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Abstract.  In this article, an analytical solution is presented for the steady-state axisymmetric thermal stress 

distributions in a composite hollow cylinder. The cylinder is composed of two isotropic and anisotropic materials 

which is subjected to the thermal boundary conditions of convective as well as radiative heating and cooling on the 

inner and outer surfaces, respectively. The solution of the temperature is obtained by means of Bessel functions and 

the thermal stresses are developed using Potential functions of displacement. Numerical results are derived for a 

cylinder which is similar to a gas turbine combustor and showed that the maximum temperature and thermal stresses 

(radial, hoop, axial) occurred in the middle point of cylinder and the values of thermal stresses in anisotropic cylinder 

are more than the isotropic cylinder. It is worthy to note that the values of the thermal conditions which estimated in 

this research, not to be presented in any other papers but these values are very accurate in calculation. 
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1. Introduction 

 
Thermal stresses in scientific studies are one of the important topics in mechanical engineering 

and have received considerable attention both in analysis and design. These stresses induced when 

differential thermal expansions are caused in a cylinder body, and if these stresses are high and 

associated with high temperatures in the body, yield stress of the material at these temperatures 

may be approached or even exceeded. There are some researches which have investigated on the 

thermal stresses in cylinders. For example, it is well known that in aerospace and nuclear 

engineering, many structural components are subjected to severe thermal loadings which give rise 

to intense thermal stresses in the components, especially near cracks and other kinds of defects 

(Xue et al. 2018). The high thermal stresses around defects may cause catastrophic failure of the 

cracked structure (Jin and Noda 1994). There are many researches in this field that considered the 

effect of thermal stresses on the behaviors of structures and predicted the response of them against 

the effects of various distributions. In this section presented some of these studies such as: 

Analytical solutions for the thermal stresses in a hollow cylinder with the convective boundary 
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conditions on the inside and outside surfaces considered by Aziz and Torabi (2013). They 

investigated one dimensional steady conduction in the radial direction with uniform internal heat 

generation and assumed the radial stresses on the inside and the outside surfaces to be zero. 

Mohammadimehr and Mehrabi (2017, 2018a) studied thermal stability and vibration analyses of 

two double-bonded cylindrical shells reinforced by nanocomposite carbon nanotube. They showed 

that temperature distribution lead to change natural frequencies and stability of their structures. 

Mahmoudi and Atefi (2012), obtained the heat conduction equation and the associated thermal 

stresses are obtained in a hollow cylinder of homogenous and isotropic material using transient 

Fourier series. Their considered cylinder was under a periodic time-varying thermal loading in the 

inner circular, insulated on the outer circular surfaces and constant temperature of two other faces. 

They found that the depth of penetration of temperature fluctuation and related thermal stresses 

highly depend on the period of oscillation of thermal loading and thermo physical properties of the 

cylinder. Namayandeh et al. (2019) considered a simplified model of alumina ceramic to obtain 

the temperature distribution of a V94.2 gas turbine combustor under realistic operation conditions. 

The external thermal loads consist of convection and radiation heat transfers are considered that 

these loads are applied to flat segmented panel on hot side and forced convection cooling on the 

other side. Liu and Yin (2014) investigated the thermal elastic fields in the hollow circular overlay 

fully bonded to a rigid substrate, which is subjected to a temperature change. They showed that 

their results are useful for thermal stress analysis of the hollow circular thin film/substrate systems 

and for fracture analysis of spiral cracking. A nonlinear thermoelastic analysis of a thick-walled 

cylinder made of functionally graded material is performed by Moosaie (2016). He discussed 

about temperature field, material properties and radial stress versus the radial direction. Using 

closed-form exact solution, Zenkour (2014) predicted the hygro-thermal response of 

inhomogeneous piezoelectric hollow cylinders. He illustrated that the inhomogeneity parameter, 

the pressure load ratio, the electric potential ratio, the initial temperature, and the final 

concentration have significant effects on the temperature, moisture, displacement, stresses, and 

electric potential. Yaragal and Ramanjaneyulu (2016) investigated the effect of elevated 

temperature on the mechanical properties of the concrete specimen with polypropylene fibres and 

cooled differently under various regimes. Dejean and Mohr (2018) introduced a new family of 

elastically-isotropic elementary cubic truss lattice structures, eliminating the need of combining 

elementary structures to achieve elastic isotropy. Zibdeh and Al Farran (1995) presented a steady-

state solution for the thermal stresses of a homogeneous, orthotropic hollow cylinder subjected to 

an asymmetric temperature distribution on the outer surface and heat convection on the inner 

surface. They derived the thermal stresses and displacements for single and multilayer cylinders 

with fiber oriented 0, 90,180 deg. using three-dimensional linear elasticity approach. Their 

numerical results indicated that the single-layer, 0-deg cylinder has the lowest value of stresses and 

so the thermal stresses increase as the thickness increases. Yee and Moon (2002) employed 

Fourier–Bessel expansions and stress function methods to analysis the transient, plane thermal 

stresses of a linearly elastic, homogeneously orthotropic hollow cylinder subjected to an arbitrary 

temperature distribution. One of the most their research results showed that the thermal stress 

distributions were greatly affected by the thermal boundary and initial conditions. Lee (2005) 

solved the transient and steady-state thermal stresses in a multilayered hollow cylinder under 

periodic loading conditions using Laplace transform and finite difference methods. 

Some researchers worked about sandwich, composite and nanocomposite structures in thermal 

environment. Ghorbanpour Arani et al. (2016) depicted surface stress and agglomeration effects on 

nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various 
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approaches. Mohammadimehr and Rostami (2018b) illustrated bending and vibration analysis of a 

rotating sandwich cylindrical shell by considering nanocomposite core and piezoelectric layers 

under thermal and magnetic fields. Shahedi and Mohammadimehr (2019) presented vibration 

behavior of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and 

AL-foam flexible core in thermal and moisture environments. In the other work, they (Shahedi and 

Mohammadimehr 2020) considered nonlinear high-order dynamic stability of AL-foam flexible 

cored sandwich beam with variable mechanical properties and carbon nanotubes-reinforced 

composite face sheets in thermal environment. Bamdad et al. (2019) considered buckling and 

vibration analysis of sandwich Timoshenko porous beam with temperature-dependent material 

properties under magneto-electro-elastic loadings. Rajabi and Mohammadimehr (2019) 

investigated hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with 

isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT 

on elastic foundations. Mohammadimehr et al. (2017) showed dynamic stability of modified strain 

gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled 

carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration 

effects under hydro-thermo-electro-magneto-mechanical loadings. Thermal bifurcation buckling 

behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally 

graded material is explored by Bensaid and Bekhadda (2018). They illustrated that the critical 

buckling load decrease with increasing temperature changes. 

Many papers have analyzed the temperature and thermal stress distributions in cylinders, but a 

cylinder which is composed of anisotropic and isotropic materials hasn’t considered, yet and it is 

the novelty of this research. This persuade us to study this issue because of its importance in major 

industries such as power plants. Therefore, in this paper, the steady-state temperature and thermal 

stress distributions are analyzed in a finite hollow circular cylinder composed of two different 

anisotropic and isotropic, homogeneous materials which is heated by convection and radiation on 

the inner surface and cooled by convection and radiation on the outer surface. The cylinder is 

simply supported on its two ends. The mechanical and thermal loads are axisymmetric. Because of 

complexity of modeling the radiation, it is considered as a constant heat rate of 𝑞1
”, 𝑞2

” on the 

internal and external surfaces, respectively. It is worthy to note that the values of the thermal 

conditions which estimated in this research, not to be presented in any other papers but they are 

very accurate in calculation. 

 

 

2. Mathematical model 
 

Consider a hollow cylinder of finite length L, inner radius 𝑟1 and outer radius 𝑟2 as shown in 

Fig. 1. It is composed of two anisotropic and isotropic homogenous materials and simply 

supported at two ends where the temperature of them is 𝑇0. The internal surface is heated by a 

fluid at the temperature of 𝑇∞ and the convective coefficient of ℎ1 as well as a heat radiation of 

𝑞1
” . However, the external surface is subjected to the cooling flow due to a heat convection which 

is created by the same fluid but with the temperature of 𝑇0 and convective coefficient of ℎ2 

along with a heat radiation of 𝑞2
”. Axisymmetric steady-state boundary conditions and cylindrical 

coordinates (r, θ, z) are considered. 
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Fig. 1 Geometrical model of composite hollow cylinder 

 

 

3. Heat conduction 
 

The heat conduction equation for the 2-D steady-state temperature field and no heat generation 

in an anisotropic hollow cylinder is as follows (Misra and Achari 1980) 

 

[𝑘𝑟

𝜕

𝜕𝑟
(

𝜕

𝜕𝑟
+

1

𝑟
) + 𝑘𝑧

𝜕2

𝜕𝑧2
] 𝑇1(𝑟, 𝑧) = 0         𝑟1 ≤ 𝑟 ≤ 𝑟2,     0 ≤ 𝑧 ≤ 𝐿 (1) 

 

where 𝑇1(𝑟, 𝑧) is the temperature distribution and 𝑘𝑟 and 𝑘𝑧 are the thermal conductivities in 

the radial and axial directions, respectively. 

Considering 𝑘𝑟 = 𝑘𝑧, the Eq. (1) for the temperature distribution 𝑇2(𝑟, 𝑧) in an isotropic 

cylinder can be expressed as 

 

[
𝜕

𝜕𝑟
(

𝜕

𝜕𝑟
+

1

𝑟
) +

𝜕2

𝜕𝑧2
] 𝑇2(𝑟, 𝑧) = 0         𝑟2 ≤ 𝑟 ≤ 𝑟3,     0 ≤ 𝑧 ≤ 𝐿 (2) 

 

Thermal boundary conditions are assumed as follows 
 

        𝑇1(𝑟, 𝑧) = 𝑇2(𝑟, 𝑧) = 𝑇0                              𝑧 = 0,    𝑧 = 𝐿 (3) 

 

−𝑘1

𝜕𝑇1

𝜕𝑟
= ℎ1(𝑇∞ − 𝑇1(𝑟, 𝑧)) − 𝑞1

”          𝑟 = 𝑟1       (4) 

 

−𝑘(𝑟)
𝜕𝑇2

𝜕𝑟
= ℎ2(𝑇2(𝑟, 𝑧) − 𝑇0) + 𝑞2

”       𝑟 = 𝑟3      (5) 

 

𝑇1(𝑟, 𝑧) = 𝑇2(𝑟, 𝑧)        𝑟 = 𝑟2 (6) 

 

𝑘1

𝜕𝑇1

𝜕𝑟
= 𝑘𝑟

𝜕𝑇2

𝜕𝑟
           𝑟 = 𝑟2 (7) 
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In order to simplify of the problem, the following parameters are defined (Eslami and Hetnarski 

2013) 
 

𝑘2 =
𝑘(𝑧)

𝑘(𝑟)
,   𝑘3 =

𝑘1

𝑘𝑟
,   𝐻1 =

ℎ1

𝑘1
,   𝐻2 =

ℎ2

𝑘𝑟
,   𝜃𝑖 = 𝑇𝑖(𝑟, 𝑧) − 𝑇0𝑖 = 1,2,   𝜃∞ = 𝑇∞ − 𝑇0 (8) 

 

Applying parameters Eq. (8), Eq. (1) to Eq. (7) considered as follows 
 

[
𝜕

𝜕𝑟
(

𝜕

𝜕𝑟
+

1

𝑟
) + 𝑘2

𝜕2

𝜕𝑧2
] 𝜃1(𝑟, 𝑧) = 0          𝑟1 ≤ 𝑟 ≤ 𝑟2,    0 ≤ 𝑧 ≤ 𝐿 (9) 

 

   [
𝜕

𝜕𝑟
(

𝜕

𝜕𝑟
+

1

𝑟
) +

𝜕2

𝜕𝑧2
] 𝜃2(𝑟, 𝑧) = 0                𝑟2 ≤ 𝑟 ≤ 𝑟3,    0 ≤ 𝑧 ≤ 𝐿   (10) 

 

𝜃1(𝑟, 𝑧) = 𝜃2(𝑟, 𝑧) = 0               𝑧 = 0,    𝑧 = 𝐿 (11) 

 
𝜕𝜃1

𝜕𝑟
= 𝐻1(𝜃1(𝑟, 𝑧) − 𝜃∞) + 𝑞1

”         𝑟 = 𝑟1 (12) 

 
𝜕𝜃2

𝜕𝑟
= −[𝐻2(𝜃2(𝑟, 𝑧)) + 𝑞2

”]            𝑟 = 𝑟3 (13) 

 

𝜃1(𝑟, 𝑧) = 𝜃2(𝑟, 𝑧)                                𝑟 = 𝑟2 (14) 

 

𝑘3

𝜕𝜃1

𝜕𝑟
=

𝜕𝜃2

𝜕𝑟
                                         𝑟 = 𝑟2 (15) 

 

Using the method of the separation of variables and the boundary conditions (11), the solutions 

for 𝜃1(𝑟, 𝑧), 𝜃2(𝑟, 𝑧) can be written as follows 
 

𝜃1(𝑟, 𝑧) = ∑[𝐶1𝑛. 𝐼0(𝛼𝑛1𝑟) +

∞

𝑛=1

𝐷1𝑛. 𝐾0(𝛼𝑛1𝑟)] 𝑠𝑖𝑛 (
𝛼𝑛1

𝑘
𝑧) (16) 

 

𝜃2(𝑟, 𝑧) = ∑[𝐶2𝑛. 𝐼0(𝛼𝑛2𝑟) +

∞

𝑛=1

𝐷2𝑛. 𝐾0(𝛼𝑛2𝑟)] 𝑠𝑖𝑛(𝛼𝑛2𝑧) (17) 

 

in which 𝐼0 and 𝑘0 are zero-order modified Bessel functions of the first and second kinds, 

respectively. and 

𝛼𝑛1 =
𝑛𝜋𝑘

𝐿
 (18) 

 

𝛼𝑛2 =
𝑛𝜋

𝐿
 (19) 

 

where n = 1, 2, … 
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𝐶1𝑛, 𝐷1𝑛, 𝐶2𝑛, 𝐷2𝑛 are the constants which determined from the boundary conditions (12)-(15) 

that is shown in Appendix A. 
 

 

4. Thermal stresses in the anisotropic cylinder 
 

In the cylindrical coordinate, the stress-strain relations for an anisotropic material having elastic 

symmetry about z-axis are given by (Misra and Achari 1980) 
 

𝜎𝑟𝑟 = 𝐶11𝜀𝑟 + 𝐶12𝜀𝜃 + 𝐶13𝜀𝑧 − 𝛽1𝜃1 
𝜎𝜃𝜃 = 𝐶12𝜀𝑟 + 𝐶11𝜀𝜃 + 𝐶13𝜀𝑧 − 𝛽1𝜃1 
𝜎𝑧𝑧 = 𝐶13𝜀𝑟 + 𝐶13𝜀𝜃 + 𝐶33𝜀𝑧 − 𝛽2𝜃1 
𝜏𝑟𝑧 = 𝐶44𝛾𝑟𝑧 

(20) 

 

in which 𝜎𝑖𝑗 , 𝜏𝑖𝑗 are the stress components, 𝐶𝑖𝑗 are the elastic constants and 

  

𝜀𝑟 =
𝜕𝑢(𝑟, 𝑧)

𝜕𝑟
,     𝜀𝜃 =

𝑢(𝑟, 𝑧)

𝑟
,     𝜀𝑧 =

𝜕𝑤(𝑟, 𝑧)

𝜕𝑧
,     𝛾𝑟𝑧 =

𝜕𝑢(𝑟, 𝑧)

𝜕𝑧
+

𝜕𝑤(𝑟, 𝑧)

𝜕𝑟
 

𝛽1 = (𝐶11 + 𝐶12)𝛼𝑟 + 𝐶13𝛼𝑧,       𝛽2 = 2𝐶13𝛼𝑟 + 𝐶33𝛼𝑧 

(21) 

 

where 𝑢(𝑟, 𝑧), 𝑤(𝑟, 𝑧)  are the radial and axial displacements and 𝛼𝑟 , 𝛼𝑧  are the thermal 

expansion coefficients along the radial and axial directions, respectively. 

The non-vanishing equations of equilibrium in the cylindrical coordinate and the absence of 

body forces are considered as follows: 
 

𝜕𝜎𝑟𝑟

𝜕𝑟
+

𝜕𝜏𝑟𝑧

𝜕𝑧
+

𝜎𝑟𝑟 − 𝜎𝜃𝜃

𝑟
= 0,          

𝜕𝜏𝑟𝑧

𝜕𝑟
+

𝜕𝜎𝑧

𝜕𝑧
+

1

𝑟
𝜏𝑟𝑧 = 0 (22) 

 

Substituting relations (20) into Eq. (22) we have (Misra and Achari 1980) 
 

𝐶11 (
𝜕2𝑢

𝜕𝑟2
) + (

1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟
) + [𝐶13 + 𝐶44]

𝜕2𝑤

𝜕𝑟𝜕𝑧
+ 𝐶44

𝜕2𝑢

𝜕𝑧2
= 𝛽1

𝜕𝜃1

𝜕𝑟
 (23) 

 

𝐶44 (
𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
) + [𝐶13 + 𝐶44] (

𝜕2𝑢

𝜕𝑟𝜕𝑧
+

1

𝑟

𝜕𝑢

𝜕𝑧
) + 𝐶33

𝜕2𝑤

𝜕𝑧2
= 𝛽2

𝜕𝜃1

𝜕𝑧
 (24) 

 

In order to solve Eqs. (23) and (24) we assume 
 

𝑢(𝑟, 𝑧) =
𝜕

𝜕𝑟
(𝜙 + 𝜓),          𝑤(𝑟, 𝑧) =

𝜕

𝜕𝑧
(𝜆𝜙 + 𝜇𝜓) (25) 

 

where 𝜙, 𝜓 are the displacement potential functions of 𝑟, 𝑧and 𝜆, 𝜇 being arbitrary constants. 

Using functions (25) and from Eq. (23) to Eq. (24), we have 
 

𝐶11 (
𝜕2𝜙

𝜕𝑟2
+

1

𝑟

𝜕𝜙

𝜕𝑟
) + [𝐶44 + 𝜆(𝐶13 + 𝐶44)]

𝜕2𝜙

𝜕𝑧2
= 0 (26) 

 

20



 

 

 

 

 

 

Temperature and thermal stress distributions in a hollow circular cylinder composed of… 

𝐶11 (
𝜕2𝜓

𝜕𝑟2
+

1

𝑟

𝜕𝜓

𝜕𝑟
) + [𝐶44 + 𝜇(𝐶13 + 𝐶44)]

𝜕2𝜓

𝜕𝑧2
= 𝛽1𝜃1 (27) 

 

[𝐶13 + (1 + 𝜆)𝐶44] (
𝜕2𝜙

𝜕𝑟2
+

1

𝑟

𝜕𝜙

𝜕𝑟
) + 𝜆𝐶33

𝜕2𝜙

𝜕𝑧2
= 0 (28) 

 

[𝐶13 + (1 + 𝜇)𝐶44] (
𝜕2𝜓

𝜕𝑟2
+

1

𝑟

𝜕𝜓

𝜕𝑟
) + 𝜇𝐶33

𝜕2𝜓

𝜕𝑧2
= 𝛽2𝜃1 (29) 

 

Using Eq. (16), we take 
 

𝜓(𝑟, 𝑧) = ∑[𝐶1𝑛. 𝑃𝑛 . 𝐼0(𝛼𝑛1𝑟) +

∞

𝑛=1

𝐷1𝑛. 𝑄𝑛. 𝐾0(𝛼𝑛1𝑟)] 𝑠𝑖𝑛 (
𝛼𝑛1

𝑘
𝑧) (30) 

 

in which 𝑃𝑛, 𝑄𝑛 are arbitrary functions of 𝛼𝑛1 to be obtained from the Eq. (26) and Eq. (29) as 

follows 
 

𝛼2
𝑛1. 𝑃𝑛[𝑘2𝐶11 − (𝐶44 + 𝜇(𝐶13 + 𝐶44))] = 𝛽1𝑘2 

𝛼2
𝑛1. 𝑃𝑛[(𝐶13 + (1 + 𝜇)𝐶44)𝑘2 − 𝜇𝐶33] = 𝛽2𝑘2 

(31) 

 

𝛼2
𝑛1. 𝑄𝑛[𝑘2𝐶11 − (𝐶44 + 𝜇(𝐶13 + 𝐶44))] = 𝛽1𝑘2 

𝛼2
𝑛1. 𝑄𝑛[(𝐶13 + (1 + 𝜇)𝐶44)𝑘2 − 𝜇𝐶33] = 𝛽2𝑘2 

(32) 

 

Then 
 

𝜇 =
𝛽2(𝑘2𝐶11 − 𝐶44) − 𝛽1𝑘2(𝐶13 + 𝐶44)

𝛽2(𝐶13 + 𝐶44) + 𝛽1(𝑘2𝐶44 − 𝐶33)
 (33) 

 

and 
 

𝑃𝑛 = 𝑄𝑛 = 𝛼𝑛1
−2

𝛽1𝑘2(𝑘2𝐶44 − 𝐶33) + 𝛽2𝑘2(𝐶13 + 𝐶44)

𝑘2(𝐶13 + 𝐶44)2 + (𝑘2𝐶44 − 𝐶33)(𝑘2𝐶11 − 𝐶44)
 (34) 

 

If the Eq. (26) and Eq. (28) to give a non-zero solution, simultaneously, we must have 

 
𝜆𝐶13 + (1 + 𝜆)𝐶44

𝐶11
=

𝜆𝐶33

𝐶13 + (1 + 𝜆)𝐶44
= 𝑆2 (𝑠𝑎𝑦) (35) 

 

Substituting Eq. (35) into Eqs. (26) and (27) yields the following equation 
 

𝜕2𝜙

𝜕𝑟2
+

1

𝑟

𝜕𝜙

𝜕𝑟
+ 𝑆2

𝜕2𝜙

𝜕𝑧2
= 0 (36) 

 

Then, the Eq. (36) has two solutions of 𝜙1(𝑟, 𝑧), 𝜙2(𝑟, 𝑧) corresponding to the two values of 

𝑆2 which are the roots of the equation (Lenkhnitskii 1981) 
 

𝐶11𝐶44𝑆4 + (𝐶2
13 + 2𝐶13𝐶44 − 𝐶11𝐶33)𝑆2 + 𝐶33𝐶44 = 0 (37) 
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Finally, to derive stress components, we define 𝑢(𝑟, 𝑧), 𝑤(𝑟, 𝑧) using displacement potential 

functions 𝜙1, 𝜙2, 𝜓 as follows 
 

𝑢 =
𝜕

𝜕𝑟
(𝜙1 + 𝜙2 + 𝜓) (38) 

 

𝑤 =
𝜕

𝜕𝑧
(𝜆1𝜙1 + 𝜆2𝜙2 + 𝜇𝜓) (39) 

 

where 𝜆1, 𝜆2 are the values of 𝜆 corresponding to the two different values of 𝑆2in Eq. (35). 

As solutions of Eq. (36) for 𝜙1, 𝜙2 we can take 

 

𝜙1(𝑟, 𝑧) = ∑ [𝐶1𝑛. 𝐸1𝑛. 𝐼0 (
𝛼𝑛1𝑆1

𝑘
𝑟) + 𝐷1𝑛. 𝐹1𝑛. 𝐾0 (

𝛼𝑛1𝑆1

𝑘
𝑟)]

∞

𝑛=1

𝑠𝑖𝑛 (
𝛼𝑛1

𝑘
𝑧) (40) 

 

𝜙2(𝑟, 𝑧) = ∑ [𝐶1𝑛. 𝐸2𝑛 . 𝐼0 (
𝛼𝑛1𝑆2

𝑘
𝑟) + 𝐷1𝑛. 𝐹2𝑛. 𝐾0 (

𝛼𝑛1𝑆2

𝑘
𝑟)]

∞

𝑛=1

𝑠𝑖𝑛 (
𝛼𝑛1

𝑘
𝑧) (41) 

 

where 𝐸𝑛1, 𝐹𝑛1, 𝐸𝑛2, 𝐹𝑛2 are arbitrary constant, to be determined from the mechanical boundary 

conditions. 

Using Eqs. (20), (38), (39), the displacement and stress components for the anisotropic cylinder 

are given by 
 

𝑢(𝑟, 𝑧) = 𝑘−1 ∑ 𝛼𝑛1 [𝑆1𝑅02
′ (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝑆2𝑅03

′ (
𝛼𝑛1𝑆2

𝑘
𝑟) + 𝑘𝑅04

′ (𝛼𝑛1𝑟)] 𝑠𝑖𝑛 (
𝛼𝑛1

𝑘
𝑧)

∞

𝑛=0

 (42) 

 

𝑤(𝑟, 𝑧) = 𝑘−1 ∑ 𝛼𝑛1 [𝜆1𝑅02 (
𝛼𝑛1𝑆1

𝑘
𝑟) + 𝜆2𝑅03 (

𝛼𝑛1𝑆2

𝑘
𝑟) + 𝜇𝑅04(𝛼𝑛1𝑟)] 𝑐𝑜𝑠 (

𝛼𝑛1

𝑘
𝑧)

∞

𝑛=1

 (43) 

 

𝜎𝑟𝑟 = 𝑘−2 ∑ {𝐶11𝛼𝑛1
2 [𝑆1

2𝑅02
” (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝑆2

2𝑅03
” (

𝛼𝑛1𝑆2

𝑘
𝑟) + 𝑘2𝑅04

” (𝛼𝑛1𝑟)]

∞

𝑛=1

 

           +𝐶12𝛼𝑛1𝑘𝑟−1 [𝑆1𝑅02
′ (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝑆2𝑅03

′ (
𝛼𝑛1𝑆2

𝑘
𝑟) + 𝑘𝑅04

′ (𝛼𝑛1𝑟)] 

           −𝐶13𝛼𝑛1
2 [𝜆1𝑅02 (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝜆2𝑅03 (

𝛼𝑛1𝑆2

𝑘
𝑟) + 𝜇𝑅04(𝛼𝑛1𝑟)] 

           −𝛽1𝑅01(𝛼𝑛1𝑟)} 𝑠𝑖𝑛 (
𝛼𝑛1

𝑘
𝑧) 

(44) 

 

𝜎𝜃𝜃 = 𝑘−2 ∑{𝐶12𝛼𝑛1
2 [𝑆1

2𝑅02
” (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝑆2

2𝑅03
” (

𝛼𝑛1𝑆2

𝑘
𝑟) + 𝑘2𝑅04

” (𝛼𝑛1𝑟)]

∞

𝑛=1

 

           +𝐶11𝛼𝑛1𝑘𝑟−1 [𝑆1𝑅02
′ (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝑆2𝑅03

′ (
𝛼𝑛1𝑆2

𝑘
𝑟) + 𝑘𝑅04

′ (𝛼𝑛1𝑟)] 

(45) 
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           −𝐶13𝛼𝑛1
2 𝑘−2 [𝜆1𝑅02 (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝜆2𝑅03 (

𝛼𝑛1𝑆2

𝑘
𝑟) + 𝜇𝑅04(𝛼𝑛1𝑟)] 

           −𝛽1𝑅01(𝛼𝑛1𝑟)} 𝑠𝑖𝑛 (
𝛼𝑛1

𝑘
𝑧) 

(45) 

 

𝜎𝑧𝑧 = 𝑘−2 ∑{𝐶13𝛼𝑛1
2 [𝑆1

2𝑅02
” (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝑆2

2𝑅03
” (

𝛼𝑛1𝑆2

𝑘
𝑟) + 𝑘2𝑅04

” (𝛼𝑛1𝑟)]

∞

𝑛=1

 

           +𝐶13𝛼𝑛1𝑘𝑟−1 [𝑆1𝑅02
′ (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝑆2𝑅03

′ (
𝛼𝑛1𝑆2

𝑘
𝑟) + 𝑘𝑅04

′ (𝛼𝑛1𝑟)] 

           −𝐶33𝛼𝑛1
2 [𝜆1𝑅02 (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝜆2𝑅03 (

𝛼𝑛1𝑆2

𝑘
𝑟) + 𝜇𝑅04(𝛼𝑛1𝑟)] 

           −𝛽2𝑅01(𝛼𝑛1𝑟)} 𝑠𝑖𝑛 (
𝛼𝑛1

𝑘
𝑧) 

(46) 

 

𝜏𝑟𝑧 = 𝐶44𝑘−2 ∑ 𝛼𝑛1
2 {(𝑆1 + 𝜆1)𝑅02

′ (
𝛼𝑛1𝑆1

𝑘
𝑟) + (𝑆2 + 𝜆2)𝑅03

′ (
𝛼𝑛1𝑆2

𝑘
𝑟)

∞

𝑛=1

+ 𝑘(1 + 𝜇)𝑅04
′ (𝛼𝑛1𝑟)} 𝑐𝑜𝑠 (

𝛼𝑛1

𝑘
𝑧) 

(47) 

 

in which 
 

𝑅01(𝛼𝑛1𝑟) = 𝐶1𝑛 . 𝐼0(𝛼𝑛1𝑟) + 𝐷1𝑛. 𝐾0(𝛼𝑛1𝑟) (48) 

 

𝑅02 (
𝛼𝑛1𝑆1

𝑘
𝑟) = 𝐶1𝑛. 𝐸1𝑛. 𝐼0 (

𝛼𝑛1𝑆1

𝑘
𝑟) + 𝐷1𝑛. 𝐹1𝑛. 𝐾0 (

𝛼𝑛1𝑆1

𝑘
𝑟) (49) 

 

𝑅03 (
𝛼𝑛1𝑆2

𝑘
𝑟) = 𝐶1𝑛 . 𝐸2𝑛. 𝐼0 (

𝛼𝑛1𝑆2

𝑘
𝑟) + 𝐷1𝑛. 𝐹2𝑛. 𝐾0 (

𝛼𝑛1𝑆2

𝑘
𝑟) (50) 

 

𝑅04(𝛼𝑛1𝑟) = 𝐶1𝑛. 𝑃1𝑛. 𝐼0(𝛼𝑛1𝑟) + 𝐷1𝑛. 𝑄1𝑛. 𝐾0(𝛼𝑛1𝑟) (51) 

 

since 𝑅0𝑖  (𝑖 = 1,2,3,4) satisfy the Bessel functions and the prime and double-prime over 𝑅0𝑖 

indicate the first and second differentiation with respect to its argument, respectively. 
 

 

5. Thermal stresses in the isotropic cylinder 
 
For an isotropic material, the elastic constants are written as follows 
 

𝐶11 = 𝐶33 = 𝜆 + 2𝜇,          𝐶12 = 𝐶13 = 𝜆,          𝐶44 =
1

2
(𝐶11 − 𝐶12) = 𝜇 (52) 

 

where 𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
, 𝜇 =

𝐸

2(1+𝜈)
 (Lame’s constants), 𝐸, 𝜈  are the Young’s modulus and 

Poisson’s ratio, respectively. also 
 

𝛼𝑟 = 𝛼𝑧 = 𝛼 (say),     𝛽1 = 𝛽2 = (3𝜆 + 2𝜇)𝛼,          𝑘 = 1 (53) 
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In order to derive displacement and stress components of the isotropic cylinder, 𝜇, 𝑆, 𝜆 which 

were determined for the anisotropic cylinder, must be defined, firstly. 

Substituting constants (52), (53), to Eq. (33), we will have 𝜇 = 0, then from Eqs. (31) and (32) 
 

𝑃𝑛 = 𝑄𝑛 = 𝛼𝑛2
−2

3𝜆 + 2𝜇

𝜆 + 𝜇
𝛼 (54) 

 

and so on, using constants (52) and Eq. (35), the values of 𝑆, 𝜆 will be unity, then 𝜆1 = 𝜆2 = 1, 

𝑆1 = 𝑆2 = 1. Therefore, Eq. (36) has one solution for the isotropic cylinder. 

Accordingly, the Eq. (42) to Eq. (51), reduce to the isotropic equations as follows 
 

𝑢(𝑟, 𝑧) = ∑ 𝛼𝑛2[𝑅02

′
(𝛼𝑛2𝑟)

∞

𝑛=1

+ 𝑅04

′
(𝛼𝑛2𝑟)] 𝑠𝑖𝑛( 𝛼𝑛2𝑧) (55) 

 

𝑤(𝑟, 𝑧) = ∑ 𝛼𝑛2

∞

𝑛=1

[𝑅02(𝛼𝑛2𝑟)] 𝑐𝑜𝑠( 𝛼𝑛2𝑧) (56) 

 

𝜎𝑟𝑟 = 𝜂 ∑ 𝛼𝑛2
2 {

∞

𝑛=1

(1 − 𝜈) [𝑅02

′′
(𝛼𝑛2𝑟) + 𝑅04

”
(𝛼𝑛2𝑟)] 

            +𝜈 [(𝛼𝑛2𝑟)−1[𝑅02

′
(𝛼𝑛2𝑟) + 𝑅04

′
(𝛼𝑛2𝑟)] − 𝑅02(𝛼𝑛2𝑟)] 

            −(1 + 𝜈)𝛼𝑅01(𝛼𝑛2𝑟)} 𝑠𝑖𝑛( 𝛼𝑛2𝑧) 

(57) 

 

𝜎𝜃𝜃 = 𝜂 ∑ 𝛼𝑛2
2 {∞

𝑛=1 (1 − 𝜈)(𝛼𝑛2𝑟)−1[𝑅02

′
(𝛼𝑛2𝑟) + 𝑅04

′
(𝛼𝑛2𝑟)] 

+𝜈 [[𝑅02

”
(𝛼𝑛2𝑟) + 𝑅04

′′
(𝛼𝑛2𝑟)] − 𝑅02(𝛼𝑛2𝑟)]         

−(1 + 𝜈)𝛼𝑅01(𝛼𝑛2𝑟)} 𝑠𝑖𝑛(𝛼𝑛2𝑧) 

(58) 

 

𝜎𝑧𝑧 = 𝜂 ∑ 𝛼𝑛2
2 {𝜈[[𝑅02

′′ (𝛼𝑛2𝑟) + 𝑅04
′′ (𝛼𝑛2𝑟)] + (𝛼𝑛2𝑟)−1[𝑅02

′ (𝛼𝑛2𝑟) + 𝑅04
′ (𝛼𝑛2𝑟)]]

∞

𝑛=1

 

           −(1 − 𝜈)𝑅02(𝛼𝑛2𝑟) − (1 + 𝜈)𝛼𝑅01(𝛼𝑛2𝑟)} 𝑠𝑖𝑛( 𝛼𝑛2𝑧) 

(59) 

 

𝜏𝑟𝑧 = 𝜇 ∑ 𝛼𝑛2
2 {𝑅02

′ (𝛼𝑛2𝑟) + 𝑅04
′ (𝛼𝑛2𝑟)} 𝑐𝑜𝑠( 𝛼𝑛2𝑧)

∞

𝑛=1

 (60) 

 

in which 
 

𝑅01(𝛼𝑛2𝑟) = 𝐶2𝑛. 𝐼0(𝛼𝑛2𝑟) + 𝐷2𝑛. 𝐾0(𝛼𝑛2𝑟) (61) 

 

𝑅02(𝛼𝑛2𝑟) = 𝐶2𝑛. 𝐸1𝑛. 𝐼0(𝛼𝑛2𝑟) + 𝐷2𝑛. 𝐹1𝑛. 𝐾0(𝛼𝑛2𝑟) (62) 

 

𝑅04(𝛼𝑛2𝑟) = 2(1 + 𝜈)𝛼𝑛2
−2[𝐶2𝑛. 𝐼0(𝛼𝑛2𝑟) + 𝐷2𝑛. 𝐾0(𝛼𝑛2𝑟)] (63) 
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𝜂 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
 

 

 

6. Mechanical boundary conditions 
 

The mechanical boundary conditions are given by 
 

𝑢(𝑟, 𝑧) = 𝑢(𝑟, 𝑧) = 0                𝑧 = 0,     𝑧 = 𝐿 (64) 

 

𝜎𝑧𝑧(𝑟, 𝑧) = 𝜎𝑧𝑧(𝑟, 𝑧) = 0          𝑧 = 0,     𝑧 = 𝐿 (65) 

 

𝜎𝑟𝑟(𝑟, 𝑧) = 0, 𝜎𝑟𝑧(𝑟, 𝑧) = 0         𝑟 = 𝑟1 (66) 

 

𝜎𝑟𝑟(𝑟, 𝑧) = 0, 𝜎𝑟𝑧(𝑟, 𝑧) = 0         𝑟 = 𝑟3 (67) 

 

𝜎𝑟𝑟(𝑟, 𝑧) = 𝜎𝑟𝑟(𝑟, 𝑧)          𝑟 = 𝑟2, 
𝜎𝑟𝑧(𝑟, 𝑧) = 𝜎𝑟𝑧(𝑟, 𝑧)          𝑟 = 𝑟2 

(68) 

 

It is evident that the conditions (64) is satisfied automatically and the constants 𝐸1𝑛, 𝐹1𝑛, 𝐸2𝑛 ,

𝐹2𝑛, 𝐸1𝑛, 𝐹1𝑛 are determined, applying conditions (66)-(68). 
 

 

7. Results and discussions 
 

To present numerical results, we consider a hollow cylinder composed of Alumina (anisotropic) 

and 15Mo3 (isotropic) which is similar to a V94.2 gas turbine combustion chamber. The geometric 

 

 
Table 1 Thermoelastic properties of Alumina and 15Mo3 

Thermoelastic properties Alumina 15Mo3 

Thermal expansion coefficient (10-6 k-1) 

(Eslami and Hetnarski 2013) 
𝛼𝑟 = 8.3,     𝛼𝑧 = 9 𝛼 = 13 

Young’s modulus (GPa) - 190 

Poisson’s ratio - 0.29 

Elastic constants (GPa) 

(Lenkhnitskii 1981) 

𝐶11 = 460.2,     𝐶12 = 174.7,     𝐶13 = 127.4, 
𝐶33 = 509.5,     𝐶44 = 126.9 

- 

 

 
Table 2 Thermal properties of internal and external flow* 

Thermoelastic properties Internal flow External flow 

Fluid temperature (∘𝑘) 𝑇∞ = 1600 𝑇0 = 623 

Convective coefficient (𝑤/𝑚2𝑘) ℎ1 = 106 ℎ2 = 273 

Radiative heat rate (𝑤/𝑚2) 𝑞1
” = 11000 𝑞2

” = 3000 

*These parameters are estimated using equations which are given in Barsoum (2003) 
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parameters are 𝑟1 = 1.1 𝑚,  𝑟2 = 1.14 𝑚, 𝑟3 = 1.16 𝑚 and 𝐿 = 2.321 𝑚. The value of k has 

been taken to be unity for anisotropic material (Alumina). Thermo-elastic properties of Alumina 

and 15Mo3 as well as thermal conditions are given in Tables 1 and 2, respectively. 

Fig. 2 shows the numerical results of the steady-state temperature distribution at the inner and 

outer surfaces for the various values of thermal conductivity ratio 𝑘3 in the z-direction. It is found 

that due to the axisymmetric thermal boundary conditions, the maximum value of the temperature 

is occurred at the middle area of the cylinder. It also can be seen that the internal and external 

surface temperatures as well as the temperature difference between them increases as the thermal 

conductivity ratio enhances. In particular, for 𝑘3 = 0.5 inside and outside temperatures are very 

close to each other. Because in this case the rate of conduction heat transfer in the isotropic 

cylinder increases compared to the anisotropic cylinder. 

Fig. 3 illustrates the numerical results of the temperature at the middle point of the hollow 

cylinder through the thickness direction for 𝑘3 = 1. It is observed that due to the homogeneity of 
 

 

 

Fig. 2 Temperature distribution at the inner and outer surfaces for various values of k3 

 

 

 

Fig. 3 Temperature distribution in r-direction for z = L/2 and k3 = 1 
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Fig. 4 Radial displacement at the inner and outer surfaces for various values of k3 

 

 

 

Fig. 5 Axial displacement at the inner and outer surfaces for various values of k3 

 

 

the materials the variations of the temperature are linear. It is also shown that the temperature 

distribution is continuous at the contact surface and the temperature reduces as the radius incrases 

which corresponds to the direction of heat transfer in the cylinder and the temperature reduction 

rate is more quickly in the anisotropic cylinder than the isotropic cylinder. 

Figs. 4 and 5 show the numerical results of the radial and axial displacements, respectively. It is 

found that the radial displacement is axisymmetric in the z-direction and its maximum value is 

taken place at the middle area of the cylinder while the axial displacement is not axisymmetric and 

reaches its maximum values at the lower face of cylinder. It is also noticeable that the thermal 

conductivity ratio changes are more affected the radial displacement which this effect is more in 

the anisotropic cylinder than the isotropic cylinder, in turn. 

Figs. 6-8 present the axial variation of the radial, hoop and axial thermal stress distributions at the 

inner and outer surfaces of the composite hollow cylinder for the various values of thermal 

conductivity ratio. It is shown that the stress magnitudes are increased as the thermal conductivity 
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Fig. 6 Radial stress distribution at the inner and outer surfaces for various values of k3 
 

 

 

Fig. 7 Hoop stress distribution at the inner and outer surfaces for various values of k3 
 

 

 

Fig. 8 Axial stress distribution at the inner and outer surfaces for various values of k3 
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ratio (𝑘3) is increased. It is also found that the radial stress is compressive at the internal and 

external surfaces while the hoop stress is compressive at the interface and tensile at the outer 

surface. As discussed in Chen and Chu (1989), this situation is due to the thermal expansion of the 

inner part of the cylinder which is constrained by the outer part and both ends of the cylinder but 

the outer surface is constrained by both ends of the cylinder only. When heat is applied at the inner 

surface, the radial stress is compressive at the inner and outer surfaces while the hoop stress is 

compressive at the inner part of the cylinder and tensile at the outer surface. But this condition is 

different for the axial stress. As shown in Fig. 8 the axial stress is compressive at the internal 

surface, however, at the outer surface depending on the values of the thermal conductivity ratio 

can be compressive or tensile. It is further noted that the values of radial, hoop and axial stresses in 

the isotropic cylinder are less than the anisotropic cylinder. 

 

 

 

Fig. 9 Shear stress distribution at the inner and outer surfaces for various values of k3 

 

 

 

Fig. 10 Radial stress distribution in r-direction for z = L/2 
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Fig. 9 illustrates the shear stress distribution in the axial direction. It is found that the 

distribution of this stress isn’t axisymmetric and its values are increased as the thermal 

conductivity ratio is increased. It also can be shown that the maximum value of the shear stress is 

occurred at the lower face. 

Fig. 10 shows the radial stress distribution in the r-direction of cylinder. As regards, the 

temperature distribution is linear in this direction, it can be seen that the radial stress is linear too, 

approximately. It also shows that the radial stress is compressive in the thickness direction and its 

magnitude is increased to the contact surface of two cylinders, then reduced to the outer surface of 

the isotropic cylinder. This case can be explained refer to Fig. 4. As this fig shows, the values of 

radial displacement in the inner part are more than the outer part, then the anisotropic cylinder 

which is constrained by isotropic cylinder will be under compressive stress. 

 

 

8. Conclusions 
 

Many researches have analyzed the temperature and thermal stress distributions in cylinders, 

but a cylinder which is composed of anisotropic and isotropic materials hasn’t considered, yet. 

This persuade us to study this issue because of its importance in major industries such as power 

plants. Therefore, in this paper developed an analytical solution for the steady-state axisymmetric 

thermal stress distributions in a composite anisotropic and isotropic hollow cylinder. A method 

based on the Bessel functions and Potential function displacements is developed to obtain 

numerical results. 

The main conclusions are as follows: 

 

● The temperature and thermal stresses increases as the thermal conductivity ratio increases 

and the maximum values of them occurred in the middle area of the hollow cylinder. 

● The radial stress is compressive at the internal and external surfaces while the hoop stress is 

compressive at the interface and tensile at the outer surface. 

● The axial stress is compressive in the internal surface but in the outer surface depending on 

the values of the thermal conductivity ratio can be compressive or tensile. 

● The temperature and thermal stress distributions are linear through the thickness direction 

and decreases from the internal surface of anisotropic cylinder to the outer surface of 

isotropic cylinder, however, the decreasing rate in anisotropic cylinder is more than the 

isotropic cylinder. 

● The values of the radial, hoop and axial stress in the anisotropic cylinder are more than the 

isotropic cylinder. 

 

It is worthy to note that the values of the thermal conditions which estimated in this research, 

not to be presented in any other papers but they are very accurate in calculation. 
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