
Advances in Nano Research, Vol. 7 No. 6 (2019) 431-442 
DOI: https://doi.org/10.12989/anr.2019.7.6.431 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=journal=anr&subpage=5                                                  ISSN: 2287-237X (Print), 2287-2388 (Online) 

 
1. Introduction 

 

Carbon nanotubes (CNTs) fascinate new materials with 

astonishing mechanical, optical and electrical properties 

(Ren et al. 2011). They are generated by rolling of the 

graphene sheet (Iijima 1991, O’Connell 2006). Carbon 

nanotube sheets include hexagonal cells that are ideally cut 

to produce carbon atoms of the tube. In fact, CNTs are 

kinds of rolled graphene sheets, and the rolling manner 

shows the basic properties of the tube, and that is actually 

the main reason for the extraordinary feature of the CNTs 

(Georgantzinos et al. 2009). Vibrational characteristics of 

various nano-structures are widely investigated based on 

nonlocal beam model. Specifically, carbon nanotube as one 

of the most practical/applicable miniature structure attracts 

many researchers in order to analytically and 

experimentally probes its dynamical properties using the 

nonlocal beam theory (Zemri et al. 2015, Youcef et al. 

2018). The nonlocal theory mostly focused on the free 

vibrational analysis of the nano-structure, especially, carbon 

nanotubes. 
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In addition, nano-structures can be mentioned as the 

important types of devices which have wide applications in 

a variety of technological and scientific fields (Tserpes and 

Papanikos 2005, Ansari et al. 2011, Soltani et al. 2012, 

Mouffoki et al. 2017, Bouadi et al. 2018). Nanotubes and 

micro-beams can be cited as one of the very applicable 

micro- and nano-structures in various systems, namely, 

sensing devices, communications and the quantum 

mechanics. The application of the tiny structures, 

specifically, carbon nanotubes in the sensors and actuators 

enforce the engineers to study vibrational properties of 

those structures experimentally and theoretically. The 

nonlinear forced vibration of carbon nanotubes has seldom 

been observed (Das et al. 2013, Bocko and Lengvarský 

2014, Reddy and Pang 2008). However, this issue is very 

crucial due to the widespread application of the forced 

nonlinear vibration carbon nanotubes in many practical 

instruments. 

Due to this, a new model is required to observe the 

nano-size structure. Some investigators studied the higher 

order elasticity theories (Murmu and Pradhan 2009, Civalek 

et al. 2009, Narendar and Gopalakrishnan 2011, Yayli 2013, 

Demir and Civalek 2016). Different non-classical elasticity 

theories have attracted the researcher’s attention as: stress 

and strain theories (Mindlin and Tiersten 1962, Toupin 

1964, Karami et al. 2018a, b), strain theories (Fleck and 

Hutchinson 1993), and nonlocal theory (Eringen and 

Edelen 1972, Eringen 1983). For the interpretation of 

vibrational influence of SWCNTs, the nonlocal elasticity 
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Abstract.  Vibration analysis of carbon nanotubes (CNTs) is very essential field owing to their many promising applications in tiny 

instruments. In current study, the Eringen’s nonlocal elasticity theory with clamped-clamped and clamped-free end conditions is 

utilized for the vibration analysis of armchair and zigzag SWCNTs. The Fourier method is utilized to solve the ordinary differential 

equation. The motion equation for this system is developed using a novel wave propagation method. Complex exponential functions 

have been used and the axial model depends on BCs that has been described at the edges of CNTs. The behavior of different 

nonlocal parameters is considered to find the vibrational frequency of SWCNTs. It is exhibited that the effect of frequencies against 

aspect ratio by varying the bending rigidity. It has been investigated that by increasing the nonlocal parameter decreases the 

frequencies and on increasing the aspect ratio increases the frequencies for both the tubes. To generate the fundamental natural 

frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since 

the percentage of error is negligible, the model has been concluded as valid. 
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theory and TBM are used (Mindlin and Tiersten 1962, 

Toupin 1964, Fleck and Hutchinson 1993). Many 

Researchers used different theories for the dynamic 

response, buckling, stability and instability of CNTs, pipes, 

and plates (Kolahchi and Bidgoli 2016, Kolahchi et al. 

2017a, 2016a, b, Kolahchi and Cheraghbak 2017, 

Hajmohammad et al. 2017, 2018a, b, 2019, Golabchi et al. 

2018). Lee and Chang (2008) analyzed the vibration mode 

shape and frequency of fluid-filled SWCNTs using nonlocal 

elasticity theory (NLT). It is found that mode shape and 

frequency are influenced significantly by the nonlocal 

parameters and observed that the frequency component 

decreases as the nonlocal parameters increase. Murmu and 

Pradhan (2009) investigated the vibrational frequencies 

with different modes along temperature change using 

nonlocal small scale effects. On the other side, for length 

scale coefficient and soft elastic medium with embedded 

carbon nanotube, the nonlocal frequencies are 

comparatively lower. It is also found that the frequencies of 

the nonlocal model at different stages of temperature are 

higher than the nonlocal with same temperature. Eringen 

nonlocal theory and Von-Karman geometry were fully 

studied by Yang et al. (2010). Vibration frequencies of 

zigzag SWCNTs (5, 0), (8, 0), (9, 0) and (11, 0), with 

different boundary conditions are considered and calculated 

numerically through MD simulation. The influence of 

nonlocal parameter on height and radius are studied in 

detail. Ansari et al. (2011) presented the large vibrations of 

the CNTs considering Eringen’s nonlocal theory. They 

applied the Rayleigh-Ritz technique and obtained the 

frequency of the DWCNT association with different values 

of aspect ratio. The results were presented for different 

zigzag and armchair. Das et al. (2013) studied the nonlocal 

theories for the in-extensional vibration of SWCNTs. The 

in-extensional mode frequency is treated by the positive 

strain gradient theory with circumferential wave number. 

Thongyothee et al. (2013) investigated the Euler beam 

theory for SWCNTs and the classical solution yields the 

result and is compared with finite element method (FEM). 

In this study, effects of different geometrical boundary 

condition and tube chirality are considered. The numerical 

results with low aspect ratios are in good agreement with 

classical solution. Furthermore, in this study, the first order-

ten modes for boundary conditions and different aspect 

ratios and repeated natural frequencies are also highlighted. 

Ansari and Arash (2013) investigated vibrations of 

DWCNTs based on NLT using differential quadrature 

method (DQM). The mechanical behavior of DWCNTs 

with geometrical parameters layer wise boundary conditions 

and small scale factors are fully investigated. Bocko and 

Lengvarský (2014) assessed the bending vibration 

responses of CNTs with various conditions. The 

fundamental natural frequency (FNF) with different 

nonlocal parameters as well as two distinct diameter and 

continuously changed length was computed by the nonlocal 

theory. It has been represented by them the nonlocal 

parameters are highly influential on the bending vibration of 

a carbon nanotube. It was shown that the boundary 

conditions with nonlocal parameter are more effective on 

the nanotube vibration. Moreover, it has been observed that 

on enhancing the length of CNT, the frequencies decrease 

by increasing of the nonlocal parameter. 

Ansari and Rouhi (2015) studied stability of SWCNTs 

under axial load and demonstrated the small scale effects of 

lengths based on Rayleigh-Ritz methods. The axial buckling 

of armchair (8, 8) SWCNTs are found with various 

boundary conditions by applying the molecular dynamic 

simulation. By adjusting the nonlocal parameter with 

bending rigidity and in-plane stiffness to predict the results 

of MD simulations. Besseghier et al. (2015) presented the 

nonlinear vibration of zigzag SWCNTs based on Winkler-

type model. The energy-equivalent model was used for the 

derivation of general equation. Arani and Kolahchi (2016) 

used the nonlinear buckling of SWCNTs resting on elastic 

foundation. The mixture rule was employed for buckling 

analysis of embded CNTs with Euler and Timoshenko beam 

model. The influence of geometrical parameter and elastic 

foundation with different boundary conditions was 

investigated. Soltani et al. (2016) investigated the nonlinear 

vibrational characteristics of SWCNTs using the theory of 

nonlocal elasticity and Karman’s geometric non-linearity 

theory. The controlling equation is derived from Donnell’s 

shell theory and partial differential equations are converted 

into differential equations by invoking Galerkin’s 

technique. The influence of aspect ratios, nonlocal 

parameters, nonlinear parameters and circumferential 

parameters are investigated. Bilouei et al. (2016) and 

Zamanian et al. (2017) studied the buckling behavior of 

concrete columns with nanofiber reinforced polymer and 

SiO2 nano-particles. By using the strain-displacements, 

Hamilton’s principles and Mori- Tanka approach, the 

governing equation was derived. Numerical results were 

presented with the variation of elastic foundations. Madani 

et al. (2016) investigated the vibration of embedded FG-

CNT-reinforced piezoelectric cylindrical shells using 

differential quadrature method (DQM). The mixture rule of 

four different types of distribution was used in the thickness 

direction. Kolahchi (2017) and Kolahchi et al. (2017b, c) 

studied the bending and buckling of viscoelastic and non-

viscoelastic sandwich nanocomposits using DQM, zigzag 

theory and Grey Wolf algorithm. Numerical results for 

volume fraction, and piezoelectric layers for the role of 

actuator and sensor. Akgöz and Civalek (2017) investigated 

the buckling analysis of SWCNTS using elastic foundation. 

The governing equation was obtained using several with 

boundary conditions. Avcar (2015, 2019) presented the 

vibration of FG beam and effect of rotary inertia of beam by 

the process of manufacturer. The thickness was controlled 

by the rule of mixture with volume fraction law. The 

governing equation was derived by classical and 

deformation theory with power law and sigmoid law. The 

frequencies for span to depth ratio with varying volume 

fraction index were examined in detail. Bouadi et al. (2018) 

developed the new model displacement field for the 

nonlocal buckling properties of single graphene sheet. The 

Eringen relation was used for the theoretical formation with 

length scale parameter. Avcar and Mohammed (2018) 

studied the vibration of FG beam resting on elastic 

foundation. The elastic foundation was linear, isotropic and 

homogenous. Various boundary conditions were used to 
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find the numerical results of vibration of FG beam. 

Recently, research on vibration of single-walled carbon 

nanotubes have been done by many material researchers 

(Hussain and Naeem 2017, 2018a, b, 2019a, b, c, Hussain et 

al. 2017, 2018a, b). Yazid et al. (2018) presented new 

refined plate theory by  employing nonlocal small effects. 

By using the principle of virtual displacements, the nonlocal 

relation for equation of motion was obtained. The results 

presented here may provide a useful design for 

nanostructures. Civalek et al. (2009) and Ebrahimi and 

Mahmoodi (2018) presented the static analysis of SWCNTs 

and vibration of CNTs using Eringen’s and Euler beam 

theory. The bending moment and function of strain were 

performed with different boundary conditions. Boutaleb et 

al. (2019) and Youcef et al. (2018) performed the dynamic 

analysis of nanosize rectangular plates and beams with 

nonlocal quasi 3D HSDT and surface elasticity theory. The 

effect of various parameters such as thickness-radius ratio, 

aspect ratio, beam thickness, material index, surface density 

and surface elastic constants. Karami et al. (2017, 2018a, b) 

conducted the analysis analysis of FG nanoplates, spherical 

nano particles and inisotropic nanoparticles using quasi-3D 

model, 3D elasticity theory and nonlocal strain gradient 

theory. They investigated the dispersion analysis of FG 

nanoplates nonlocal strain gradient effect and triaxial 

magnetic effect. Ehyaei and Daman (2017) and Eltaher et 

al. (2019) investigated the vibration characteristics of 

SWCNTs and DWCNTs using initial perfection and 

continuum mechanics approach. The general equation of 

motion was obtained by Hamiltonian principle and energy 

equivalent model. The numerical frequencies of DWCNTs 

and SWCNTs were determined by Navier method and finite 

element method. Semmah et al. (2019) investigated the 

buckling analysis of zigzag single walled boron nitride 

based on Winkler foundation. The governing equation was 

taken into account with the shear deformation theory. Effect 

of different nonlocal parameter was investigated with 

closed form solution. Many material researchers used varius 

methods for new results of nanocomposits (Zarei et al. 

2017, Hajmohammad et al. 2018a, b, Amnieh et al. 2018, 

Fakhar et al. 2018, Hosseini et al. 2018, Jassas et al. 2019). 

The foremost intension of this paper to investigate 

vibrations characteristics of armchair and zigzag SWCNT 

by means of nonlocal theory, which is our particular 

motivation. The suggested method to investigate the 

solution of fundamental relations is wave propagation 

approach (WPA), which is a well-known and efficient 

technique to develop the fundamental frequency equations. 

It is keenly seen from the literature, no evidence is found 

concerning current model where such problem has been 

studied so it gave impetus to conduct present work. The 

specific influence of four different end supports based on 

WPA is examined in detail. 

In addition, earlier Researchers have utilized different 

methodologies to investigate the vibrational behavior of 

CNTs (single- and double-walled carbon nanotubes, for 

example nonlocal continuum mechanics (Wang and 

Varadan 2006), Timoshenko beam model (Simsek 2011), 

finite element method (Mohammadimehr and Alimirzaei 

2016), Non-local theory of elasticity (Kolahchi et al. 2019) 

and differential quadrature method (Azmi et al. 2019). 

A comprehensive estimation regarding nonlocal theory 

has been considered for vibrational behavior of the 

SWCNTs with distinct nonlocal parameters (𝜉 = 0.5, 1, 1.5, 

2). Vibrations of SWCNTs for armchair indices (5, 5), (7, 

7), and zigzag indices (8, 0), (15, 0) have been analyzed. 

We developed a new model from the combination of the 

nonlocal theory of elasticity with wave propagation 

approach. It is noted that the frequencies of C-C is higher 

than that of C-F. Also, WPA has been utilized for first time 

to consider the effects of bending rigidity on SWCNTs 

vibration. This modified model has less complication and 

has been compared with the earlier methods. The 

computational results indicated that there is inverse relation 

of nonlocal parameters and frequencies. The obtained 

results show that by increasing aspect ratio of carbon 

nanotubes, frequency value increases at all boundary 

conditions. In our measurement we indicated that with 

higher aspect ratio, the BCs have a momentous influence on 

vibration of CNT. It can be concluded that frequencies 

would increase by increasing of the bending rigidity. This 

means that smaller effects play an important role in 

predicting SWCNT frequencies, which local theory cannot 

capture. 

 

 

2. Theoretical formulation 
 

When a graphene sheet is rolled with its hexagonal cells, 

the structure can be conceptualized as SWCNTs and its 

circumference and quantum properties depend upon the 

chirality and diameter described as a pair of (n, m).  In 

addition, the integers n and m represent the orientation of 

the graphene honeycomb lattice. Fig. 1 shows the 

orientation of the graphene sheet as, nanotubes become 

armchair, if n = m and the nanotubes are zigzag, if m = 0. In 

classical theory, physical quantities act as local behaviors 

but in traditional theory, the stress at this point is affected 

by the strain at this point. According to Eringen (2002) 

theory of nonlocal, the stress at applied point regarded as a 

functional of all points of strain field and this theory is 

absolutely different from all other theories as conventional 

theory. 

 

 

 

Fig. 1 Hexagonally description of armchair and zigzag 

SWCNTs on the graphene sheet 

433



 

Muzamal Hussain, Muhammad Nawaz Naeem, Abdelouahed Tounsi and Muhammad Taj 

According to this theory, it is possible to express a 

nonlocal relationship based on a homogeneous isotropic 

beam as 

𝜀𝑥𝑥 − 𝜇2𝜒𝑖
2

𝜕2

𝜕𝑥2
𝜀𝑥𝑥 = 𝐸𝜎𝑥𝑥 (1) 

 

The factor 𝜉 = 𝜇2𝜒𝑖
2is called the small scale affect, 

where 𝜇  and 𝜒𝑖  are the material constant and lattice 

spacing length or internal characteristic length. 

Eq. (1) can be stated as 

 

𝜀𝑥𝑥 − 𝜉
𝜕2

𝜕𝑥2
𝜀𝑥𝑥 = 𝐸𝜎𝑥𝑥 (2) 

 

Where 𝜀𝑥𝑥  is the normal stress, 𝜎𝑥𝑥 is the normal 

strain, E is the young’s modulus and 𝜉  is called the 

nonlocal parameter of SWCNTs. These parameters are used 

to explore the bending, buckling and vibration of beams and 

tubes (Thongyothee and Chucheepsakul 2008, Reddy and 

Pang 2008). According to Euler beam theory (Thongyothee 

and Chucheepsakul 2008), for the free vibration of the 

CNT, the controlling equation of motion including NLT, one 

could have 
 

𝜏(𝑥)𝜉
𝜕2𝑢

𝜕𝑡2
+

𝜕2

𝜕𝑥2
[𝐸𝐼(𝑥)

𝜕2𝑢

𝜕𝑡2
] = 0 (3) 

 

Where 𝜏 , I stand for the mass per unit length and 

moment of inertia of CNT. Two systems of ordinary 

differential equations (ODEs) are derived using the Fourier 

method of variational separation. In this system, two terms 

are related to the spatial variable x and temporal variable, 

respectively. 
 

𝑢(𝑥, 𝑡) = 𝛾(𝑥)𝑆(𝑡) (4) 

 

𝜏𝜉
𝜕2

𝜕𝑡2
𝛾(𝑥)𝑆(𝑡) +

𝜕2

𝜕𝑥2
[𝐸𝐼

𝜕2

𝜕𝑥2
𝛾(𝑥)𝑆(𝑡)] = 0 (5) 

 

𝜏𝜉𝛾(𝑥)
𝑑2𝑆

𝑑𝑡2
+ 𝐸𝐼𝑆(𝑡)

𝑑4𝛾

𝑑𝑥4
= 0 (6) 

 

𝐸𝐼𝑆(𝑡)
𝑑4𝛾

𝑑𝑥4
= −𝜏𝜉𝛾(𝑥)

𝑑2𝑆

𝑑𝑡2
 (7) 

 

For harmonic response 

 

𝑆(𝑡) = 𝑒𝑖𝑤𝑡 or 𝑐𝑜𝑠𝜔𝑡 or 𝑠𝑖𝑛𝜔𝑡 (8) 

 

Substitute Eq. (8) into Eq. (7), the relation can be 

written as 
 

𝜏𝜉𝛾(−𝜔2𝑐𝑜𝑠𝜔𝑡) + 𝐸𝐼𝑐𝑜𝑠𝜔𝑡
𝑑4𝛾

𝑑𝑥4
= 0 (9) 

 

𝑑4𝛾

𝑑𝑥4
−

𝜏𝜉𝜔2

𝐸𝐼
𝛾(𝑥) = 0 (10) 

 

𝑑4𝛾

𝑑𝑥4
− 𝜆4𝛾(𝑥) = 0 (11) 

Here 𝛾(𝑥) denotes the mode shape (Eigen shape) 

For parameter 𝜆 
 

𝜆4 =
𝜏𝜉𝜔2

𝐸𝐼
 (12) 

 

The general solution of fourth order ODE is postulated 

as 

 

𝛾(𝑥) = 𝑞1𝑠𝑖𝑛𝜆𝑥 + 𝑞2𝑐𝑜𝑠𝜆𝑥 + 𝑞3𝑠𝑖𝑛𝜆𝑥 + 𝑞4𝑐𝑜𝑠ℎ𝜆𝑥 (13) 

 

where q1, q2, q3, and q4 are the unknown constants. 

Eq. (11), becomes as 

 

𝛾𝑖𝑣(𝑥) − 𝜆4𝛾(𝑥) = 0 (14) 

 

 

3. Numerical technique 
 

Wave propagation approach is used to study the 

vibrational behavior of SWCNTs. Before this work current 

approach was successfully used for vibration and buckling 

analysis of cylindrical shell (Hussain et al. 2018a, c, 

Hussain and Naeem 2018a, b) and plates vibrations 

(Hussain and Naeem 2018b). The Galerkin’s method 

(Hussain et al. 2018b, Hussain and Naeem 2019a, b) has 

been used for the frequencies calculations of SWCNTs. This 

technique contains many integrals of these functions and a 

long process to solve these integrals. A new exponential 

form for the deformed axial functions 𝛾(𝑥) can be written 

as 

𝛾(𝑥) = 𝑒−𝑖𝛤𝑚 (15) 

 

For vibrating carbon nanotubes, the axial wavenumber 

𝛤𝑚 related to support conditions applied on both sides of 

SWCNTs and m denotes axial half-wave number. 

 

𝛾𝑖𝑣(𝑥) = 𝛤4
𝑚𝑒−𝑖𝛤𝑚𝑥 (16) 

 

Substituting Eq. (16) into Eq. (14), we have 

 

𝛤4
𝑚𝑒−𝑖𝛤𝑚𝑥 − 𝜆4𝑒−𝑖𝛤𝑚𝑥 = 0 (17) 

 

𝜆4 = 𝛤4
𝑚 (18) 

 

By using the Eq. (12), we can write as 

 

𝜏𝜉𝜔2

𝐸𝐼
= 𝛤4

𝑚 (19) 

 

 

4. Nonlocal boundary conditions 
 
Appropriate material properties and boundary conditions 

is applied and then the model is solved for natural 

frequencies SWCNTs of different indices (5, 5), (7, 7), (9, 

9) for armchair and for zigzag indices (8, 0), (15, 0), (20, 0) 

SWCNTs. 

 

From Eq. (19) 
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Table 1 Comparison of nondimensional frequencies 

Δ = 𝜔𝑅√𝜌/𝐸 (L/R = 1, n = 1) 

m 

n = 1 n = 2 

Alibeigloo and 

Shaban (2013) 
Present 

Alibeigloo and 

Shaban (2013) 
Present 

0 0.97087 0.97063 0.99351 0.99289 

1 0.59721 0.59698 0.88357 0.88301 

2 0.34025 0.34019 0.68072 0.68013 

3 0.20145 0.20099 0.50059 0.5003 

4 0.12886 0.12872 0.36918 0.36897 

5 0.09105 0.09087 0.27671 0.27662 
 

 

 

For C-C 

 

𝜏𝜉𝜔2

𝐸𝐼
= (

(2𝑛 + 1)𝜋

2𝐿
)

4

 (20) 

 

Here  𝛤𝑚 =
(2𝑛+1)𝜋

2𝐿
 (C-C boundary condition) 

For C-F 

 

𝜏𝜉𝜔2

𝐸𝐼
= (

(2𝑛 − 1)𝜋

2𝐿
)

4

 (21) 

 

Where 𝛤𝑚 =
(2𝑛−1)𝜋

2𝐿
 (C-F boundary condition) 

From Eq. (19) the fundamental natural frequencies are 

calculated where ω = 2π f. There exists uncertainty in 

defining the nanotube thickness. Here, we apply relations 

from (Tserpes and Papanikos 2005). 

 

𝑚 = 𝜌𝐴 = 2.4 × 10−24𝑑[𝑘𝑔/𝑛𝑚] (22) 

 

𝐸𝐼 = 428.48𝑑2 − 397.08𝑑 + 109.24[𝑘𝑔𝑛𝑚3/ 𝑠2) (23) 

 

Diameter of nanotubes is indicated by d and can be 

calculated from translation indices (n, m) by relation. 

 

𝑑 = 2𝑅 = 𝑎0√3(𝑚2 + 𝑛2 + 𝑛𝑚)/𝜋 (24) 

 

 

Where the carbon-carbon bond length (a0 = 1.42 Å ). It 

can be seen that the error percentage is negligible, hence 

showing high rate of convergence. The results of 

nondimensional frequency are computed for two different 

values of n = 1, 2 with circumferential wave number (m = 

0, 1, 2, 3, 4, 5) as shown in Table 1. Alibeigloo and Shaban 

(2013) investigated the impact of nonlocal parameters on 

the vibration of CNTs by using the three-dimensional elastic 

theory based on the Fourier series expansion. It was 

concluded that the frequency decreased when nonlocal 

parameters increased. The proposed model based on WPA 

can incorporate in order to accurately predict the acquired 

results of material data point. Figs. 2-3 show the natural 

frequencies of armchair C-C and C-F SWCNTs versus 

aspect ratio with nonlocal parameters. The natural 

frequencies are calculated of C-C armchair (5, 5) SWCNTs 

against ratio of length-to-diameter with different nonlocal 

parameters (𝜉 = 0.5, 1, 1.5, 2). It is observed that the 

frequency values (L/d = 1~10) decreases on increasing the 

nonlocal parameter (𝜉 = 0.5, 1, 1.5, 2). The corresponding 

frequency modes have been sketched in Fig. 2. It is 

indicated that the frequencies with different nonlocal 

parameters are nearly equal at L/d = 1, but at L/d = 5, the 

gap between frequencies is visible and as the frequencies 

increase and at L/d = 6 ~ 10, the gap between frequencies 

curve also increases. Fig. 2, shows the variation of the 

frequencies of C-C armchair (7, 7) with same nonlocal 

parameters. The frequency value at L/d = 1 (10) are 0.0641 

(6.4093), at 𝜉 = 1, 0.0453 (4.5321), at 𝜉 = 1.5, and 0.0370 

(3.2046) at 𝜉 = 2, respectively. We can see that the 

frequency curves increases with the increases of indices, 

wherein the same trend of the curves are seen. These 

patterns get excited at greater frequencies than C-C (5, 5) 

also maintain regularity in the wave form patterns. It can be 

depicted from these figures that the natural frequencies 

decrease by increasing the nonlocal parameters (𝜉 = 0.5, 1, 

1.5, 2). It is also concluded that with same parameters and 

bending rigidity, frequency values become larger and larger 

as we increases the indices. Fig. 3 show that the effect of 

fundamental natural frequencies against length-to-diameter 

ratio of C-F armchair (5, 5), (7, 7) with different nonlocal 

parameters (𝜉 = 0.5, 1, 1.5, 2). When (L/d, 𝜉 = 1, 0.5 ~ 2) 
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for C-F armchair (5, 5) are 0.0118 ~ 0.0059 and (L/d, 𝜉 = 

1, 0.5 ~ 2)  is 1.1772 ~ 0.5886 as shown in the Fig.  3.  

With same parameters,  for  armchair  (7,  7)  are 

0.0481~0.0241 and 4.8141~2.4070, respectively, has been 

shown in the Fig. 3. The trend of the frequencies is same as 

the C-C [= (5, 5), & (7, 7)], but it is noted that with each 

 

 

 

 

 

 

index the C-F values is lower than those of corresponding 

C-C frequencies. It is also observed that these frequencies 

have a paramount impact on the vibration of CNTs and this 

is due to the constraints which are applied on the edges of 

CNT. Fig. 4 show the variation of the frequency with zigzag 

indices (8, 0) and (15, 0) with different nonlocal parameters 
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(𝜉 = 0.5, 1, 1.5, 2). It can be seen in Fig. 4, when the index 

changes from zigzag (8, 0) to (15, 0), the frequency 

becomes larger. It is observed that in the zigzag case, the 

frequencies are higher than that of armchair case. The 

reason for this is that the zigzag of the main carbon 

structure has several elements parallel to the tube axis, 

while the armchair tube does not have these characteristics. 

For this case, the frequency curves are much lower than that 

of above clamped-clamped CNTs. In deepness,  to 

understand the vibration characteristics of carbon 

nanotubes, namely zigzag carbon nanotubes (8, 0), and (15, 

0) with bending rigidity, different nonlocal parameters and 

aspect ratio of 1~10 are considered and the results are 

discussed. Fig. 5 show the C-F frequencies of different 

zigzag indices with different nonlocal parameters. Next, the 

frequency values with C-F zigzag (8, 0) at (L/d, 𝜉) = (1, 0.5 

and 2) are f (Hz) ~ 0.0279, 0.0140 and at (L/d, 𝜉) = (10, 

0.5and 2) are f (Hz) ~ 2.7905, 1.3952 as shown in the Fig. 

5. For the same parameter with C-F zigzag (15, 0), the 

computed values are f (Hz) ~ 36.6680, 18.3340 as shown in 

Fig. 5. It is observed that in the zigzag case, the frequencies 

are higher than that of armchair case. The reason for this is 

 

 

 

 

that the zigzag of the main carbon structure has several 

elements parallel to the tube axis, while the armchair tube 

does not have these characteristics. As a result, zigzag type 

CNTs are expected to have greater bending and longitudinal 

stability than that armchair CNT. 

 

 

5. Vibration of SWCNTs with bending rigidity 
 

5.1 Effect of bending rigidity on the vibration of 
armchair SWCNTs 

 

Figs. 6-7 show FNFs with (5, 5), (7, 7) and (9, 9) 

armchair type SWCNTs calculated with WPA based NLT 

under boundary conditions C-C and C-F. As seen in these 

figures, with the increase of bending rigidity (EI = 5.1122 e-

9 nm~7.2617e-9 nm) the frequencies increase, and with 

increasing L/d its value also increases, as C-C = (5, 5) f 

(Hz): 0.0124 ~ 0.0148 [C-F (5, 5) f (Hz): 0.0083 ~ 0.0099] 

and C-C = (7, 7) f (Hz): 0.0453~0.0540 [C-F (7, 7) f (Hz): 

0.0340~0.0406] and C-C = (9, 9) f (Hz): 0.1202~ 0.1433[C-

F (9, 9) f (Hz): 0.0962~0.0694] at L/d = 1. The fundamental 
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Fig. 6 Aspect ratios against frequencies of C-C (5, 5), (7, 7) and (9, 9) armchair SWCNTs with 
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natural frequencies at L/d = 10 as C-C = (5, 5) f (Hz): 

1.2435~1.4820 [C-F (5, 5) f (Hz): 1.1772~0.9921] and C-C 

= (7, 7) f (Hz): 4.5321~4.0571 [C-F (7, 7) f (Hz): 4.8141~ 

4.0571] and C-C = (9, 9) f (Hz): 12.0201~35.3114 [C-F (9, 

9) f (Hz): 9.6227~11.4687]. It can be mentioned that the 

FNFs decrease with the increase of bending rigidity (EI), 

for C-C (Fig. 6) and C-F (Fig. 7), and FNFs increase with 

the increasing of aspect ratio, L/d. These figures refer to the 

case when EI varying from 5.1122e-9 nm to 7.2617e-9 nm. 

 

5.2 Effect of bending rigidity on the vibration of 
zigzag SWCNTs 

 

Fig. 8-9 show the natural frequency behavior of the 

calculated SWCNT system under bending rigidity (EI). 

These figures show the frequencies of zigzag (8, 0), (15, 0) 

and (20, 0) SWCNTs, computed with nonlocal parameter 𝜉 

= 1 based on WPA. It can be seen that the fundamental 

natural frequency increases with the increase of bending 

rigidity, (EI = 5.1122e-9 nm ~ 7.2617e-9 nm) and with the 

increasing of aspect ratio, frequency value increases, as C-C 

= (8, 0) f (Hz): 0.0297~0.0302 [C-F (8, 0) f (Hz: 

 

 

 

 

0.0197~0.0235)] and C-C = (15, 0) f (Hz): 0.2963~0.0738 

[C-F (15, 0) f (Hz): 0.0738~0.300)] and C-C = (20, 0) f (Hz): 

0.9213 ~0.1.0981 [C-F (20, 0) f (Hz): 0.8336~0.9936)] at 

L/d = 1. The frequencies at L/d = 10 as C-C = (8, 0) f (Hz): 

2.5344~ 3.0206 [C-F (8, 0) f (Hz): 1.9732~2.3517] and C-C 

= (15, 0) f (Hz): 29.6278~35.3114 [C-F (15, 0) f (Hz): 

25.9282~ 30.902] and C-C = (20, 0) f (Hz): 92.1345~ 

109.8089 [C-F (20, 0) f (Hz): 83.3650~99.3571]. It is 

evident from these figures that the FNF C-C = (8, 0), (15, 0) 

values are lower than C-C = (20, 0). As indicated by the 

figures that the fundamental frequencies increase with the 

increase of aspect ratio and its value increases with the 

bending rigidity. 

 

 

6. Conclusions 
 

The conclusion in this current paper shows the vibration 

of armchair and zigzag SWCNTs using nonlocal theory 

based on wave propagation approach with different end 

conditions. Frequency spectra of armchair (5, 5), (7, 7), (9, 

9) and zigzag (8, 0), (15, 0), 20, 0) SWCNTs have been 
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analyzed with proposed model. We developed a new model 

from the combination of the nonlocal elasticity theory with 

WPA. The governing equation has been developed for the 

vibrations of SWCNTs considering the nonlocal parameter 

with C-C and C-F boundary conditions. Effects of nonlocal 

parameters and bending rigidity have been fully 

investigated on the natural frequency against aspect ratios. 

It has been shown that frequency curves decrease as an 

increment in the nonlocal parameter increases by increasing 

of the aspect ratio. Additionally, it can be seen that by 

increasing in-plane rigidity, the frequencies are increased. 

Also, the frequency curves for C-F are lower throughout the 

computation than that of C-C curves. Accordingly, it would 

be interesting to consider the above model for the vibration 

of nonlocal rotating SWCNTs in future research. 
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