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1. Introduction 

 

Microtubules (MT) are one of the essential elements that 

make up the cytoskeleton in eukaryotic cells. They play a 

major role in several biological processes, such as cell 

division, intracellular transport, cell motility, movement of 

the motor proteins and the formation of the mobile nuclei of 

the flagella and the eyelashes (Scholey et al. 2003, Schliwa 

and Woehlke 2003, Carter and Cross 2005). MTs are made 

up of both α-tubulin and β-tubulin (see Fig. 1). 

They are about one hundred times stiffer than other 

filaments and are also very flexible. These properties are 

due to their composite structure and the molecular shuttle 

considered also as anisotropic structure. Microtubules 

possess a hollow cylindrical structure and generally come 

from 13 parallel protofilaments in vivo but this number can 

vary in a range of 9 to 16 in vitro (Chretien and Wade 
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1991). Generally, MTs are found with inner and outer 

diameters about 15 nm and 25 nm, respectively and a length 

in a range from 10 nm to a 100 µm (Amos and Amos 1991, 

Howard and Hyman 2003). 

After knowing that the above-indicated functions of the 

microtubules are depending to their mechanical 

characteristics, the mechanical behavior of MTs has become 

a topic of an essential interest in many theoretical and 

experimental investigations (Venier et al. 1994, Gittes et al. 

1993, Kurachi et al. 1995, Felgner et al. 1996, Vinckier et 

al. 1996, Kis et al. 2002, Kikumoto et al. 2006, Akgöz and 

Civalek 2014a). Thus, mathematical models have been 

 

 

 

Fig. 1 Structure of a typical microtubule 

(Akgöz and Civalek 2014a) 
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Abstract.  In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) 

can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles 

in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose 

of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the 

conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only 

one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are 

constructed by considering Hamilton’s principle. The obtained results are validated by comparing them with those given based on 

higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine 

the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors 

of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-

dependent behavior becomes more important. 
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widely employed to examine the elastic characteristics and 

mechanical responses of MTs in recent years. The 

experimental observations indicated that the bonds between 

adjacent protofilaments in the longitudinal direction are 

stronger than those in the transversal direction within 

protofilaments (Nogales et al. 1999, Van-Buren et al. 2002, 

Needleman et al. 2004). In addition, the longitudinal 

Young's modulus of MTs is much higher than the 

circumferential and shear modulus (Pampaloni et al. 2006, 

Tuszynski et al. 2005, Portet et al. 2005). These primary 

remarks as well as the presence of two tubulins demonstrate 

that MTs have heterogeneous structure and anisotropic 

characteristics. Consequently, transverse shear influences 

become more considerable on mechanical behaviors of 

MTs, especially for short microtubules. Kis et al. (2002) 

examined anisotropic characteristics of single microtubules 

and they observed that the magnitude of shear modulus is 

two orders lower than of Young's modulus. Using a finite 

element method, Kasas et al. (2004) investigated the 

mechanical characteristics of MTs. An orthotropic elastic 

shell model for MTs is introduced by Li et al. (2006) and 

Wang et al. (2006) and they seen that length dependence of 

flexural rigidity is depending to anisotropic elastic 

characteristics of MTs. Ghavanloo et al. (2010) and 

Daneshmand and Amabili (2012) are proposed a Euler–

Bernoulli beam theory and an orthotropic elastic shell 

theory incorporating the influences of the viscous cytosol 

and surrounding filaments to evaluate the coupled 

oscillations of a single MT embedded in cytoplasm, 

respectively. Shi et al. (2008) and Tounsi et al. (2010) 

developed first and parabolic shear deformation beam 

theories respectively to consider the impacts of transverse 

shearing deformation on mechanical characteristics of MTs. 

Akgöz and Civalek (2014a) presented a microstructure-

dependent shear deformation beam theory for bending and 

vibration investigation of MTs on the basis of modified 

strain gradient elasticity theory. In addition, atomistic 

continuum approaches for mechanical investigations of 

MTs can be found in literature reviews (Xiang and Liew 

2011, 2012a, b, 2013). 

It should be noted that some experimental investigations 

have been shown that existing size influences plays a 

considerable role on mechanic responses of small-scale 

structures (Poole et al. 1996, Lam et al. 2003, McFarland 

and Colton 2005). The classical (conventional) continuum 

models have no material length size coefficients and fail to 

evaluate the scale dependent responses of micro- and nano-

sized structures. Thus, many non- conventional (higher-

order) continuum models have been developed to study the 

mechanical responses of small-scaled structures such as 

couple stress model (Mindlin and Tiersten 1962, Koiter 

1964, Toupin 1964, Akbaş 2018), micropolar model 

(Eringen 1967), nonlocal elasticity model (Eringen 1972, 

1983, Belkorissat et al. 2015, Zemri et al. 2015, Larbi 

Chaht et al. 2015, Eltaher et al. 2016, Bounouara et al. 

2016, Ahouel et al. 2016, Elmerabet et al. 2017, Khetir et 

al. 2017, Bellifa et al. 2017a, Bouafia et al. 2017, 

Besseghier et al. 2017, Jandaghian and Rahmani 2017, 

Mouffoki et al. 2017, Bouadi et al. 2018, Mokhtar et al. 

2018, Yazid et al. 2018) and strain gradient models (Fleck 

and Hutchinson 1993, Vardoulakis and Sulem 1995, 

Aifantis 1999, Karami et al. 2017, 2018a, b, c, d, e, 2019a, 

Bensaid et al. 2018, Arefi et al. 2018). 

The theory based on modified strain gradient (Lam et al. 

2003) is one of the above-indicated higher-order models in 

which the density of strain energy possesses second-order 

deformation gradients in addition to first-order deformation 

gradient. For linear elastic isotropic materials, the 

mathematical approach and equilibrium equations consider 

three additional material length scale parameters related to 

higher-order deformation gradients besides two classical 

ones. This popular model has been utilized to examine 

mechanic responses of microbars (Kahrobaiyan et al. 

2011a, 2013, Narendar et al. 2012, Akgöz and Civalek 

2013a, 2014b, Güven 2014) and micro-beams (Wang et al. 

2010, Akgöz and Civalek 2011a, 2012a, 2013b, c, 2014c, 

Ansari et al. 2011, Asghari et al. 2012, Artan and Toksöz 

2013, Ghayesh et al. 2013, Kahrobaiyan et al. 2011b, 2012, 

Zhao et al. 2012, Lei et al. 2013, Tajalli et al. 2013, Al-

Basyouni et al. 2015). 

As indicated above, the diameter and length of 

microtubules are in the order of nanometers and 

micrometers, respectively. Thus, modeling and investigation 

of MTs considering non-conventional continuum models 

have attracted many scientists recently. The persistence 

length and stability behaviors of MTs have been studied by 

Gao and Lei (2009) and Fu and Zhang (2010) by 

considering the nonlocal elasticity model and modified 

couple stress model, respectively. Heireche et al. (2010) 

employed a nonlocal Timoshenko beam theory for dynamic 

of protein microtubules by considering a visco-elastic 

surrounding cytoplasm. The stability behaviors of MTs in 

living cells are examined and discussed by Gao and An 

(2010) by using a nonlocal anisotropic shell model. Shen 

(2010a, b, c) proposed nonlocal shear deformation shell 

theories for both linear and nonlinear investigations of MTs. 

Also, bending and vibration responses of MTs examined 

based on Euler–Bernoulli beam and non-conventional 

continuum models (Civalek and Akgöz 2010, Civalek et al. 

2010, Akgöz and Civalek 2011b, 2012b, Zeverdejani and 

Beni 2013). 

In this article, bending and vibration behaviors of MTs, 

one of the principal elements of the cytoskeleton in living 

cells, are examined. In order to model the microtubules 

such as a hollow cylindrical beam, a single variable shear 

deformation beam theory is proposed by considering the 

modified strain gradient elasticity model. This theory is 

constructed on the basis of the Euler–Bernoulli beam (EBT) 

including the sinusoidal function in terms of thickness 

coordinate to consider shear deformation influence and it 

involves only one equation of motion. The developed model 

in this study will be attracting the large community of 

biophysicist investigating in the field of mechanical 

filament, rather than to the community of engineering. 

 

 

2. The modified theory of strain gradient elasticity 
 

The modified theory of strain gradient elasticity known 

generally by MSGT (Lam et al. 2003) is one of the widely 
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employed high order continuum models. Contrary to 

conventional continuum models, this model considers some 

high order strain gradient with the conventional tensor of 

strain in the theoretical approaches as vector of dilatation 

gradient, deviatoric stretch gradient and symmetric tensors 

of the rotation gradient. The energy of strain 𝑈 for the 

modified theory of strain gradient can be expressed by 

using infinitesimal deformations (Lam et al. 2003) as 

 

𝑈 =
1

2
∫ ∫(𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑝𝑖𝛾𝑖 + 𝜏𝑖𝑗𝑘

(1)𝜂𝑖𝑗𝑘
(1) +𝑚𝑖𝑗

𝑠 𝜒𝑖𝑗
𝑠 )𝑑𝐴 

𝐴

𝑑𝑥
𝐿

0

 (1) 

 

in which 𝜀𝑖𝑗 , 𝛾𝑖 , 𝜂𝑖𝑗𝑘
(1)

 and 𝜒𝑖𝑗
𝑠  denote the components of the 

tensor  of strain [𝜀], the gradient of dilatation vector 𝛾, 

the tensor of deviatoric stretch gradient [𝜂](1)  and the 

tensor of symmetric rotation gradient 𝜒𝑠, respectively and 

are expressed as following 

 

𝜀𝑖𝑗 =
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
 (2) 

 

𝛾𝑖 =
𝜕𝜀𝑚𝑚
𝜕𝑥𝑖

 (3) 

 

𝜂𝑖𝑗𝑘
(1) =

1

3
(
𝜕𝜀𝑗𝑘

𝜕𝑥𝑖
+
𝜕𝜀𝑘𝑖
𝜕𝑥𝑗

+
𝜕𝜀𝑖𝑗

𝜕𝑥𝑘
) 

−
1

15
[𝛿𝑖𝑗 (

𝜕𝜀𝑚𝑚
𝜕𝑥𝑘

+ 2
𝜕𝜀𝑚𝑘
𝜕𝑥𝑚

) + 𝛿𝑗𝑘 (
𝜕𝜀𝑚𝑚
𝜕𝑥𝑖

+ 2
𝜕𝜀𝑚𝑖
𝜕𝑥𝑚

) 

+𝛿𝑘𝑖 (
𝜕𝜀𝑚𝑚
𝜕𝑥𝑗

+ 2
𝜕𝜀𝑚𝑗

𝜕𝑥𝑚
)] 

(4) 

 

𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘

𝜕𝑢𝑘
𝑥𝑗

 (5) 

 

𝜒𝑖𝑗
𝑠 =

1

2
(
𝜕𝜃𝑖
𝜕𝑥𝑗

+
𝜕𝜃𝑗

𝜕𝑥𝑖
) (6) 

 

where 𝑢𝑖  presents the components of the vector of 

displacement u and 𝜃𝑖  present the components of the 

vector of rotation 𝜃, also 𝛿 and 𝑒𝑖𝑗𝑘 are the Kronecker 

delta and permutation symbols, respectively. In addition, the 

components of the tensor of Cauchy stress [𝜎] and the 

tensors of higher-order stress 𝑝, 𝜏
(1)

 and 𝑚𝑠  (conjugated 

with 𝜀𝑖𝑗 , 𝛾𝑖 , 𝜂𝑖𝑗𝑘
(1)

 and 𝜒𝑖𝑗
𝑠  respectively) are written as 

following (Lam et al. 2003) 

 

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑚𝑚 + 2𝐺𝜀𝑖𝑗 (7) 

 

𝑝𝑖 = 2𝐺𝑙0
2𝛾𝑖 (8) 

 

𝜏𝑖𝑗𝑘
(1) = 2𝐺𝑙1

2𝜂𝑖𝑗𝑘
(1)

 (9) 

 

𝑚𝑖𝑗
𝑠 = 2𝐺𝑙2

2𝜒𝑖𝑗
𝑠  (10) 

 

where 𝑙0 , 𝑙1 , 𝑙2  are additional material length size 

parameters related to gradients of dilatation, gradients of 

deviatoric stretch and gradients of rotation, respectively. In 

addition, 𝜆 and 𝐺 are the Lamé constants expressed as 

 

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
   and   𝐺 =

𝐸

2(1 + 𝜈)
 (11) 

 

 

3. Formulation of single variable sinusoidal beam 
theory (SVSBT) 
 

MTs can be considered as a hollow element of beam. 

Modeling of an isolated microtubule like a simply 

supported cylindrical hollow element of beam is shown in 

Fig. 2 in which 𝐷𝑖 , 𝐷𝑜  and 𝐿  denote the inner, outer 

diameters and the length of the MT, respectively. 

The displacement field for the present SVSBT can be 

described by 

 

𝑢(𝑥, 𝑧) = −𝑧
𝜕𝑤

𝜕𝑥
− 𝛽 𝑓(𝑧)

𝜕3𝑤

𝜕𝑥3
 

𝑣(𝑥, 𝑧) = 0 
𝑤(𝑥, 𝑧) = 𝑤(𝑥) 

(12) 

 

where 𝑤 are the vertical displacement along the midplane 

of the beam.  𝛽 is a coefficient defined in Refs (Zidi et al. 

2017, Hachemi et al. 2017) and is geven by Eq. (31). 𝑓(𝑧) 
is a shape function and is used for determining the 

transverse shear strain and stress variation within the 

thickness of the beam (or outer diameter of MTs). 𝑓(𝑧) is 

given by 

 

𝑓(𝑧) =
ℎ

𝜋
𝑠𝑖𝑛 (

𝜋𝑧

ℎ
) (13) 

 

where ℎ presents the height of the beam (𝐷0). Substituting 

Eq. (12) in equation (2) gives nonzero deformation 

components as 

 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
= −𝑧

𝜕2𝑤

𝜕𝑥2
− 𝑓(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4

𝜀𝑥𝑧 =
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) = −

1

2
𝑓′(𝑧)𝛽

𝜕3𝑤

𝜕𝑥3}
 

 
 (14) 

 

where 
 

𝑓′(𝑧) =
𝑑𝑓

𝑑𝑧
= 𝑐𝑜𝑠 (

𝜋𝑧

ℎ
) (15) 

 

By using Eq. (14) in Eqs. (3)-(5), the nonzero 

components of higher-order deformation gradients are 

 

 

 

Fig. 2 Continuum modeling of an isolated microtubule as 

a simply supported cylindrical hollow beam 
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determined as 
 

𝛾𝑥 =
𝜕𝜀𝑥
𝜕𝑥

= −𝑧
𝜕3𝑤

𝜕𝑥3
− 𝑓(𝑧)𝛽

𝜕5𝑤

𝜕𝑥5
, (16a) 

 

𝛾𝑧 =
𝜕𝜀𝑥
𝜕𝑧

= −
𝜕2𝑤

𝜕𝑥2
− 𝑓′(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4
 (16b) 

 

and 
 

𝜂111
(1) =

1

5
[2(−𝑧

𝜕3𝑤

𝜕𝑥3
− 𝑓(𝑧)𝛽

𝜕5𝑤

𝜕𝑥5
) 

−
𝜋2

ℎ2
𝑓(𝑧)𝛽

𝜕3𝑤

𝜕𝑥3
] 

(17a) 

 

𝜂113
(1) = 𝜂131

(1) = 𝜂311
(1) = −

4

15
(
𝜕2𝑤

𝜕𝑥2
+ 2𝑓′(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4
) (17b) 

 
𝜂122
(1) = 𝜂212

(1) = 𝜂221
(1)  

= −
1

5
[−𝑧 

𝜕3𝑤

𝜕𝑥3
−  𝑓(𝑧)𝛽

𝜕5𝑤

𝜕𝑥5
+
𝜋2

3ℎ2
𝑓(𝑧)𝛽

𝜕3𝑤

𝜕𝑥3
] 

(17c) 

 
𝜂133
(1) = 𝜂313

(1) = 𝜂331
(1)  

        = −
1

5
(−𝑧

𝜕3𝑤

𝜕𝑥3
− 𝑓(𝑧)𝛽

𝜕5𝑤

𝜕𝑥5
−
4

3

𝜋2

ℎ2
𝑓(𝑧)𝛽

𝜕3𝑤

𝜕𝑥3
) 

(17d) 

 

𝜂223
(1) = 𝜂232

(1) = 𝜂322
(1) =

1

15
(
𝜕2𝑤

𝜕𝑥2
+ 2𝑓′(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4
) (17e) 

 

𝜂333
(1) =

1

5
(
𝜕2𝑤

𝜕𝑥2
+ 2𝑓′(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4
) (17f) 

 

𝝌𝒙𝒚
𝒔 =

𝟏

𝟐
(
𝝏𝜽𝒙
𝝏𝒚

+
𝝏𝜽𝒚

𝝏𝒙
) = −

𝟏

𝟐
[
𝝏𝟐𝒘

𝝏𝒙𝟐
+
𝟏

𝟐
𝜷 𝒇′(𝒛)

𝝏𝟒𝒘

𝝏𝒙𝟒
] (18a) 

 

𝝌𝒚𝒛
𝒔 =

𝟏

𝟐
(
𝝏𝜽𝒚

𝝏𝒛
+
𝝏𝜽𝒛
𝝏𝒚

) =
𝝅𝟐

𝟒𝒉𝟐
𝜷 𝒇(𝒛)

𝝏𝟑𝒘

𝝏𝒙𝟑
 (18b) 

 

Employing Eq. (14) in Eq. (7), the nonzero components 

of conventional stress tensor 𝜎 can be expressed as 

 

𝜎𝑥 = 𝐸𝜂 (−𝑧
𝜕2𝑤

𝜕𝑥2
− 𝑓(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4
), (19a) 

 

𝜏𝑥𝑧 = −𝐺𝑓′(𝑧)𝛽
𝜕3𝑤

𝜕𝑥3
 (19b) 

 

𝜎𝑦 = 𝜎𝑧 = 𝜆 (−𝑧
𝜕2𝑤

𝜕𝑥2
− 𝑓(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4
) (19c) 

 

where 
 

𝜂 =
(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
   and   𝜆 =

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
 (20) 

 

Also, substituting Eqs. (16)-(18) in Eqs. (8)-(10) gives 

the nonzero components of higher order stresses such as 

 

𝒑𝒙 = 𝟐𝑮𝒍𝟎
𝟐𝜸𝒙 = 𝟐𝑮𝒍𝟎

𝟐 (−𝒛
𝝏𝟑𝒘

𝝏𝒙𝟑
− 𝒇(𝒛)𝜷

𝝏𝟓𝒘

𝝏𝒙𝟓
) (21a) 

 

𝒑𝒛 = 𝟐𝑮𝒍𝟎
𝟐𝜸𝒛 = −𝟐𝑮𝒍𝟎

𝟐 (
𝝏𝟐𝒘

𝝏𝒙𝟐
+ 𝒇′(𝒛)𝜷

𝝏𝟒𝒘

𝝏𝒙𝟒
) (21b) 

 
𝜏111
(1) = 2𝐺𝑙1

2𝜂111
(1)  

=
2

5
𝐺𝑙1

2 [2 (−𝑧
𝜕3𝑤

𝜕𝑥3
− 𝑓(𝑧)𝛽

𝜕5𝑤

𝜕𝑥5
) −

𝜋2

ℎ2
𝑓(𝑧)𝛽

𝜕3𝑤

𝜕𝑥3
] 

(22a) 

 

𝜏113
(1) = 𝜏131

(1) = 𝜏311
(1)  

= −
8

15
𝐺𝑙1

2 (
𝜕2𝑤

𝜕𝑥2
+ 2𝑓′(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4
) 

(22b) 

 

𝜏122
(1) = 𝜏212

(1) = 𝜏221
(1)  

= −
2

5
𝐺𝑙1

2 [−𝑧
𝜕3𝑤

𝜕𝑥3
− 𝑓(𝑧)𝛽

𝜕5𝑤

𝜕𝑥5
+
𝜋2

3ℎ2
𝑓(𝑧)𝛽

𝜕3𝑤

𝜕𝑥3
] 

(22c) 

 

𝜏133
(1) = 𝜏313

(1) = 𝜏331
(1)  

= −
2

5
𝐺𝑙1

2 (−𝑧
𝜕3𝑤

𝜕𝑥3
− 𝑓(𝑧)𝛽

𝜕5𝑤

𝜕𝑥5
−
4

3

𝜋2

ℎ2
𝑓(𝑧)𝛽

𝜕3𝑤

𝜕𝑥3
) 

(22d) 

 

𝜏223
(1) = 𝜏232

(1) = 𝜏322
(1) =

2

15
𝐺𝑙1

2 (
𝜕2𝑤

𝜕𝑥2
+ 2𝑓′(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4
) (22e) 

 

𝜏333
(1) =

2

5
𝐺𝑙1

2 (
𝜕2𝑤

𝜕𝑥2
+ 2𝑓′(𝑧)𝛽

𝜕4𝑤

𝜕𝑥4
) (22f) 

 

𝒎𝒙𝒚
𝒔 = 𝟐𝑮𝒍𝟐

𝟐𝝌𝒙𝒚
𝒔 = −𝑮𝒍𝟐

𝟐 [
𝝏𝟐𝒘

𝝏𝒙𝟐
+
𝟏

𝟐
𝜷 𝒇′(𝒛)

𝝏𝟒𝒘

𝝏𝒙𝟒
] (23a) 

 

𝒎𝒚𝒛
𝒔 = 𝟐𝑮𝒍𝟐

𝟐𝝌𝒚𝒛
𝒔 =

𝑮𝒍𝟐
𝟐𝝅𝟐

𝟐𝒉𝟐
𝜷 𝒇(𝒛)

𝝏𝟑𝒘

𝝏𝒙𝟑
 (23b) 

 

The first variation of the strain energy for the MTs can 

be written using the above conventional and unconventional 

(higher order) stress and strain components into equation 

(1) (by neglecting the Poisson influence) as 

 

𝛿𝑈 = ∫ ∫(𝜎𝑖𝑗𝛿𝜀𝑖𝑗 + 𝑝𝑖𝑗𝛿𝛾𝑖𝑗 + 𝜏𝑖𝑗𝑘
(1)𝛿𝜂𝑖𝑗𝑘

(1)

𝐴

𝐿

0

 

          +𝑚𝑖𝑗
𝑠 𝛿𝜒𝑖𝑗

𝑠 )𝑑𝐴𝑑𝑥 

= ∫ [(−
6𝐵𝐼

𝜋2
𝛽2
𝜕10𝑤

𝜕𝑥10
+ (𝑆4𝛽

2 − 4𝐵𝐴𝛽
ℎ2

𝜋3
)
𝜕8𝑤

𝜕𝑥8

𝐿

0

 

     +(2𝑆3𝛽 − 𝑆1𝛽
2 − 𝐵𝐼)

𝜕6𝑤

𝜕𝑥6
+𝑆2

𝜕4𝑤

𝜕𝑥4
)𝛿𝑤]𝑑𝑥 

(24) 

 

where 
 

𝐵 = 2𝐺 (𝑙0
2 +

2

5
𝑙1
2) , 

𝑆1 = 𝐺𝐴(
1

2
+
𝜋2

ℎ2
(
4

15
𝑙1
2 +

1

8
𝑙2
2)) , 

(25) 

446



 

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory 

𝑆2 = 𝐸𝐼 + 𝐺𝐴 (2𝑙0
2 +

8

15
𝑙1
2 + 𝑙2

2), 

𝑆3 =
24𝐸𝐼

𝜋3
+
𝐺𝐴

𝜋
(4𝑙0

2 +
4

3
𝑙1
2 + 𝑙2

2) , 

𝑆4 =
6𝐸𝐼

𝜋2
+ 𝐺𝐴 (𝑙0

2 +
2

3
𝑙1
2 +

1

8
𝑙2
2) 

(25) 

 

where 𝐴  and 𝐼  are the “cross-sectional area” and the 

“second moment” of area, respectively. On the other hand, 

the variation of “potential energy” of the applied loads can 

be written as (Zidi et al. 2014, Bellifa et al. 2016, Younsi et 

al. 2018, Meksi et al. 2019, Zarga et al. 2019) 

 

𝛿𝑉 = ∫𝑞𝛿𝑤𝑑𝐴
𝐴

 (26) 

 

where 𝑞 is the distributed transverse load. 

The variation of kinetic energy of the beam can be 

written in the form (Bessaim et al. 2013, Meziane et al. 

2014, Attia et al. 2015, Yahia et al. 2015, Bourada et al. 

2015, Bennoun et al. 2016, Boukhari et al. 2016, Abdelaziz 

et al. 2017, Abualnour et al. 2018, Bouhadra et al. 2018, 

Fourn et al. 2018, Belabed et al. 2018, Yeghnem et al. 2017, 

Zaoui et al. 2019, Bourada et al. 2019) 

 

𝛿𝐾 =
1

2
∫ ∫ 𝜌((

𝜕𝑢

𝜕𝑡
)
2

+ (
𝜕𝑣

𝜕𝑡
)
2

+ (
𝜕𝑤

𝜕𝑡
)
2

)𝑑𝐴𝑑𝑥
𝐴

𝐿

0

 (27) 

 

where 𝜌 is the mass density. From Eqs. (12) and (27), the 

first variation of the kinetic energy can be given as 

 

𝛿 𝐾 = ∫ {𝜌𝐴[�̇�0𝛿�̇�0] + 𝜌𝐼 (
𝜕�̇�0
𝜕𝑥

𝜕𝛿 �̇�0
𝜕𝑥

)
𝐿

0

 

+
6

𝜋2
𝜌𝐼𝛽2 (

𝜕3�̇�0
𝜕𝑥3

𝜕3𝛿 �̇�0
𝜕𝑥3

) 

+
24

𝜋3
𝜌𝐼𝛽 (

𝜕�̇�0
𝜕𝑥

𝜕3𝛿 �̇�0
𝜕𝑥3

+
𝜕3�̇�0
𝜕𝑥3

𝜕𝛿 �̇�0
𝜕𝑥

)}𝑑𝑥 

(28) 

 

Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as (Tounsi et al. 2013, Belabed et al. 2014, 

Hebali et al. 2014, Bousahla et al. 2014, Mahi et al. 2015, 

Hamidi et al. 2015, Beldjelili et al. 2016, Houari et al. 

2016, Bouderba et al. 2016, Bellifa et al. 2017b, Ait 

Atmane et al. 2017, Sekkal et al. 2017, Menasria et al. 

2017, Attia et al. 2018, Benchohra et al. 2018, Tounsi et al. 

2019, Khiloun et al. 2019) 
 

0 = ∫ (𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾)
𝑇

0

𝑑𝑡 (29) 

 

𝛿𝑤:−
6𝐵𝐼

𝜋2
𝛽2
𝜕10𝑤

𝜕𝑥10
+ (𝑆4𝛽

2 − 4𝐵𝐴𝛽
ℎ2

𝜋3
)
𝜕8𝑤

𝜕𝑥8
 

+(2𝑆3𝛽 − 𝑆1𝛽
2 − 𝐵𝐼)

𝜕6𝑤

𝜕𝑥6
+ 𝑆2

𝜕4𝑤

𝜕𝑥4
+ 𝑞 

= 𝜌𝐴
𝜕2𝑤

𝜕𝑡2
− 𝜌𝐼

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
− 𝛽

48𝐼

𝜋3
𝜕6𝑤

𝜕𝑥4𝜕𝑡2
 

(30) 

−𝛽2
6𝐼

𝜋2
𝜕8𝑤

𝜕𝑥6𝜕𝑡2
 

 

and 

𝛽 =
𝑆3𝜋

3 + 2𝛼2𝐵𝐴ℎ2

𝜋(𝑆1𝜋
2 + 𝑆4𝛼

2𝜋2 + 6𝐵𝐼𝛼4)
 (31) 

 

 

4. Analytical solutions 
 
In this section, Navier solution procedure is used to 

determine analytical solutions for bending and dynamic 

problems of the simply supported MTs. The following 

expansions of generalized displacements which include 

undetermined Fourier coefficients and certain trigonometric 

functions can be successfully employed as 

 

𝑤 = ∑𝑊𝑚𝑒
𝑖𝜔𝑚𝑡 𝑠𝑖𝑛(𝛼𝑥)

∞

𝑚=1

 (32) 

 

where 𝛼 = 𝑚𝜋/𝑎 and 𝑊𝑚 are arbitrary parameters to be 

determined; 𝜔𝑚  is eigenfrequency associated with mth 

eigenmode. 

 

4.1 Bending analysis 
 

The transverse load q is also expanded in the Fourier 

series as 

𝑞(𝑥) = ∑ 𝑞𝑚 𝑠𝑖𝑛(𝛼𝑥)

∞

𝑚=1

 (33) 

 

𝑄𝑚 =
2

𝐿
∫ 𝑞(𝑥) 𝑠𝑖𝑛( 𝛼𝑥)𝑑𝑥
𝐿

0

 (34) 

 

and 𝑄𝑚  can be expressed for point load acted on the 

midspan of the MTs 

 

𝑄𝑚 =
2𝑄0
𝐿
𝑠𝑖𝑛

𝑚𝜋

2
   for   𝑚 = 1, 2, 3 (35) 

 

Substituting Eq. (33) into Eq. (30), the analytical 

solutions can be obtained from 

 

= 2𝐺𝑙1
2𝜂111

(1)  

=
2

5
𝐺𝑙1

2 [2 (−𝑧
𝜕3𝑤

𝜕𝑥3
− 𝑓(𝑧)𝛽

𝜕5𝑤

𝜕𝑥5
) −

𝜋2

ℎ2
𝑓(𝑧)𝛽

𝜕3𝑤

𝜕𝑥3
] 

(36) 

 

Solving the above algebraic equation set in Eq. (36), the 

Fourier coefficient 𝑊𝑚  can be determined. Analytical 

expression of w(x) obtained for the simply supported MTs 

in bending by substituting this coefficient into Eq. (32). 

 

4.2 Free vibration analysis 
 

Substituting Eq. (32) into Eq. (30) as the equations of 

motion for free vibration without external applied load, the 

following equation is determined as 
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(𝐾 − 𝜔2𝑀)𝑊𝑚 = 0 (37) 
 

where 
 

𝐾 = 𝛼4 [
6𝐵𝐼

𝜋2
𝛽2𝛼6 + (𝑆4𝛽

2 − 4𝐵𝐴𝛽
ℎ2

𝜋3
)𝛼4 

+ (𝑆1𝛽
2 + 𝐵𝐼 − 2𝑆3𝛽)𝛼

2 + 𝑆2] 

(38a) 

 

𝑀 = 𝜌𝐴 + 𝜌𝐼𝛼2 −
48𝐼

𝜋3
𝜌𝛽𝛼4 +

6𝐼

𝜋2
𝜌𝛽2𝛼6 (38b) 

 

 

5. Results and discussion 
 

In order to demonstrate the influences of material length 

scale parameters and shear deformation, some numerical 

examples are presented on flexural and dynamics responses 

 

 

 

 

microtubules. 

For illustrative purposes, a simply supported MT is 

taken as an example with the following material and 

geometric properties (Heireche et al. 2010): Young’s 

modulus 𝐸 = 1GPa, Poisson ratio 𝜈 = 0.3, mass density 

per unit volume 𝜌 = 1470 kg/m3, shear modulus ratio 𝑟 =
𝐺/𝐸 varying between 10-6 and 10-4, inner radius 𝑟𝑖= 7.5 

nm, outer radius 𝑟𝑜= 12.5 nm and the length of MT 𝐿 

varying between 1.25 µm and 12.5 µm. All material length 

scale parameters are considered to be equal to each other as 

𝑙0 = 𝑙1 = 𝑙2. If two parameters of length scale (𝑙0 and 𝑙1) 

or all of them are zero, the proposed model will be 

transformed modified couple stress (MCST) and classical 

models (CT), respectively. The results obtained by the 

present single variable sinusoidal beam model are compared 

with those obtained by Akgöz and Civalek (2014a) and 

Euler beam theory (EBT). In addition, it should be noted 

that the solid lines, the dotted lines, and the dashed lines of 

Table 1 Maximum deflections (µm) of the simply supported microtubule under point load 

(Q0 = 0.01 nN, 𝑙 = 𝐷0) 

r Beam theory 
𝐿 = 50𝐷0 𝐿 = 500𝐷0 

CT MCST MSGT CT MCST MSGT 

Isotropic 

EBT 0.0244 0.0044 0.0014 24.3803 4.4128 1.4351 

Akgöz and Civalek (2014a) 0.0244 0.0044 0.0014 24.3806 4.4128 1.4352 

Present 0.0244 0.0044 0.0014 24.3806 4.4128 1.4352 

10-4 

EBT 0.0244 0.0244 0.0243 24.3803 24.3516 24.2794 

Akgöz and Civalek (2014a) 0.1251 0.0558 0.0372 25.5537 24.6920 24.4148 

Present 0.1251 0.0558 0.0371 25.5536 24.6919 24.4147 

10-5 

EBT 0.0244 0.0244 0.0244 24.3803 24.3774 24.3702 

Akgöz and Civalek (2014a) 0.6526 0.2778 0.1381 35.7165 27.7240 25.7122 

Present 0.6525 0.2778 0.1381 35.7164 27.7239 25.7121 

10-6 

EBT 0.0244 0.0244 0.0244 24.3803 24.3800 24.3793 

Akgöz and Civalek (2014a) 1.4478 1.0780 0.7053 125.1389 55.8992 37.3154 

Present 1.4478 1.0780 0.7053 125.1393 55.8992 37.3153 
 

Table 2 Fundamental frequencies (MHz) of the simply supported microtubule (𝑙 = 𝐷0) 

r Beam theory 
𝐿 = 50𝐷0 𝐿 = 500𝐷0 

CT MCST MSGT CT MCST MSGT 

Isotropic 

EBT 6.0425 14.2030 24.9082 0.0604 0.1421 0.2491 

Akgöz and Civalek (2014a) 6.0394 14.1998 24.8939 0.0604 0.1421 0.2491 

Present 6.0393 14.1998 24.8938 0.0604 0.1420 0.2491 

10-4 

EBT 6.0425 6.0461 6.0551 0.604 0.0605 0.0606 

Akgöz and Civalek (2014a) 2.7594 4.1341 5.0151 0.0593 0.0601 0.0604 

Present 2.7593 4.1341 5.0150 0.0592 0.0601 0.0604 

10-5 

EBT 6.0425 6.0429 6.0438 0.0604 0.0604 0.0604 

Akgöz and Civalek (2014a) 1.1788 1.8302 2.6228 0.0511 0.0572 0.0591 

Present 1.1787 1.8302 2.6227 0.0510 0.0572 0.0591 

10-6 

EBT 6.0425 6.0426 6.0426 0.0604 0.0604 0.0604 

Akgöz and Civalek (2014a) 0.7851 0.9121 1.1327 0.0276 0.0413 0.0501 

Present 0.7851 0.9120 1.1327 0.0275 0.0413 0.0500 
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the figures indicate the results for CT, MCST, and MSGT, 

respectively. 

Comparisons of maximum deflections under point load 

acted on the midspan of the MT, first, second and third 

natural frequencies with different shear modulus ratio and 

geometric ratio corresponding to various beam theories and 

models are presented in Tables 1–4, respectively. 

It is seen that the results obtained by the present single 

variable sinusoidal theory are in excellent agreement with 

those obtained by Akgöz and Civalek (2014a). However, it 

should be noted that the present theory uses only one 

variable whereas the theory of Akgöz and Civalek (2014a) 

uses three variables. It can be seen that the maximum 

deflections computed by the present theory and CT are 

higher than those given by EBT and MSGT while natural 

frequencies calculated by the present theory and CT are 

smaller than those given by EBT and MSGT and also these 

situations are more frequent for smaller shear modulus 

 

 

 

 

ratios and geometric ratios as 𝑟 = 10−6 and 𝐿/𝐷0 = 50. 

It can be observed that the results obtained by EBT and the 

present theory are almost equal for isotropic case and 

𝐿/𝐷0 = 500. On the other hand, the differences between 

the results corresponding to EBT and the present theory are 

more obvious for the smaller geometric ratios (𝐿/𝐷0 = 50), 

but they decrease for the larger ones, like 𝐿/𝐷0 = 500. In 

addition, it can be concluded that shear deformation effect 

becomes more important for small microtubules. Variations 

of maximum deflection and natural frequency ratios versus 

various geometric ratio and different shear modulus ratio 

are presented in Figs. 3 and 4, respectively. It is observed 

from these figures that the “maximum deflection” ratio is 

much larger than one while the natural frequency ratios are 

much smaller than one for smaller geometric ratios. 

However, these ratios tend to be closer to one with 

increasing aspect and shear modulus ratios, particularly for 

MSGT. It can also be emphasized that these ratios 

Table 3 Second natural frequencies (MHz) of the simply supported microtubule (𝑙 = 𝐷0) 

R Beam theory 
𝐿 = 50𝐷0 𝐿 = 500𝐷0 

CT MCST MSGT CT MCST MSGT 

Isotropic 

EBT 24.1579 56.7834 99.6201 0.2417 0.5682 0.9964 

Akgöz and Civalek (2014a) 24.1077 56.7330 99.3923 0.2417 0.5682 0.9963 

Present 24.1077 56.7329 99.3922 0.2417 0.5682 0.9963 

10-4 

EBT 24.1579 24.1721 24.2081 0.2417 0.2419 0.2422 

Akgöz and Civalek (2014a) 6.4580 10.4734 14.4957 0.2244 0.2365 0.2400 

Present 6.4579 10.4734 14.4957 0.2244 0.2365 0.2400 

10-5 

EBT 24.1579 24.1593 24.1629 0.2417 0.2418 0.2418 

Akgöz and Civalek (2014a) 3.4584 4.5236 6.1472 0.1508 0.2000 0.2222 

Present 3.4584 4.5235 6.1472 0.1507 0.2000 0.2222 

10-6 

EBT 24.1579 24.1581 24.1584 0.2417 0.2417 0.2417 

Akgöz and Civalek (2014a) 2.9675 3.1108 3.3952 0.0646 0.1046 0.1446 

Present 2.9675 3.1108 3.3951 0.0646 0.1046 0.1446 
 

Table 4 Thirs natural frequencies (MHz) of the simply supported microtubule (𝑙 = 𝐷0) 

R Beam theory 
𝐿 = 50𝐷0 𝐿 = 500𝐷0 

CT MCST MSGT CT MCST MSGT 

Isotropic 

EBT 54.3098 127.6557 224.0976 0.5439 1.2785 2.2418 

Akgöz and Civalek (2014a) 54.0576 127.4031 222.9556 0.5439 1.2784 2.2417 

Present 54.0576 127.4031 222.9555 0.5439 1.2784 2.2417 

10-4 

EBT 54.3098 54.3418 54.4228 0.5439 0.5442 0.5450 

Akgöz and Civalek (2014a) 10.9585 17.1998 24.6428 0.4664 0.5179 0.5341 

Present 10.9585 17.1998 24.6428 0.4664 0.5179 0.5341 

10-5 

EBT 54.3098 54.3130 54.3211 0.5439 0.5439 0.5440 

Akgöz and Civalek (2014a) 7.1213 8.3789 10.5337 0.2582 0.3820 0.4578 

Present 7.1213 8.3789 10.5337 0.2582 0.3820 0.4578 

10-6 

EBT 54.3098 54.3101 543109 0.5439 0.5439 0.5439 

Akgöz and Civalek (2014a) 6.6021 6.7497 7.0538 0.1096 0.1716 0.2455 

Present 6.6021 6.7497 7.0537 0.1096 0.1716 0.2455 
 

449



 

Djazia Leila Benmansour et al. 

50 100 200 300 400 500

0

10

20

30

40

50

60

 

 

 Isotropic

 r=10
-4

 r=10
-5

 r=10
-6

W
P

re
se

n
t/W

E
B

T

L/D
0  

Fig. 3 Variation of maximum deflection ratio for various 

geometric ratio and different shear modulus ratio 
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Fig. 6 Influences of length scale parameters on natural 

frequency ratio for different shear modulus ratio 

(a) L/Do = 50 (b) L/Do = 500 

 

 

corresponding to isotropic case are almost equal to one. It 

can be deduced from the results that difference between 

elastic and shear modulus, resulting from composite 

structure and anisotropic molecular architecture of MTs, 

plays a considerable role on bending and dynamic 

properties of MTs. 
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Fig. 4 Variation of natural frequency ratio for various 

geometric ratio and different shear modulus ratio 
 

 

 

 

Influences of material length scale coefficient-to-outer 

diameter ratio on maximum deflection and first natural 

frequency ratios of the simply supported MTs 

corresponding to various shear modulus ratios for 𝐿/𝐷0 =
50  and 𝐿/𝐷0 = 500  are illustrated in Figs. 5 and 6, 

respectively. It is seen that an increase in material length 

scale coefficient-to-outer diameter ratio leads to a 

decrement on influences of shear deformation while the 

shear deformation influences become more frequent by 

diminishing shear modulus ratio. In addition, it is clear that 

these ratios are closer to one for MSGT as a function of the 

increase in the material length scale parameter-to-outer 

diameter ratio. Also, it can be observed that the maximum 

deflection and natural frequency ratios for 𝐿/𝐷0 = 50 are 

always farther than those for 𝐿/𝐷0 = 500. 

 

 

6. Conclusions 
 

In this work, a microstructure-dependent “shear 

deformation beam model” is established for bending and 

free vibration investigation of microtubules on the basis of 

“modified strain gradient elasticity theory”. The current 

single variable sinusoidal beam theory captures influences 

of shear deformation with no need for “shear correction 

0.0 0.4 0.8 1.2 1.6 2.0

0

10

20

30

40

50

60

W
P

re
s
e

n
t/W

E
B

T

 Isotropic

 r=10
-4

 r=10
-5

 r=10
-6

l/D
0

(a): L/D
0
=50

 
0.0 0.4 0.8 1.2 1.6 2.0

0

1

2

3

4

5

(b): L/D
0
=500

W
P

re
s
e

n
t/W

E
B

T

 Isotropic

 r=10
-4

 r=10
-5

 r=10
-6

l/D
0  

Fig. 5 Influences of length scale parameters on maximum deflection ratio for different shear modulus ratio 

(a) L/Do = 50, (b) L/Do = 500 

450



 

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory 

factors” and this using only one variable as the Euler-

Bernoulli beam theory. The equations of motion are 

determined by utilizing Hamilton’s principle. The bending 

and dynamic responses of simply supported isolated 

microtubules are investigated. Analytical solutions for 

deflections for point load at the midspan of the MTs and 

first three natural frequencies are obtained with the help of 

Navier solution technique. Influences of shear deformation, 

material length scale parameter, geometric ratio and shear 

modulus ratio on deflections and natural frequencies of 

microtubules are examined and discussed in detail. The 

results are compared with available results of open literature 

in conjunctions with CT and MCST. It is remarked that 

microstructure-dependent response is more important when 

material length scale parameters are close to the outer 

diameter of MTs. Classical beam models overestimate 

“deflections” while they underestimate “natural 

frequencies”. Similarly, single variable sinusoidal beam 

theory overestimates “deflections” while it underestimate 

“natural frequencies”, particularly for smaller geometric 

ratios. It can be observed that the beam models based on 

higher order elasticity models and simple beam model are 

stiffer than those based on classical theory and shear 

deformation beam models. In addition, it can be argued that 

the influences of shear deformation become larger because 

of the composite structure and anisotropic molecular 

architecture of MTs, particularly for smaller geometric 

ratios. An improvement of present formulation will be 

considered in the future work to consider other shear 

deformation models and other types of materials (Bouderba 

et al. 2013, Avcar 2015, 2016, 2019, Draiche et al. 2016, 

Bousahla et al. 2016, Daouadji 2017, Kar et al. 2017, Chikh 

et al. 2017, El-Haina et al. 2017, Lal et al. 2017, 

Bensattalah et al. 2018, Eltaher et al. 2018, Fakhar and 

Kolahchi 2018, Bourada et al. 2018, Ayat et al. 2018, 

Behera and Kumari 2018, Bakhadda et al. 2018, Faleh et al. 

2018, Cherif et al. 2018, Panjehpour et al. 2018, Youcef et 

al. 2018, Rezaiee-Pajand et al. 2018, Kaci et al. 2018, 

Kadari et al. 2018, Selmi and Bisharat 2018, Narwariya et 

al. 2018, Bendaho et al. 2019, Boukhlif et al. 2019, Hellal 

et al. 2019, Draoui et al. 2019, Boutaleb et al. 2019, Zine et 

al. 2018, Adda Bedia et al. 2019, Bensattalah et al. 2019, 

Draiche et al. 2019, Hussain et al. 2019, Addou et al. 2019, 

Medani et al. 2019, Chaabane et al. 2019, Boulefrakh et al. 

2019). 
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