 0.4950 

Pagano (1970) Elasticity 4.4381 0.2873 0.2873 -- 0.4949 0.4949 

Sayyad and Ghugal (2014a) SSNPT 4.4238 0.3049 0.3049 0.1941 0.4944 0.4944 

 

 

models recovered from the present generalized shell theory. All results are presented for a/h=10 and 

R/a=5, 10, 20, 50, 100. Material properties defined by Eq. (29) are used. Numerical results show 

that the non-dimensional displacements and stresses predicted by various shear deformation theories 

approach each other as the R/a ratio increases. Results obtained by PSDT, TSDT and HSDT are in 

excellent agreement with each other whereas ESDT slightly overestimates the values. Displacements 

and stresses obtained for isotropic plate (R/a→∞) by using all higher-order theories are in excellent 

agreement with exact elasticity solutions presented by Pagano (1970). 
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Fig. 2 Through-the-thickness distribution of in-plane 

normal stress (σx) for (0°/90°) laminated composite 

cylindrical shells subjected to uniform load 

Fig. 3 Through-the-thickness distribution of in-plane 

normal stress (σy) for (0°/90°) laminated composite 

cylindrical shells subjected to uniform load 

 

  

Fig. 4 Through-the-thickness distribution of 

transverse shear stress (τxz) for (0°/90°) laminated 

composite cylindrical shells subjected to uniform 

load 

Fig. 5 Through-the-thickness distribution of 

transverse shear stress (τyz) for (0°/90°) laminated 

composite cylindrical shells subjected to uniform 

load 

 

 

The present generalized shell theory is applied for the stress analysis of (0°/90°) anti-symmetric 

and (0°/90°/0°) symmteric laminated composite cylindrical shells. Displacements and stresses of the 

two-layer (0°/90°) anti-symmetric laminated cylindrical shell under uniform load are presented in 

Table 3. Both the layers are of equal thickness i.e., h/2. Material properties defined by Eq. (31) and 

non-dimensional form defined by Eq. (32) are used to represent the numerical results. It is observed 

that the transverse displacement obtained by using PSDT, TSDT and HSDT are in excellent 

agreement with each other. ESDT underestimates the transverse displacement for all R/a ratios. It is 

observed that the non-dimensional transverse displacement and stresses are increased with respect 
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to increase in R/a ratios. Figs. 2 and 3 show through-the-thickness distributions of in-plane normal 

stresses for (0°/90°) anti-symmetric laminated cylindrical shell under uniform load. Maximum 

normal stresses are observed at extreme fibres of thickness. In-plane normal stress (σx) is maximum 

at z=-h/2 and zero at z=-0.25h whereas in-plane normal stress (σy) is maximum at z=h/2 and zero at 

z=0.25h. To ascertain the continuity of transverse shear stress at layer interface, they are obtained 

using Eq. (33). Figs. 4 and 5 show through-the-thickness distributions of transverse shear stresses 

for (00/900) anti-symmetric laminated cylindrical shell under uniform load. Transverse shear stresses 

are zero at top and bottom surfaces of the shell whereas maximum at z=±0.25h.  

 

 
Table 3 Non-dimensional displacements and stresses of two-layer (0°/90°) laminated composite cylindrical 

shell under uniform load (a=10h) 

R/a Model Theory w  x  y  
xy  

xz  yz  

5 

Model 1 PSDST 1.8740 1.0530 0.1220 0.1157 0.1885 0.2348 

Model 2 TSDST 1.8720 1.0551 0.1221 0.1160 0.1830 0.2301 

Model 3 HSDST 1.8702 1.0518 0.1219 0.1151 0.1885 0.2348 

Model 4 ESDST 1.8482 1.0542 0.1216 0.1140 0.1940 0.2420 

Model 5 FSDST 1.8621 1.0169 0.1222 0.1121 0.2181 0.2648 

10 

Model 1 PSDST 1.9059 1.0851 0.1254 0.1078 0.2024 0.2261 

Model 2 TSDST 1.9038 1.0873 0.1255 0.1081 0.1969 0.2213 

Model 3 HSDST 1.9019 1.0837 0.1253 0.1073 0.2024 0.2261 

Model 4 ESDST 1.8791 1.0860 0.1249 0.1063 0.2077 0.2340 

Model 5 FSDST 1.8938 1.0486 0.1256 0.1049 0.2322 0.2560 

20 

Model 1 PSDST 1.9141 1.0965 0.1266 0.1034 0.2088 0.2207 

Model 2 TSDST 1.9120 1.0987 0.1266 0.1037 0.2033 0.2159 

Model 3 HSDST 1.9101 1.0951 0.1265 0.1029 0.2088 0.2207 

Model 4 ESDST 1.8870 1.0974 0.1260 0.1020 0.2140 0.2292 

Model 5 FSDST 1.9019 1.0597 0.1268 0.1005 0.2386 0.2506 

50 

Model 1 PSDST 1.9164 1.1018 0.1271 0.1006 0.2124 0.2171 

Model 2 TSDST 1.9143 1.1041 0.1271 0.1009 0.2069 0.2124 

Model 3 HSDST 1.9124 1.1004 0.1270 0.1001 0.2124 0.2171 

Model 4 ESDST 1.8893 1.1027 0.1265 0.0993 0.2175 0.2260 

Model 5 FSDST 1.9042 1.0647 0.1273 0.0977 0.2422 0.2470 

100 

Model 1 PSDST 1.9167 1.1033 0.1272 0.0997 0.2135 0.2159 

Model 2 TSDST 1.9146 1.1056 0.1272 0.1000 0.2080 0.2111 

Model 3 HSDST 1.9127 1.1019 0.1271 0.0992 0.2135 0.2159 

Model 4 ESDST 1.8896 1.1042 0.1267 0.0983 0.2187 0.2249 

Model 5 FSDST 1.9045 1.0661 0.1275 0.0967 0.2434 0.2458 

∞ (Plate) 

Model 1 PSDST 1.9169 1.1047 0.1274 0.0987 0.2147 0.2147 

Model 2 TSDST 1.9147 1.1070 0.1274 0.0990 0.2100 0.2100 

Model 3 HSDST 1.9128 1.1033 0.1273 0.0982 0.2147 0.2147 

Model 4 ESDST 1.8897 1.1056 0.1268 0.0974 0.2198 0.2238 

Model 5 FSDST 1.9046 1.0674 0.1276 0.0958 0.2445 0.2445 

Pagano (1970) Elasticity 1.9320 1.0860 0.1300 --- 0.2460 0.2480 

Sayyad and Ghugal (2014a) SSNPT 1.9070 1.1057 0.1307 0.0978 0.2100 0.2100 
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Table 4 Non-dimensional displacements and stresses of three-layer (00/900/00) laminated composite cylindrical 

shells under uniform load with (a=10h) 

R/a Model Theory w  x  y  
xy  

xz  yz  

5 

Model 1 PSDST 1.0757 0.8172 0.0463 0.0710 0.6186 0.3810 

Model 2 TSDST 1.0842 0.8223 0.0467 0.0716 0.6137 0.3774 

Model 3 HSDST 1.0749 0.8167 0.0462 0.0710 0.6189 0.3818 

Model 4 ESDST 1.0916 0.8415 0.0472 0.0719 0.6217 0.3913 

Model 5 FSDST 0.9531 0.7590 0.0407 0.0607 0.7017 0.4126 

10 

Model 1 PSDST 1.0864 0.8311 0.0473 0.0654 0.6241 0.3847 

Model 2 TSDST 1.0950 0.8364 0.0477 0.0660 0.6192 0.3810 

Model 3 HSDST 1.0856 0.8306 0.0473 0.0653 0.6243 0.3854 

Model 4 ESDST 1.1026 0.8560 0.0483 0.0662 0.6270 0.3944 

Model 5 FSDST 0.9614 0.7705 0.0415 0.0557 0.7067 0.4158 

20 

Model 1 PSDST 1.0891 0.8360 0.0477 0.0624 0.6254 0.3856 

Model 2 TSDST 1.0977 0.8414 0.0481 0.0630 0.6206 0.3819 

Model 3 HSDST 1.0883 0.8355 0.0477 0.0624 0.6257 0.3863 

Model 4 ESDST 1.1054 0.8611 0.0487 0.0632 0.6283 0.3948 

Model 5 FSDST 0.9635 0.7746 0.0419 0.0530 0.7079 0.4166 

50 

Model 1 PSDST 1.0898 0.8383 0.0479 0.0606 0.6258 0.3858 

Model 2 TSDST 1.0985 0.8437 0.0484 0.0611 0.6210 0.3822 

Model 3 HSDST 1.0890 0.8378 0.0479 0.0605 0.6261 0.3865 

Model 4 ESDST 1.1062 0.8634 0.0489 0.0614 0.6287 0.3954 

Model 5 FSDST 0.9641 0.7765 0.0421 0.0514 0.7083 0.4168 

100 

Model 1 PSDST 1.0899 0.8389 0.0480 0.0600 0.6259 0.3859 

Model 2 TSDST 1.0986 0.8443 0.0484 0.0605 0.6210 0.3822 

Model 3 HSDST 1.0891 0.8384 0.0480 0.0599 0.6262 0.3866 

Model 4 ESDST 1.1063 0.8641 0.0490 0.0608 0.6288 0.3951 

Model 5 FSDST 0.9642 0.7771 0.0421 0.0508 0.7083 0.4169 

∞ (Plate) 

Model 1 PSDST 1.0900 0.8395 0.0481 0.0593 0.6259 0.3859 

Model 2 TSDST 1.0986 0.8449 0.0485 0.0599 0.6210 0.3822 

Model 3 HSDST 1.0892 0.8390 0.0480 0.0593 0.6262 0.3866 

Model 4 ESDST 1.1063 0.8647 0.0490 0.0601 0.6273 0.3952 

Model 5 FSDST 0.9642 0.7776 0.0422 0.0503 0.7083 0.4169 

Pagano (1970) Elasticity 1.1539 0.8708 0.0529 --- 0.6279 0.4009 

Sayyad and Ghugal (2014a) SSNPT 1.0954 0.8436 0.0510 0.0594 0.6139 0.3553 

 

 

Table 4 shows displacements and stresses in (0°/90°/0°) symmteric laminated composite 

cylindrical shells under uniform load. All the layers are of equal thickness i.e., h/3 and made up of 

material properties defined by Eq. (31). It is observed that the distributions of these stresses 

according to PSDT, TSDT and HSDT are in excellent agreement with each other whereas ESDT 

and FSDT underestimate the same. Figs. 6 and 7 show through-the-thickness distributions of in-

plane normal stresses for (0°/90°/0°) symmteric laminated cylindrical shell under uniform load. In 

symmetric lamination scheme, maximum normal stresses are observed at extreme fibres of thickness 

and zero at z=0 i.e., mid-plane. Figs. 8 and 9 show through-the-thickness distributions of transverse  
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Fig. 6 Through-the-thickness distribution of in-plane 

normal stress (σx) for (0°/90°/0°) laminated 

composite cylindrical shells subjected to uniform 

load 

Fig. 7 Through-the-thickness distribution of in-plane 

normal stress (σy) for (0°/90°/0°) laminated 

composite cylindrical shells subjected to uniform 

load 

 

  

Fig. 8 Through-the-thickness distribution of 

transverse shear stress (τxz) for (00/900/00) laminated 

composite cylindrical shells subjected to uniform 

load 

Fig. 9 Through-the-thickness distribution of 

transverse shear stress (τyz) for (00/900/00) laminated 

composite cylindrical shells subjected to uniform 

load 

 

 

shear stresses for (0°/90°/0°) symmteric laminated cylindrical shell under uniform load.   

In the last problem, the present generalized shell theory is applied for the stress analysis of 

symmetric sandwich (0°/core/0°) cylindrical shells under uniform load. Top and bottom layers of 

the shell i.e., face sheets are of thickness 0.1h whereas middle layer i.e., core is of thickness 0.8h, 

where h is the overall thickness of the shell. The material properties of the core material are given 

by Eq. (30) whereas those of the face sheets are given by Eq. (31). Non-dimensional displacements 

and stresses for this problem are presented in Table 5. It is pointed out from Table 5 that all the  
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Table 5 Non-dimensional displacements and stresses of three-layer (0°/core/0°) sandwich cylindrical shell 

under uniform load (a=10h) 

R/a Model Theory w  x  y  
xy  

xz  yz  

5 

Model 1 PSDST 1.5436 1.6349 0.0999 0.1780 0.5388 0.1672 

Model 2 TSDST 1.5480 1.6395 0.1004 0.1786 0.5382 0.1672 

Model 3 HSDST 1.5430 1.6345 0.0998 0.1779 0.5390 0.1673 

Model 4 ESDST 1.5481 1.6530 0.1003 0.1784 0.5398 0.1672 

Model 5 FSDST 1.0819 1.5467 0.0707 0.1358 0.5678 0.1543 

10 

Model 1 PSDST 1.5505 1.6486 0.1102 0.1642 0.5408 0.1682 

Model 2 TSDST 1.5550 1.6533 0.1107 0.1648 0.5402 0.1682 

Model 3 HSDST 1.5499 1.6482 0.1101 0.1641 0.5410 0.1683 

Model 4 ESDST 1.5550 1.6651 0.1105 0.1648 0.5414 0.1682 

Model 5 FSDST 1.0852 1.5551 0.0777 0.1257 0.5691 0.1550 

20 

Model 1 PSDST 1.5523 1.6536 0.1153 0.1570 0.5413 0.1685 

Model 2 TSDST 1.5567 1.6583 0.1158 0.1576 0.5407 0.1684 

Model 3 HSDST 1.5517 1.6532 0.1152 0.1570 0.5415 0.1685 

Model 4 ESDST 1.5568 1.6694 0.1156 0.1577 0.5419 0.1684 

Model 5 FSDST 1.0860 1.5580 0.0812 0.1205 0.5695 0.1552 

50 

Model 1 PSDST 1.5528 1.6559 0.1183 0.1527 0.5415 0.1686 

Model 2 TSDST 1.5572 1.6606 0.1189 0.1533 0.5408 0.1685 

Model 3 HSDST 1.5522 1.6555 0.1183 0.1526 0.5416 0.1686 

Model 4 ESDST 1.5573 1.6715 0.1186 0.1535 0.5420 0.1685 

Model 5 FSDST 1.0863 1.5594 0.0833 0.1173 0.5696 0.1552 

100 

Model 1 PSDST 1.5528 1.6566 0.1193 0.1512 0.5415 0.1686 

Model 2 TSDST 1.5573 1.6613 0.1199 0.1518 0.5408 0.1685 

Model 3 HSDST 1.5522 1.6562 0.1193 0.1512 0.5416 0.1686 

Model 4 ESDST 1.5573 1.6720 0.1196 0.1520 0.5421 0.1685 

Model 5 FSDST 1.0863 1.5598 0.0840 0.1162 0.5696 0.1552 

∞ (Plate) 

Model 1 PSDST 1.5528 1.6572 0.1203 0.1497 0.5426 0.1686 

Model 2 TSDST 1.5573 1.6620 0.1209 0.1503 0.5423 0.1685 

Model 3 HSDST 1.5523 1.6568 0.1203 0.1497 0.5427 0.1686 

Model 4 ESDST 1.5574 1.6969 0.1206 0.1506 0.5423 0.1685 

Model 5 FSDST 1.0863 1.5601 0.0847 0.1152 0.5696 0.1552 

Pagano (1970) Elasticity 1.7537 1.8098 0.1717 0.1336 0.5453 0.1021 

Sayyad and Ghugal (2014a) SSNPT 1.5500 1.6579 0.1285 0.1479 0.5384 0.1692 

 

 

results predicted by the present theories for sandwich cylindrical shell for all R/a ratios are in 

excellent agreement with each other. Figs. 10 and 11 show that the maximum in-plane normal 

stresses are occurred in face sheets due to stiff fibrous composite material whereas in-plane normal 

stresses in middle core are very small due to low Young’s and shear moduli of soft-core material. 

Figs. 12 and 13 show through-the-thickness distributions of transverse shear stresses for (0°/core/0°) 

sandwich cylindrical shells subjected to uniform load.       
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Fig. 10 Through-the-thickness distribution of 

in-plane normal stress (σx) for (0°/core/0°) 

sandwich cylindrical shells subjected to 

uniform load 

Fig. 11 Through-the-thickness distribution of 

in-plane normal stress (σy) for (0°/core/0°) 

sandwich cylindrical shells subjected to 

uniform load 

 

  
Fig. 12 Through-the-thickness distribution of 

transverse shear stress (τxz) for (0°/core/0°) 

sandwich cylindrical shells subjected to 

uniform load 

Fig. 13 Through-the-thickness distribution of 

transverse shear stress (τyz) for (0°/core/0°) 

sandwich cylindrical shells subjected to 

uniform load 

 

 
5. Conclusions 
 

In this study, a generalized shell theory is presented and applied for the stress analysis of 

laminated composite and sandwich cylindrical shells. The present generalized shell theory is 

developed with the inclusion of different shape functions in-terms of thickness coordinate to account 

for the effect of transverse shear deformation. The generalized governing equations are derived by 
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using the principle of virtual work. Closed-formed solutions for the stress analysis of simply 

supported cylindrical shells are obtained using Navier’s solution technique. Numerical results 

obtained using all the models are in excellent agreement with each other. Transverse shear stresses 

are recovered from 3-D stress equilibrium equations of elasticity for laminated composite and 

sandwich cylindrical shells. Therefore, it is recommended that the present theory can be extended 

for the static analysis of laminated composite and sandwich shells of double curvature. 
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