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Abstract.  Flexoelectric effect has a major role on mechanical responses of piezoelectric materials when their 

dimensions become submicron. Applying differential quadrature (DQ) method, the present article studies dynamic 

characteristics of a small scale beam made of piezoelectric material considering flexoelectric effect. In order to 

capture scale-dependency of such piezoelectric beams, nonlocal elasticity theory is utilized and also surface effects 

are included for better structural modeling. Governing equations have been derived by utilizing Hamilton’s rule with 

the assumption that the scale-dependent beam is subjected to thermal environment leading to uniform temperature 

variation across the thickness. Obtained results based on DQ method are in good agreement with previous data on 

pizo-flexoelectric beams. Finally, it would be indicated that dynamic response characteristics and vibration 

frequencies of the nano-size beam depends on the existence of flexoelectric influence and the magnitude of scale 

factors. 
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1. Introduction 

 
Flexoelectric effect has a major role on responses of piezoelectric materials when their 

dimensions become submicron. The flexo-electricity is associated with a specific electrical-

mechanical coupling phenomena among polarizations and strains gradients (Jiang et al. 2013, 

Barati 2017, Besseghier et al. 2017, Mouffoki et al. 2017). Actually, inflicting the strain gradients 

to a dielectric may exert special electric polarizations via changing the inversion symmetries. In 

many studies, it has been shown that the flexo-electricity leads to inherent scale influences as the 

dimension of smart material reduces (Zhang et al. 2014a, b, Liang et al. 2014, 2015, Yang et al. 

2015, Shafiei et al. 2017, Mirjavadi et al. 2017a, b, 2018a, b, 2019a, b). 

Recent studies focus on engineering structures at nano-scales due to their involvement in nano-

mechanical systems or devices (Azimi et al. 2017, 2018) However, the main issue in these studies 

is to select an appropriate elasticity theory accounting for small scale impacts. The impact of size-

dependency might be considered with the help of a scale parameter involved in non-local theory of 
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elasticity Eringen (1983). The word “non-local” means that the stresses are not local anymore 

(Ahmed et al. 2019, Alasadi et al. 2019, Alimirzaei et al. 2019, Adda Bedia et al. 2019). This is 

because we are talking about a stress field of nano-scale structure. Many authors are aware of these 

facts and they are using this theory to analysis mechanical characteristics of small size engineering 

structures (Ke and Wang 2012, Liu et al. 2013, 2014, Ke et al. 2015, Akgoz and Civalek 2013, 

Akbas 2016, Semmah et al. 2014, 2019, Fernández-Sáez et al. 2016, Civalek and Demir 2016, 

Bensaid and Guenanou 2017). 

Among different types of smart materials, the piezo-electric material represents superb possible 

application in smart structures/systems and also nano-sized devices owning to giving wonderful 

mechanical and electrical coupling performances. Applying electrical fields to nano-dimension 

beams yields elastic deformations and changed vibrational properties. Due to the reason that 

performing experiment on piezoelectric nano-dimension beams are effortful yet, many scholars 

have represented their theoretical models taking into account small scales influences. Employing 

nonlocal theory of elasticity, one may be able to incorporate the small scales influences in 

theoretical model of nano-dimension beams. The theory recommends a scale factor called nonlocal 

parameter for describing that the stress fields at nano scales have a nonlocal character. However, at 

nano-scale surface effects (Gurtin and Murdoch 1975) become prominent as proved by many 

authors. The surface layers can accurately describe the nano-dimension character of the beams 

(Wang and Wang 2011, 2012, Yan and Jiang 2011, Zhang et al. 2013, Li and Pan 2016). 

Flexoelectric effect has a major role on mechanical responses of piezoelectric materials when 

their dimensions become submicron. The flexo-electricity is associated with a specific electrical-

mechanical coupling phenomena among polarizations and strains gradients (Jiang et al. 2013, 

Barati 2017, Besseghier et al. 2017, Mouffoki et al. 2017). Actually, inflicting the strain gradients 

to a dielectric may exert special electric polarizations via changing the inversion symmetries. In 

many studies, it has been shown that the flexo-electricity leads to inherent scale influences as the 

dimension of smart material reduces (Zhang et al. 2014a, b, Liang et al. 2014, 2015, Yang et al. 

2015). 

As mentioned, flexoelectric effect has a major role on mechanical responses of piezoelectric 

materials when their dimensions become submicron. Applying differential quadrature (DQ) 

method, the present article studies dynamic characteristics of a small scale beam made of 

piezoelectric material considering flexoelectric effect. In order to capture scale-dependency of 

such piezoelectric beams, nonlocal elasticity theory is utilized and also surface effects are included 

for better structural modeling. Governing equations have been derived by utilizing Hamilton’s rule 

with the assumption that the scale-dependent beam is subjected to thermal environment leading to 

uniform temperature variation across the thickness. Obtained results based on DQ method are in 

good agreement with previous data on pizo-flexoelectric beams. Finally, it would be indicated that 

dynamic response characteristics and vibration frequencies of the nano-size beam depends on the 

existence of flexoelectric influence and the magnitude of scale factors. 

 

 

2. Flexoelectric effects on nonlocal constitutive relations 
 

Here, the nano-size beam has been assumed to be fabricated from PZT-5H piezoelectric 

material. The geometry of the considered nano-size beam has been illustrated in Fig. 1. To 

describe nonlocal relations for a flexoelectric nano-size beam, one must define stress components 

𝜎𝑖𝑗 and polarization components Pi as functions of strains 𝜀𝑖𝑗 and electrical field 𝐸𝑘 as 
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Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam 

 

Fig. 1 Geometry of flexoelectric nano-size beam with surface layers 

 

 

𝜎𝑖𝑗 − (𝑒0𝑎)2𝛻2𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘 + 𝑓𝑘𝑙𝑖𝑗

𝜕𝐸𝑘

𝜕𝑥𝑙
− 𝐶𝑖𝑗𝑘𝑙𝛼𝑘𝑙𝛥𝑇 (1a) 

 

𝑃𝑖 − (𝑒0𝑎)2𝛻2𝑃𝑖 = 𝜀0𝜒𝑖𝑗𝐸𝑗 + 𝑒𝑖𝑘𝑙𝜀𝑘𝑙 + 𝑓𝑖𝑗𝑘𝑙

𝜕𝜀𝑘𝑙

𝜕𝑥𝑗
− 𝑝𝑖𝛥𝑇 (1b) 

 

Here, 𝐶𝑖𝑗𝑘𝑙, 𝑒𝑘𝑖𝑗 and 𝑘𝑖𝑘 respectively define elastic, piezo-electrical and dielectrics constants 

(Aboudi 2001). In the present study, flexoelectirc factor has been denoted by 𝑓𝑖𝑗𝑘𝑙 , while 

temperature variation has been denoted by Δ𝑇 (Abualnour et al. 2019). The below equation is 

written for defining the energy densities of electrical enthalpy (Zhang et al. 2014a, b) 

 

𝐻 = −
1

2
𝑎𝑘𝑙𝐸𝑘𝐸𝑙 +

1

2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘𝜀𝑖𝑗 −

1

2
𝑓𝑘𝑙𝑖𝑗(𝐸𝑘

𝜕𝜀𝑖𝑗

𝜕𝑥𝑙
− 𝜀𝑖𝑗

𝜕𝐸𝑘

𝜕𝑥𝑙
) (2) 

 

Next, the general nonlocal formulations for stresses and electrical displacements (Di) and 

densities (Qij) might be stated as 

 

(1 − (𝑒0𝑎)2𝛻2)𝜎𝑖𝑗 =
𝜕𝐻

𝜕𝜀𝑖𝑗
= 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘 +

𝑓𝑘𝑙𝑖𝑗

2

𝜕𝐸𝑘

𝜕𝑥𝑙
− 𝐶𝑖𝑗𝑘𝑙𝛼𝑘𝑙𝛥𝑇 (3a) 

 

(1 − (𝑒0𝑎)2𝛻2)𝜏𝑖𝑗𝑙 =
𝜕𝐻

𝜕(𝜕𝜀𝑖𝑗/𝜕𝑥𝑙)
= −𝑓𝑖𝑗𝑘𝑙𝐸𝑘 (3b) 

 

(1 − (𝑒0𝑎)2𝛻2)𝐷𝑖 = −
𝜕𝐻

𝜕𝐸𝑖
= 𝑎𝑖𝑗𝐸𝑗 + 𝑒𝑖𝑘𝑙𝜀𝑘𝑙 +

𝑓𝑖𝑗𝑘𝑙

2

𝜕𝜀𝑘𝑙

𝜕𝑥𝑗
− 𝑝𝑖𝛥𝑇 (3c) 

 

(1 − (𝑒0𝑎)2𝛻2)𝑄𝑖𝑗 =
𝜕𝐻

𝜕(𝜕𝐸𝑖/𝜕𝑥𝑗)
= −

𝑓𝑖𝑗𝑘𝑙

2
𝜀𝑘𝑙 (3d) 

 

In order to incorporate surface layers influences, one must define the surface energy (Us) based 

on below relation (Zhang et al. 2014a, b) 

 

𝑈𝑠 = 𝛤𝛼𝛽𝜀𝛼𝛽
𝑠 −

1

2
𝑎𝛾𝜅

𝑠 𝐸𝛾
𝑠𝐸𝜅

𝑠 +
1

2
𝑐𝛼𝛽𝛾𝜅

𝑠 𝜀𝛼𝛽
𝑠 𝜀𝛾𝜅

𝑠 − 𝑒𝜅𝛼𝛽
𝑠 𝐸𝜅

𝑠𝜀𝛼𝛽
𝑠  (4) 
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So that 𝛤𝛼𝛽  defines the surfaces residual stresses, 𝑎𝛾𝜅
𝑠  and 𝑐𝛼𝛽𝛾𝜅

𝑠  define the surfaces 

permittivity and surfaces elastic factors. Then, 𝑒𝜅𝛼𝛽
𝑠  and 𝐸𝜅

𝑠 define the surfaces piezo-electrical 

tensors and surfaces electrical fields. Next, the general nonlocal formulations for stresses (𝜎𝛼𝛽
𝑠 ) 

and electrical displacements (𝐷𝛾
𝑠) of surfaces might be stated as 

 

(1 − (𝑒0𝑎)2𝛻2)𝜎𝛼𝛽
𝑠 =

𝜕𝑈𝑠

𝜕𝜀𝛼𝛽
= 𝛤𝛼𝛽 + 𝑐𝛼𝛽𝛾𝜅

𝑠 𝜀𝛾𝜅
𝑠 − 𝑒𝜅𝛼𝛽

𝑠 𝐸𝜅
𝑠 (5a) 

 

(1 − (𝑒0𝑎)2𝛻2)𝐷𝛾
𝑠 = −

𝜕𝑈𝑠

𝜕𝐸𝛾
𝑠 = 𝑎𝛾𝜅

𝑠 𝐸𝜅
𝑠 + 𝑒𝛾𝛼𝛽

𝑠 𝜀𝛼𝛽
𝑠  (5b) 

 

 

3. Beam formulation 
 

In order to develop the formulation for linear vibrations of nonlocal beam, well-known classical 

beam theory among different beam models has been used in the present paper (Bourada et al. 2019, 

Boukhlif et al. 2019, Boulefrakh et al. 2019, Boutaleb et al. 2019, Berghouti et al. 2019, Draoui et 

al. 2019, Chaabane et al. 2019, Zarga et al. 2019, Medani et al. 2019, Mahmoudi et al. 2019, 

Draiche et al. 2019, Khiloun et al. 2019, Tlidji et al. 2019, Karami et al. 2019a, b, Addou et al. 

2019). Thus, the displacements of beam (u1, u2 = 0, u3) may be written based on axial (u) and 

transverse (w) field variables as 
 

𝑢1(𝑥, 𝑦, 𝑧) = 𝑢 − 𝑧
𝜕𝑤

𝜕𝑥
 (6a) 

 

𝑢3(𝑥, 𝑦, 𝑧) = 𝑤 (6b) 

 

For the classic beam model, the strain field including its gradient might be expressed by 

 

𝜀𝑥𝑥 =
𝜕𝑢1

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
,     𝜂𝑥𝑥𝑧 =

𝜕𝜀𝑥𝑥

𝜕𝑧
= −

𝜕2𝑤

𝜕𝑥2
. (7) 

 

For a piezo-flexoelectric nano-size beam, the governing equations based on classic beam theory 

and nonlocal stress effects may be expressed by 
 

𝜕(𝑁𝑥𝑥 + 𝑁𝑥𝑥
𝑠 )

𝜕𝑥
= 𝐼0

𝜕2𝑢

𝜕𝑡2
 (8) 

 

𝜕2(𝑀𝑥𝑥 + 𝑀𝑥𝑥
𝑠 )

𝜕𝑥2
+

𝜕2𝑃𝑥𝑥𝑧

𝜕𝑥2
+ (2𝑏𝜎0 − 𝑏𝑁𝑇)𝛻2𝑤 = 𝐼0

𝜕2𝑤

𝜕𝑡2
− 𝐼2𝛻2(

𝜕2𝑤

𝜕𝑡2
) (9) 

 

where 𝑁𝑇 = 𝑐11𝛼1ℎΔ𝑇 is thermal load and 
 

(𝐼0, 𝐼1, 𝐼2) = 𝑏 ∫ (1, 𝑧, 𝑧2)𝜌
ℎ/2

−ℎ/2

𝑑𝑧 = 𝑏{𝜌ℎ, 0,
𝜌ℎ3

12
} (10) 
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Also, Nxx and Mxx are in-plane force and bending moment defined as 

 

(𝑁𝑥𝑥 , 𝑀𝑥𝑥) = ∫ (1, 𝑧)𝜎𝑥𝑥
𝐴

𝑑𝐴, (11) 

 

𝑃𝑥𝑥𝑧 = ∫ 𝜏𝑥𝑥𝑧
𝐴

𝑑𝐴. (12) 

 

Also, the boundary conditions are 

 

𝑢 = 0, 𝑜𝑟(𝑁𝑥𝑥 + 𝑁𝑥𝑥
𝑠 )𝑛𝑥 = 0 (13a) 

 

𝑤 = 0, 𝑜𝑟𝑛𝑥(
𝜕(𝑀𝑥𝑥 + 𝑀𝑥𝑥

𝑠 )

𝜕𝑥
+

𝜕𝑃𝑥𝑥𝑧

𝜕𝑥
− 𝑁𝑇

𝜕𝑤

𝜕𝑥
) = 0 (13b) 

 
𝜕𝑤

𝜕𝑥
= 0, 𝑜𝑟(𝑀𝑥𝑥 + 𝑀𝑥𝑥

𝑠 )𝑛𝑥 = 0 (13c) 

 

All ingredients of stress field, electrical field displacement (Dz) and electric density (Qzz) for a 

size-dependent beam relevant to nonlocal theory may be written as 

 

𝜎𝑥𝑥 − (𝑒0𝑎)2𝛻2𝜎𝑥𝑥 = 𝑐11𝜀𝑥𝑥 + 𝑒31

𝜕𝜑

𝜕𝑧
−

𝑓31

2

𝜕2𝜑

𝜕𝑧2
− 𝑐11𝛼1𝛥𝑇 (14) 

 

𝜏𝑥𝑥𝑧 − (𝑒0𝑎)2𝛻2𝜏𝑥𝑥𝑧 = +
𝑓31

2

𝜕𝜑

𝜕𝑧
 (15) 

 

𝐷𝑧 − (𝑒0𝑎)2𝛻2𝐷𝑧 = 𝑒31𝜀𝑥𝑥 − 𝑘33

𝜕𝜑

𝜕𝑧
+

𝑓31

2
𝜂𝑥𝑥𝑧 + 𝑝3𝛥𝑇 (16) 

 

𝑄𝑧𝑧 − (𝑒0𝑎)2𝛻2𝑄𝑧𝑧 = −
𝑓31

2
𝜀𝑥𝑥 (17) 

 

So that 𝜑  denotes the electro-static potential and 𝐸𝑧 = −𝜕𝜑/𝜕𝑧 . Next, the nonlocal 

formulations accounting for surface layers might be defined as 

 

𝜎𝑥𝑥
𝑠 − (𝑒0𝑎)2𝛻2𝜎𝑥𝑥

𝑠 = 𝜎𝑥𝑥
0 + 𝑐11

𝑠 𝜀𝑥𝑥 + 𝑒31
𝑠

𝜕𝜑

𝜕𝑧
 (18) 

 

Based on the assumption of open circuit conditions, the electrical displacements on surfaces 

become zero. Thus, it is possible to derive the electrical field component by 

 

𝐸𝑧 = −(
𝑒31

𝑘33

𝜕𝑢

𝜕𝑥
) + (𝑧

𝑒31

𝑘33
+

𝑓31

𝑘33
)(

𝜕2𝑤

𝜕𝑥2
) (19) 
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Next, the gradient of electrical field might be expressed by 

 

𝐸𝑧,𝑧 =
𝑒31

𝑘33

𝜕2𝑤

𝜕𝑥2
 (20) 

 

Utilizing Eqs. (14) and (15), the nonlocal stresses of the bulk and surfaces may be described 

based on below relation 

 

𝜎𝑥𝑥 − (𝑒0𝑎)2𝛻2𝜎𝑥𝑥 = (𝑐11 +
𝑒31

2

𝑘33
)

𝜕𝑢

𝜕𝑥
− (𝑐11 +

𝑒31
2

𝑘33
)𝑧

𝜕2𝑤

𝜕𝑥2
− (

𝑒31𝑓31

2𝑘33
)

𝜕2𝑤

𝜕𝑥2
− 𝑐11𝛼1Δ𝑇 (21) 

 

𝜏𝑥𝑥𝑧 − (𝑒0𝑎)2𝛻2𝜏𝑥𝑥𝑧 = (
𝑒31𝑓31

2𝑘33
)

𝜕𝑢

𝜕𝑥
− (

𝑒31𝑓31

2𝑘33
)𝑧

𝜕2𝑤

𝜕𝑥2
− (

𝑓31
2

2𝑘33
)

𝜕2𝑤

𝜕𝑥2
 (22) 

 

𝜎𝑥𝑥
𝑠 − (𝑒0𝑎)2𝛻2𝜎𝑥𝑥

𝑠 = 𝜎𝑥𝑥
0 + (𝑐11

𝑠 +
𝑒31

𝑠 𝑒31

𝑘33
)

𝜕𝑢

𝜕𝑥
− (𝑐11

𝑠 +
𝑒31

𝑠 𝑒31

𝑘33
)𝑧

𝜕2𝑤

𝜕𝑥2
− (

𝑒31
𝑠 𝑓31

𝑘33

𝜕2𝑤

𝜕𝑥2
) (23) 

 

 By integration from Eqs. (21)-(23) over the thickness of nano-size beam, the below resultants 

for the nano-size beam would be derived 

 

𝑁𝑥𝑥 − (𝑒0𝑎)2𝛻2𝑁𝑥𝑥 = 𝐴11

𝜕𝑢

𝜕𝑥
− 𝐵11

𝜕2𝑤

𝜕𝑥2
− 𝑁𝑥𝑥

𝑇  (24) 

 

𝑀𝑥𝑥 − (𝑒0𝑎)2𝛻2𝑀𝑥𝑥 = −𝐶11

𝜕2𝑤

𝜕𝑥2
 (25) 

 

𝑃𝑥𝑥𝑧 − (𝑒0𝑎)2𝛻2𝑃𝑥𝑥𝑧 = 𝐵11

𝜕𝑢

𝜕𝑥
− 𝐷11

𝜕2𝑤

𝜕𝑥2
 (26) 

 

So that 
 

𝐴11 = (𝑐11 +
𝑒31

2

𝑘33
)𝑏ℎ, 𝐵11 = (

𝑒31𝑓31

2𝑘33
)𝑏ℎ, 

𝐶11 = (𝑐11 +
𝑒31

2

𝑘33
)𝑏

ℎ3

12
, 𝐷11 = (

𝑓31
2

2𝑘33
)𝑏ℎ, 

(27) 

 

Next, it is possible to express the force/moment stress resultants of surfaces based on below 

relations 

𝑁𝑥𝑥
𝑠 − (𝑒0𝑎)2𝛻2𝑁𝑥𝑥

𝑠 = 𝐴11
𝑠

𝜕𝑢

𝜕𝑥
− 𝐵11

𝑠
𝜕2𝑤

𝜕𝑥2
 (28) 

 

𝑀𝑥𝑥
𝑠 − (𝑒0𝑎)2𝛻2𝑀𝑥𝑥

𝑠 = 𝐹11
𝑠

𝜕𝑢

𝜕𝑥
− 𝐶11

𝑠
𝜕2𝑤

𝜕𝑥2
 (29) 

 

in which 
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𝐴11
𝑠 = 2(𝑐11

𝑠 +
𝑒31𝑒31

𝑠

𝑘33
)ℎ, 𝐵11

𝑠 = (𝑐11
𝑠 +

𝑒31𝑒31
𝑠

𝑘33
)

𝑏ℎ2

2
+ 2(

𝑒31
𝑠 𝑓31

𝑘33
)ℎ, 

𝐹11
𝑠 = (𝑐11

𝑠 +
𝑒31𝑒31

𝑠

𝑘33
)

𝑏ℎ2

2
, 𝐶11

𝑠 = (𝑐11
𝑠 +

𝑒31𝑒31
𝑠

𝑘33
)

ℎ3

6
+ (

𝑒31
𝑠 𝑓31

𝑘33
)

𝑏ℎ2

2
, 

(30) 

 

The governing equations for a flexoelectric nano-scale beam based upon displacement 

components would be obtained by inserting Eqs. (24)-(29), into Eqs. (12) as 

 

(𝐴11 + 𝐴11
𝑠 )

𝜕2𝑢

𝜕𝑥2
− (𝐵11 + 𝐵11

𝑠 )
𝜕3𝑤

𝜕𝑥3
− 𝐼0

𝜕2𝑢

𝜕𝑡2
+ (𝑒0𝑎)2𝛻2(+𝐼0

𝜕2𝑢

𝜕𝑡2
) = 0 (31) 

 

(𝐵11 + 𝐹11
𝑠 )

𝜕3𝑢

𝜕𝑥3
− (𝐶11 + 𝐶11

𝑠 + 𝐷11)
𝜕4𝑤

𝜕𝑥4
+ 2𝑏𝜎0(

𝜕2𝑤

𝜕𝑥2
) 

−(𝑒0𝑎)22𝑏𝜎0(
𝜕2

𝜕𝑥2
)(

𝜕2𝑤

𝜕𝑥2
) − 𝑏𝑁𝑇(

𝜕2𝑤

𝜕𝑥2
) + (𝑒0𝑎)2𝑏𝑁𝑇(

𝜕2

𝜕𝑥2
)(

𝜕2𝑤

𝜕𝑥2
) 

−𝐼0

𝜕2𝑤

𝜕𝑡2
+ 𝐼2𝛻2(

𝜕2𝑤

𝜕𝑡2
) + (𝑒0𝑎)2𝛻2(+𝐼0

𝜕2𝑤

𝜕𝑡2
− 𝐼2𝛻2(

𝜕2𝑤

𝜕𝑡2
)) = 0 

 

(32) 

 

 

4. Solution by differential quadrature method (DQM) 
 

In the present chapter, differential quadrature method (DQM) has been utilized for solving the 

governing equations for nanobeam. According to DQM, at an assumed grid point (𝑥𝑖 , 𝑦𝑗) the 

derivatives for function F are supposed as weighted linear summation of all functional values 

within the computation domains as 

 

𝑑𝑛𝐹

𝑑𝑥𝑛
| 𝑥=𝑥𝑖

= ∑ 𝑐𝑖𝑗
(𝑛)

𝐹(𝑥𝑗)

𝑁

𝑗=1

 (33) 

 

where 
 

𝐶𝑖𝑗
(1)

=
𝜋(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗) 𝜋(𝑥𝑗)
        𝑖, 𝑗 = 1,2, … , 𝑁,        𝑖 ≠ 𝑗 (34) 

 

in which 𝜋(𝑥𝑖) is defined by 
 

𝜋(𝑥𝑖) = ∏(𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1

,      𝑖 ≠ 𝑗 (35) 

 

And when 𝑖 = 𝑗 
 

𝐶𝑖𝑗
(1)

= 𝑐𝑖𝑖
(1)

= − ∑ 𝐶𝑖𝑘
(1)

𝑁

𝑘=1

,     𝑖 = 1,2, … , 𝑁,      𝑖 ≠ 𝑘, 𝑖 = 𝑗 (36) 
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Then, weighting coefficients for high orders derivatives may be expressed by 
 

𝐶𝑖𝑗
(2)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(2)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(2)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(3)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(3)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

          𝑖, 𝑗 = 1, 2, … , 𝑁. 

(37) 

 

According to presented approach, the dispersions of grid points based upon Gauss-Chebyshev-

Lobatto assumption are expressed as 
 

𝑥𝑖 =
𝑎

2
[1 − cos (

𝑖 − 1

𝑁 − 1
𝜋)]       𝑖 = 1, 2, … , 𝑁, (38) 

 

Next, the time derivative for displacement components may be determined by 

 

𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑒𝑖𝜔𝑡 (39) 

 

𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑒𝑖𝜔𝑡 (40) 

 

where U and W denote vibration amplitudes and 𝜔 defines the vibrational frequency. Then, it is 

possible to express obtained boundary conditions as 
 

• Simply-supported (S): 
 

𝑤 = 𝑁𝑥𝑥 = 𝑀𝑥𝑥 = 0          at          𝑥 = 0, 𝐿 (41) 
 

• Clamped (C): 
 

𝑤 =
𝜕𝑤

𝜕𝑥
= 0          at          𝑥 = 0, 𝐿 (42) 

 

Now, one can express the modified weighting coefficients for all edges simply-supported as 

 

𝐶̅
1,𝑗
(2)

= 𝐶̅
𝑁,𝑗
(2)

= 0,       𝑖 = 1, 2, … , 𝑀, 

𝐶̅
𝑖,1
(2)

= 𝐶1̅,𝑀
(2)

= 0,       𝑖 = 1, 2, … , 𝑁. 
(43) 

 

and 
 

𝐶̅
𝑖𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶̅
𝑘𝑗
(2)

𝑁

𝑘=1

                𝐶̅
𝑖𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶̅
𝑘𝑗
(3)

𝑁

𝑘=1

 (44) 

 

By placing Eqs. (39)-(40) into Eqs. (31)-(32) and performing some simplifications leads to the 
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following system based on mass matrix[M] and stiffness matrix [K] as 

 

{[𝐾] + 𝜔2[𝑀]} {
𝑈
𝑊

} = 0 (45) 

 

Also, dimensionless quantities are selected as 

 

�̄� = 𝜔
𝐿2

ℎ
√

𝜌

𝑐11
,          𝜇 =

(𝑒0𝑎)

𝐿
 (46) 

 

 

5. Discussions on results 
 
The present section studies dynamic characteristics of a small scale beam made of piezoelectric 

material considering flexoelectric effect. In order to capture scale-dependency of such 

piezoelectric beams, nonlocal elasticity theory is utilized and also surface effects are included for 

better structural modeling. In this study, we used the data for all material properties based on the 

work of Ebrahimi and Barati (2017). Verification of obtained frequencies for flexo-electric 

nanobeam has been done in Fig. 2 by comparing obtained vibration frequencies with those of 

Galerkin’s method reported by Ebrahimi and Barati (2017). This figure shows the excellent 

accuracy of presented DQ solution with previous data. 

Nonlocal and temperature variation impacts on vibrational frequency of flexoelectric nano-size 

beam with simply-supported edge conditions have been shown in Fig. 3 when L/h = 20. It can be 

observed that the vibrational frequency of flexoelectric nano-size beam has a reducing trend with 

respect to nonlocal factor which means that structural stiffness has been reduced due to nonlocal 

influences. Another observation is that temperature rise results in smaller vibration frequencies at a 

prescribed nonlocal factor. So, thermal environment influences are prominent on dynamic 

characteristics of nonlocal flexoelectric nano-scale beams. 

 

 

 

Fig. 2 Verification of obtained frequencies for flexo-electric nanobeam (ΔT = 0, L/h = 20) 
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Fig. 3 Nonlocal and temperature variation impacts on vibrational frequency of flexoelectric 

nano-size beam (L/h = 20) 

 

 

 

Fig. 4 illustrates the surfaces and flexo-electric impacts on vibrational frequency of a piezo-

electrical nano-size beam when nonlocal factor is set as µ = 0.1. To this end, vibration frequency 

has been plotted versus thickness-to-length ratio (h/L) of the beam. The results based on nonlocal 

theory have been denoted by NL. When the surface impacts ae included, the results have been 

denoted by SE. One can observe from the figure that discarding the surface effects yields smaller 

vibrational frequency. Actually, incorporation of surfaces impacts improves the structural stiffness 

of the nano-size beam and vibrational frequencies enhance. Another finding is that flexoelectric 

effects lead to greater vibrational frequency, particularly at lower beam thicknesses. A conclusion 

from this figure that for NL modeling of flexoelectric beams, vibrational frequency is independent 

of thickness value. 
 

 

 

 

Fig. 4 Surface and flexoelectric impacts on vibrational frequency variation with respect to thickness (µ = 0.1) 
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In Fig. 5, flexoelectric and nonlocal impacts on vibrational frequency of nonlocal piezoelectric 

beams for different boundary conditions have been illustrated when L/h = 20. It is assumed that the 

nanobeams are exposed to uniform temperature variation of ΔT = 200K. For all types of boundary 

conditions, increase of nonlocal parameter yields smaller vibrational frequencies since the total 

stiffness of the nanobeam is reduced. So, nonlocal stress field which captures long range atomic 

interaction has a great influence on vibration characteristics of piezo-flexoelectric nanobeams. 

However, C-C type of boundary conditions has greater vibrational frequency than S-S and C-S. 

Thus, boundary condition has a main influence on vibrations of flexoelectric nano-size beams. 

Fig. 6 indicates vibrational frequency variation of nonlocal flexoelectric beams with respect to 

temperature rise across the thickness. In this figure different values for nonlocal factor have been 

selected. It is obvious that temperature rise results in smaller vibrational frequency. At a particular 

 

 

 

Fig. 5 Flexoelectric and nonlocal impacts on vibrational frequency of nonlocal piezoelectric 

beams for different boundary conditions (L/h = 20, ΔT = 200K) 

 

 

 

Fig. 6 Variation of vibrational frequency of nonlocal piezoelectric beams according to 

temperature rise for various nonlocal factors (L/h = 20) 
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value for temperature rise, the frequency may be zero showing that the buckling occurred. After 

buckling, temperature rise results in greater vibrational frequency. In the region before buckling, as 

the nonlocal factor increases the value of vibrational frequency decreases. It means that the 

buckling point at larger values for nonlocal factor shifts to the left. 

 

 

6. Conclusions 
 

Applying differential quadrature (DQ) method, the present article studied dynamic 

characteristics of a small scale beam made of piezoelectric material considering flexoelectric effect. 

In order to capture scale-dependency of such piezoelectric beams, nonlocal elasticity theory was 

utilized and also surface effects were included for better structural modeling. Governing equations 

were derived by utilizing Hamilton’s rule with the assumption that the scale-dependent beam is 

subjected to thermal environment leading to uniform temperature variation across the thickness. It 

was observed that the vibrational frequency of flexoelectric nano-size beam has a reducing trend 

with respect to nonlocal factor which means that structural stiffness has been reduced due to 

nonlocal influences. Another observation was that temperature rise results in smaller vibration 

frequencies at a prescribed nonlocal factor. Also, discarding the surface effects led to smaller 

vibrational frequency. Another finding was that flexoelectric effects led to greater vibrational 

frequency, particularly at lower beam thicknesses. 
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