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Abstract.  The main contribution of this work is the design of a field programmable gate array (FPGA) 

based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification 

(FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-

Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of 

uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and 

estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The 

effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the 

freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement 

for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively. 
 

Keywords:  PUMA robot manipulator; FPGA based PI observer; fault diagnosis; ARX method; ARX-

Laguerre technique; observation fault diagnosis; PI observation technique 

 
 
1. Introduction 
 

Industrial robot manipulators are set of links that are connected by diverse of joints. These 

complex systems are time varying based on wear and tear, multi-input multi-output (MIMO), 

coupling effect and uncertain which used to replace human workers in many fields such as in 

industrial or in the manufacturing. Complexities of the tasks and nonlinear parameters in industrial 

robots caused to have various difficulties for fault diagnosis and tolerant. Therefore, fault detection 

and isolation (FDI) are necessary to identify faults before impairment the industrial robot. Several 

types of defects have been defined in industrial robot arms, which are divided into three main 

categories: actuator faults, plant faults, and sensor faults (Siciliano and Khatib 2016, Ngoc et al. 

2016).  

To fault diagnosis, hardware-based method and functional-based algorithm have been 

introduced by various researchers (Del Titolo et al. 2002). Apart from multiple advantages in 

hardware-based fault diagnosis, flexibility in design and price are two significant drawbacks. The 

functionally based fault diagnosis has been introduced to solve these drawbacks (Lafont et al. 
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2015, Badihi et al. 2017, Wang et al. 2016, Khalastch et al. 2017, Stavrou et al. 2016, Lopez-

Estrada et al. 2016, Van et al. 2016, Anh et al. 2012, Alavandar et al. 2008, Jami’in et al. 2016, 

Hartmann et al. 2015). Model-free fault diagnosis (Lafont et al. 2015, Badihi et al. 2017), 

Knowledgebase fault diagnosis (Wang et al. 2016, Khalastch et al. 2017), and model-based fault 

diagnosis (Stavrou et al. 2016, Lopez-Estrada et al. 2016, Van et al. 2016), are the main sub-parts 

of functionally based fault diagnosis. Observer techniques, system identification, and system 

estimation algorithms are the main techniques based on the model reference fault diagnosis. 

System modeling based on the identification algorithm is a powerful tool for fault diagnosis 

that has acknowledged by various specialists in the field (Forrai and Alexandru 2017) as well (Xia 

et al. 2016). Linear and nonlinear system identification has been introduced to model and 

estimates the systems based on input and output data and regression method. The primary key to 

system identifications based on the linear and nonlinear processes are definition of a function to 

estimate the output based on input data to reduce the cost function. However, linear estimation 

techniques are widely used in many applications, but it has drawbacks to modeling the noisy and 

highly nonlinear systems. Nonlinear intelligent system identification and mathematical techniques 

for system identification are two main methods to improve the performance in the linear 

techniques for system identification (Anh et al. 2012, Alavandar et al. 2008, Jami’in et al. 2016, 

Hartmann et al. 2015). Regarding (Bouzrara et al. 2012, 2013), the mathematical system 

identification algorithm based on the Laguerre method has been used to reduce the nonlinear 

parameters in system modeling. The performance of ARX method can be improved by the ARX-

Laguerre method. 

Estimate the internal state based on the measurements of the real input and output system is 

defined as state observer. The state observer methods are divided into two main groups, linear-

based observer, and nonlinear based observer. Proportional and integral (PI) observers (Busawon 

and Kabore 2001, Gao 2008, Zhang et al. 2013) and proportional multiple-integral (PMI) 

observers (Gao and Ho 2004, Koenig 2005, Gao et al. 2007) are two types of the linear-based 

observer and adaptive based observer (Zhang and Besancon 2008, Zhang et al. 2008, Gholizadeh 

and Salmasi 2014, Alwi and Edwards 2014), sliding mode observers (Van et al. 2016, Alwi and 

Edwards 2014, Han et al. 2014), and descriptor observers (Gao and Wang 2006, Gao et al. 2008) 

are defined as the nonlinear based observer. These methods are usually utilized for fault 

estimation/reconstruction. The hybrid technique based on the integral observer, sliding observers, 

and adaptive observers are analyzed by Zhang et al. (2013). In Gao et al. (2008), to estimate the 

faults in engine PI observer and descriptor observer techniques are integrated. Field programmable 

gate array (FPGA) has parallel architecture, and high-speed processing causes it. FPGA-based 

fault diagnosis has been widely used in industries such as power converters (Jamshidpour et al. 

2015), bearing (Kang et al. 2015) and motor drive (Salehifar et al. 2015). In this research, the 

proposed FPGA-based ARX-Laguerre PI observation method is used to modify the traditional PI 

observer by applying an ARX-Laguerre technique to estimate the output without a state estimation 

and FPGA system to improve the rate of speed. The first objective of this research is modeling the 

robot manipulator and fault detection based on the ARX-Laguerre method. The second objective is 

designing a PIO method and applied to the ARX-Laguerre technique to improve the performance 

of input/output fault diagnosis in robot manipulator. The third objective is to develop FPGA-based 

ARX-Laguerre PIO for fault diagnosis for the robot manipulator. This paper has the following 

sections. The second section outlines the problem statements. The ARX-Laguerre method for 

system modeling is presented in the third section. The FPGA-based PI observer is designed and 

analyzed for fault identification, and estimation is existing in the fourth section. In the fifth 
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section, we can be examined the fault detection, estimation, and identification of the proposed 

method. In the final part, we provide conclusions. 

 

 

2. Problem statements and observer objectives 
 

PUMA robot manipulator is serial links, six degrees of freedom, and the dynamic of this 

system is highly nonlinear, time-varying, MIMO, uncertain and it has substantial coupling effects 

between joints. Therefore, mathematical modeling in this system in the presence of uncertainty and 

faults is complicated. The dynamic formulation of robot manipulator in the presence of uncertainty 

and faults is considered by the following formulations (Siciliano and Khatib 2016) 

 (1) 

where and are n×1 torque vector, n×1 disturbance of load 

vector, time variant n×n inertial matrix, time variant nonlinearity term matrix, time variant n×1 

gravity vector, friction matrix, faults (actuator, plant, sensor), position vector, velocity vector, and 

acceleration vector, respectively. The time variant nonlinearity term matrix is defined as follows 

 (2) 

where B(q) and C(q) are time variant 
2

)1( 


nn
n Coriolis force matrix, and time variant n×n 

centrifugal matrix, respectively.   

 (3) 

Based on Eqs. (1)-(3), the dynamic formulation of robot manipulator is written as follows 

 
(4) 

 
(5) 

 (6) 

In healthy condition (η(t−tf)=0), the uncertainty is bounded as follows 

 (7) 

where Γ is constant. In faulty condition (η(t−tf)≠0),  is bounded as follows 

 
(8) 

To solve the challenge of mathematical formulation and fault detection ARX-Laguerre 

methodology is recommended.  
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Fig. 1 Robot manipulator PI observer for fault diagnosis 

 

 

where )(),(),(),(),(),( kkkkukykX sa   are the system state, measured output, control input, 

uncertainty and disturbance, actuator fault and sensor fault, and A,by,bu are known coefficient 

matrices respectively. The second challenge is fault diagnosis (sensor fault and actuator fault) of 

robot manipulator in the presence of uncertainty and external disturbance. The PI observation 

technique is applied to Eq. (9) to localization the input/output faults as follows 

   TT
input

T
output

TT
input

T
output kXkXkXkXkr )(ˆ)(ˆ)()()( 

 
(10) 

where r(k) is the residual signal for fault detection and isolation. The PI observation technique is 

used to estimate the state and faults in robot manipulator. The third challenge is the FPGA-based 

PI observer for fault diagnosis. The block diagram of system observation technique for fault 

diagnosis is illustrated in Fig. 1. The PI observation technique objectives for robot manipulator in 

the presence of uncertainty, external disturbance and faults are fault detection and isolation based 

on the following steps. The first step is detected the normal condition based on the following 

algorithm 









inuiNuiN

outyNyiN

kxkx

kxkx

)(ˆ)(

)(ˆ)(

),(),(

ˆ,),(

 
(11) 

The second step is detecting the actuator fault based on the following method 
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(12) 

To detect and isolated the sensor fault in robot manipulator the following technique is 

recommended 


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(13) 

In the last step to detect and isolate the input and output fault based on PI observation 

technique, following technique is recommended 
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
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(14) 

where (Γout, Γin) is bounded on uncertainty. 

 

 

3. ARX-Laguerre PUMA robot manipulator modeling 
 

Regarding Eq. (9), the dynamic modeling of robot manipulator based on the ARX-Laguerre 

method in the presence of uncertainty, external disturbance, and faults has been presented as 

follows (Bouzrara et al. 2012, 2013) 
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(15) 

where )),(),,((),(),(),,,,(),(),( ),(),(,, b
b
na

a
nunynbabnan kLkLkxkxNNKKkuky   are the system state output, system 

state input, Fourier coefficients, output signal filter, input signal filter, and Laguerre-based 

orthonormal functions, respectively. Based on Eqs. (9) and (15), the state space dynamic modeling 

of robot manipulator based on the ARX-Laguerre in the presence of the external disturbance, 

uncertainty and (actuator and sensor) faults are obtained by the following formulation 
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(16) 

After modeling the robot manipulator based on the ARX-Laguerre method, the fault can be 

detected by defined the input/output residual signal. 
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(17) 

Based on Eq. (17), if 








0

0

a

s





, the input/output faults are detected in robot manipulator based on 

the following formulation 
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(18) 

Therefore, normal and abnormal robot manipulators can be identified based on Eqs. (17) and 

(18). In order to verify the performance of ARX-Laguerre method to modeling, this method is 

tested and compare with the conventional ARX method. The comparison error performance 

between proposed method and ARX method is depicted in Fig. 2. Regarding to this figure, the 

error performance in proposed method is better than ARX technique. The rate of RMS error in  
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Fig. 2 Estimation error for first, second and third joint: ARX-Laguerre method and ARX method 

 

 

proposed error for first, second and third joints are 0.04°, 0.02°, and 0.04°, and for ARX 

techniques are 0.15°, 0.1°, and 0.13°, respectively.  
 

 

4. FPGA- based PI observer fault diagnosis in robot manipulator 
 

The proposed ARX-Laguerre PI observations technique is recommended for estimating and 

identifying the actuator and sensor faults in the robot manipulator. In the first step, the formulation 

of ARX-PI observer for robot manipulator is introduced in Eq. (19) and in the next step the 

formulation of the ARX-Laguerre PI observation technique for fault diagnosis in robot 

manipulator is detailed in Eq. (20). According to Eqs. (19) and (20), the actuator and sensor faults 

are estimated based on an integral part of PI observation technique. To fault diagnosis in robot 

manipulator based on PI observation technique, we can define four different cases. 

Case A: In healthy condition of robot manipulator, if 0,0  sa  , the fault diagnosis algorithm 

can be calculated in Eq. (21). 

Case B: If robot manipulator has actuator fault ( 0,0  sa  ), based on PI observation 

technique the fault diagnosis algorithm is obtained in Eq. (22). 

 

(19) 

104



 

 

 

 

 

 

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator  


























))1(ˆ)1(()1(ˆ)(ˆ

))1(ˆ)1(()1(ˆ)(ˆ

)1(ˆ)(ˆ)()(ˆ

))1(ˆ)1(())1(ˆ)1((

)1(ˆ)1(ˆ)]1()1(ˆ)1(ˆ[)(ˆ

),(),(

),(),(

),(),(),(),(

kxkxKkk

kxkxKkk

kkXKkY

kxkxKkxkxK

kkkubkybkXAkX

yiNyiNisss

uiNuiNiaaa

s
T

yiNyiNpuiNuiNp

auy

sa









 

(20) 

 

 











inuiNuiN

outyNyiNTTT

TTT

kxkx

kxkx
kXkX

kXkXkXkXkyky

)(ˆ)(

)(ˆ)(
)(ˆ)(ˆ

)()())(ˆ)((&))(ˆ)((

),(),(

ˆ,),(

21

21

 

(21) 

 

 

















inuiNuiN

outyNyiNTTT

TTT

kxkx

kxkx
kXkX

kXkXkXkXkyky

a

a

)(ˆ)(

)(ˆ)(
)(ˆ)(ˆ

)()())(ˆ)((&))(ˆ)((

),(),(

ˆ,),(

21

21





 

(22) 

Case C: In sensor faulty condition ( 0,0  sa  ), the PI observation algorithm for fault 

diagnosis is calculated by the following formulation. 
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(23) 

Case D: Finally, in input and output faulty condition ( 0,0  sa  ), the PI observation 

algorithm for fault diagnosis is calculated by the following formulation. 

 

 



















inuiNuiN

outyNyiNTTT

TTT

kxkx

kxkx
kXkX

kXkXkXkXkyky

a

s

as

)(ˆ)(

)(ˆ)(
)(ˆ)(ˆ

)()())(ˆ)((&))(ˆ)((

),(),(

ˆ,),(

21

21







 

(24) 

Figs. 3-5 illustrate the block diagram of FPGA-based proposed method, FPGA- based fault 

estimation algorithm and FPGA-based state condition algorithm and state algorithm. 

 

 

 
Fig. 3 Block diagram of FPGA-based PI observer ARX-Laguerre 
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Fig. 4 Fault estimation algorithm 

 

 
Fig. 5 State condition algorithm 

 

 

5. Results and discussion 
 

Case Study: To test and analyze FPGA-based ARX-Laguerre PI observation method for 

actuator and sensor faults diagnosis in a robot manipulator, a PUMA robot manipulator was 

selected. The residual signal for the effect of the actuator and the effect of the sensor is calculated 

as follows 
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(25) 

These two threshold values are used for fault detection and identification. The actuator fault in 

the first three links is defined based on the following functions 

45, 0.1( )
( . )

0,
a

t s
N m
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 
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(26) 

The sensor fault for robot manipulator is defined based one the following function 
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( )

0,
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  

(27) 

Fig. 6 demonstrates the input and output results robot manipulator in healthy condition for first 

106



 

 

 

 

 

 

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator  

three links. Regarding Fig. 6, the actuator and sensor fault detector is zero. Fig. 7 illustrates the 

actuator fault diagnosis in PUMA robot manipulator. Regarding Fig. 7 and Eq. (26), in PI 

observation technique the time of fault detection and identification for actuator fault in first, 

second, and third links are 0.114(sec), 0.2706(sec), 0.3385(sec), respectively. Fig. 8 demonstrates 

the PI observer fault diagnosis to detect and identification of sensor fault for PUMA robot 

manipulator. 

Based on Eq. (27), sensor fault applied to robot manipulator at 









)(1,0

)(1,8.0
)(

St

St
Rads . Regarding to 

Fig. 8, the detection and identification time for first, second and third links are 1.166(sec), 

1.322(sec), 1.504(sec), respectively.  

Based on Fig. 9, the detection and identification time for composed (actuator+sensor) fault 

diagnosis for first three degrees of PUMA robot manipulator are 0.2438(sec), 0.32227(sec), 

0.4539(sec), 1.442(sec),1.638(sec), 1.822(sec), respectively. According to the results from Figs. 6- 

9, we can see that our proposed PI observation technique is highly useful to detect actuator and 

sensor fault states. To further validate our model and fault diagnosis technique, we calculate the 

diagnostic delay time for each failure for first three links of PUMA robot manipulator in proposed 

ARX-Laguerre PI observer method and ARX PI observer technique. Tables 1-5 present the 

diagnosis delay time in FPGA-based ARX-Laguerre PIO and FPGA-based ARX PIO for first 

three joints of PUMA robot manipulator. 
 

 

 
Fig. 6 Fault diagnosis in first three links of robot manipulator in normal 

 

 
Fig. 7 Fault diagnosis in first three links of robot manipulator with actuator faulty condition 
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Fig. 8 Fault diagnosis in first three links of robot manipulator with sensor faulty condition 

 

 
Fig. 9 Fault diagnosis in first three links of robot manipulator with actuator+sensor faulty condition 

 
Table 1 Fault diagnosis delays for ARX-Laguerre PIO and ARX-PIO for first three links in normal condition 

Links 

Actuator diagnosis delay (s) Sensor diagnosis delay (s) 

ARX-Laguerre 

PIO 
ARX-PIO 

ARX-Laguerre 

PIO 
ARX-PIO 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

 
Table 2 Fault diagnosis delays for ARX-Laguerre PIO and ARX-PIO for first three links in the presence of 

actuator fault 

Links 

Actuator diagnosis delay (s) Sensor diagnosis delay (s) 

ARX-Laguerre 

PIO 
ARX-PIO 

ARX-Laguerre 

PIO 
ARX-PIO 

1 0.14 0.17 0 0 

2 0.1706 0.21 0 0 

3 0.2385 0.34 0 0 
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Table 3 Fault diagnosis delays for ARX-Laguerre PIO and ARX-PIO for first three links in the presence of 

sensor fault 

Links 

Actuator diagnosis delay (s) Sensor diagnosis delay (s) 

ARX-Laguerre 

PIO 
ARX-PIO 

ARX-Laguerre 

PIO 
ARX-PIO 

1 0 0 0.166 0.265 

2 0 0 0.322 0.514 

3 0 0 0.504 0.792 

 
Table 4 Fault diagnosis delays for ARX-Laguerre PIO and ARX-PIO for first three links in the presence of 

actuator+sensor faults 

Links 

Actuator diagnosis delay (s) Sensor diagnosis delay (s) 

ARX-Laguerre 

PIO 
ARX-PIO 

ARX-Laguerre 

PIO 
ARX-PIO 

1 0.1438 0.1921 0.442 0.678 

2 0.2227 0.2563 0.638 0.695 

3 0.3539 0.4143 0.822 0.91 

 
Table 5 Fault diagnosis accuracy for first three links in normal condition (ARX-Laguerre PIO and ARX-

PIO) 

Links 

Actuator diagnosis delay (s) Sensor diagnosis delay (s) 

ARX-Laguerre 

PIO 
ARX-PIO 

ARX-Laguerre 

PIO 
ARX-PIO 

1 100% 100% 100% 100% 

2 100% 100% 100% 100% 

3 100% 100% 100% 100% 

 

Table 6 Fault diagnosis accuracy for first three links in in the presence of actuator fault (ARX-Laguerre PIO 

and ARX-PIO) 

Links 

Actuator diagnosis delay (s) Sensor diagnosis delay (s) 

ARX-Laguerre 

PIO 
ARX-PIO 

ARX-Laguerre 

PIO 
ARX-PIO 

1 99.53% 94.3% 100% 100% 

2 94.13% 91% 100% 100% 

3 92.05% 89% 100% 100% 

 

Table 7 Fault diagnosis accuracy for first three links in in the presence of sensor fault (ARX-Laguerre PIO 

and ARX-PIO) 

Links 

Actuator diagnosis delay (s) Sensor diagnosis delay (s) 

ARX-Laguerre 

PIO 
ARX-PIO 

ARX-Laguerre 

PIO 
ARX-PIO 

1 100% 100% 94.47% 90.1% 

2 100% 100% 89.3% 83.2% 

3 100% 100% 87.2% 80% 
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Table 8 Fault diagnosis accuracy for first three links in in the presence of actuator+sensor faults (ARX-

Laguerre PIO and ARX-PIO) 

Links 

Actuator diagnosis delay (s) Sensor diagnosis delay (s) 

ARX-Laguerre 

PIO 
ARX-PIO 

ARX-Laguerre 

PIO 
ARX-PIO 

1 95.2% 90% 88.3% 87.12% 

2 92.58% 87.12% 82.1% 80% 

3 90.5% 81.1% 80.1% 78.1% 

 

 

As shown in Tables 5-8, the accuracy of fault detection and diagnosis in FFPGA-based ARX PI 

observer for normal condition, actuator faulty, sensor faulty, and composed faulty conditions are 

100%, 91.4%, 84.43%, and 83.9%, and in proposed FPGA-based ARX-Laguerre PI observer for 

normal, actuator faulty, sensor faulty, and multi (actuator+sensor) defective condition is 100%, 

97.7%, 95.16% and 88.13%, respectively. The accuracy performance result can be further 

validated by the fact that proposed FPGA-based ARX-Laguerre PI observer technique is highly 

sufficient to identify the signal state and define the dynamic error threshold, as can be seen in Figs. 

6-9 and Tables 5-8. 

 

 

6. Conclusions 
 

In this paper, the proposed method for fault diagnosis in robot manipulators is analyzed. In the 

first step, robot manipulator was modeled in the presence of uncertainty and external disturbance 

based on the ARX method and proposed ARX-Laguerre dynamic modeling. The proposed 

technique is used for modeling and fault detection in the presence of actuator and sensor faults. To 

identification and estimation, the actuator and sensor faults, FPGA-based PI observation technique 

has been recommended. In this technique, the integral part is used to fault estimation, reduce the 

steady-state error and improve the stability. The effectiveness of proposed ARX-Laguerre PI 

observer technique is tested by PUMA robot manipulator, which outperforms the ARX- PI 

observer, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of 

faults (e.g., actuator fault, sensor faults, and composite fault), respectively.  
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