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Abstract.  This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam 

reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three 

types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam 

is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as 

geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the 

beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been 

derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on 

geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects. 
 

Keywords:  nonlinear buckling; graphene platelets; geometric imperfection; thermal loading; modified 
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1. Introduction 

 
In recent decades, several carbon based structures containing carbon nanotube or carbon fiber 

have been widely utilized in composites for enhancing their mechanics and thermal specifications 

(Yazid et al. 2018, Mokhtar et al. 2018). A 273% enhancement of elastic modulus is obtained by 

Ahankari and Kar (2010) for carbon reinforced composites in comparison to conventional 

composites. Likewise, Gojny et al. (2004) mentioned that structural stiffness of carbon based 

composites may be enhanced with incorporation of carbon nanotube within material. Impacts of 

configuration and scale of carbon nanotubes on rigidity growth of material composites having 

metallic matrices are studied by Esawi et al. (2011). Because of possessing above mentioned 

properties, beam and plate structures having carbon based fillers are researched to understand their 

static or dynamical status, Fantuzzi et al. 2017, Civalek 2017, Ebrahimi and Habibi 2017, 2018, 

Ebrahimi and Farazmandnia 2017, Aragh 2017, Moradi-Dastjerdi and Malek-Mohammadi 2017). 

There are also some investigations on composite or functionally graded materials and interested 

readers are refaced to new investigations on materials (Singhal et al. 2018a, b, Singh et al. 2018, 

Nirwal et al. 2019, Sahu et al. 2018, Chaudhary et al. 2017, 2019a, b, Ahmed et al. 2019). 
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Furthermore, the graphene based composite material has been recently gained enormous attentions 

because of having easy producing procedure and high rigidity growth. Nieto et al. (2017) 

presented a review paper based on several graphene based composite material possessing ceramic 

or metallic matrices. The multi-scale study of mechanical attributes for graphene based composite 

material has been provided by Lin et al. (2018) utilizing finite elements approach. Wang et al. 

(2011) researched thermal attributes of graphene based composite materials. 

Recently, many papers are published for investigating mechanical attributes of graphene based 

composite structures. Kitipornchai et al. (2017) studied stability as well as vibrational properties of 

porosity-dependent beams containing graphene based composites. Furthermore, Feng et al. (2017) 

researched large amplitude vibrations of ideal Timoshenko beams with non-uniformly diffused 

graphene based composites. Investigations on deflections of trapezoidal plate structures reinforced 

with functional gradation of graphene composites have been carried out by Zhao et al. (2017). 

Barati and Zenkour (2018a) researched vibrational attributes of graphene based shells based on 

Galerkin’s approach. Finite elements approach is used by Reddy et al. (2018) to explore 

vibrational attributes of a laminated graphene based plate. Geometrically nonlinear vibrational 

attributes of scale-dependent beams made of graphene based composites are researched by 

Sahmani and Aghdam (2017). 

Scale-dependent beam structures contains various mechanical attributes different from macro 

sized beam structures because of atomic interactions at micro dimensions (Ebrahimi et al. 2017, 

Bouafia et al. 2017, Mouffoki et al. 2017, Barati 2017, Semmah et al. 2014). At micron scales, two 

particles apply couple stresses to each other and experience micro rotation. Modified couple stress 

theory introducing one scale coefficient is one of familiar theories which is able to consider the 

micro rotation effects (Park and Gao 2006, Ebrahimi and Barati 2018, Fenjan et al. 2019, Barati 

and Zenkour 2018b, Singhal et al. 2019). Accordingly, this theory is suitable for mathematical 

description of micro-size structures and in particular case carbon based micobeams. Vibration 

properties of a carbon based microbeam in contact with elastic foundation have been studied by 

Shenas et al. (2018). Dynamic response of a microbeam made of carbon based composites 

subjected to harmonic loads is analyzed by Rostami et al. (2018) taking into account couple stress 

effect. Furthermore, incorporating viscoelastic influences the vibrational properties of carbon 

composite micro-size beam have been studied by Mohammadimehr et al. (2017). Also, 

Allahkarami and Nikkhah-Bahrami (2018) analyzed couple stress based vibration behaviors of 

carbon composite micro-size beams with curvature. Above published papers on microbeams 

constructed from carbon nanotube based composites neglected geometric imperfection influences. 

Several factors such as errors in production or surrounding medium may result in geometrical 

imperfection of the beam structures (Wu et al. 2016, Barati and Zenkour 2018c, Chaudhary et al. 

2019a-c). 

This paper is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size 

beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. 

Graphene platelets have three types of dispersion within the structure including uniform-type, 

linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or 

imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric 

imperfection. Modified couple stress theory has been used for describing scale-dependent 

character of the beam having micro dimension. Via an analytical procedure, post-buckling path of 

the micro-size beam has been derived. It will be demonstrated that nonlinear buckling 

characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal 

loading, graphene distribution and couple stress effects. 
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(a) Uniformly diffusion (b) Linearly diffusion 
 

 

(c) Nonlinearly diffusion 

Fig. 1 Graphene diffusions in material structure 

 

 

 

Fig. 2 Continuously graded graphene-reinforced microbeam 

 

 

2. Graphene based composites 
 

According to Fig. 1, it is assumed that graphene platelets have three types of dispersion within 

the structure including uniform-type, linear-type and nonlinear-type. According to Fig. 2, a 

graphene reinforced composite micro-scale beam is illustrated. Micro-mechanic theory of such 

composite materials (Barati and Zenkour 2018a) introduces the below relationship between 

graphene platelets weight fraction (WGPL) and their volume fraction (VGPL) by 
 

𝑽𝑮𝑷𝑳 =
𝑾𝑮𝑷𝑳

𝑾𝑮𝑷𝑳 +
𝝆𝑮𝑷𝑳
𝝆𝑴

−
𝝆𝑮𝑷𝑳
𝝆𝑴

𝑾𝑮𝑷𝑳

 (1) 

 

where 𝜌𝐺𝑃𝐿and 𝜌𝑀 define the mass densities of graphene and polymeric matrices, respectively. 

Next, the elastic modulus of a graphene based composite might be represented based upon matrix 
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elastic modulus (EM) by (Barati and Zenkour 2018a) 
 

𝑬𝟏 =
𝟑

𝟖
(

𝟏 + 𝝃𝑳
𝑮𝑷𝑳𝜼𝑳

𝑮𝑷𝑳𝑽𝑮𝑷𝑳

𝟏 − 𝜼𝑳
𝑮𝑷𝑳𝑽𝑮𝑷𝑳

) 𝑬𝑴 +
𝟓

𝟖
(

𝟏 + 𝝃𝑾
𝑮𝑷𝑳𝜼𝑾

𝑮𝑷𝑳𝑽𝑮𝑷𝑳

𝟏 − 𝜼𝑾
𝑮𝑷𝑳𝑽𝑮𝑷𝑳

) 𝑬𝑴 (2) 

 

so that 𝜉𝐿
𝐺𝑃𝐿 and 𝜉𝑊

𝐺𝑃𝐿  define two geometrical factors indicating the impacts of graphene 

configuration and scales as (Barati and Zenkour 2018a) 
 

𝜉𝐿
𝐺𝑃𝐿 =

2𝑙𝐺𝑃𝐿

𝑡𝐺𝑃𝐿
 (3a) 

 

𝜂𝐿
𝐺𝑃𝐿 =

(𝐸𝐺𝑃𝐿/𝐸𝑀) − 1

(𝐸𝐺𝑃𝐿/𝐸𝑀) + 𝜉𝐿
𝐺𝑃𝐿 (3b) 

 

𝜉𝑊
𝐺𝑃𝐿 =

2𝑤𝐺𝑃𝐿

𝑡𝐺𝑃𝐿
 (3c) 

 

𝜂𝑊
𝐺𝑃𝐿 =

(𝐸𝐺𝑃𝐿/𝐸𝑀) − 1

(𝐸𝐺𝑃𝐿/𝐸𝑀) + 𝜉𝑊
𝐺𝑃𝐿 (3d) 

 

so that wGPL , lGPL , and tGPL define platelets average widths, length, and thickness, respectively. 

Furthermore, Poisson’s ratio for graphene based composite might be defined based upon Poisson’s 

ratio of the two constituents in the form 
 

𝑣1 = 𝑣𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝑣𝑀𝑉𝑀 
𝛼1 = 𝛼𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝛼𝑀𝑉𝑀 

(4) 

 

in which 𝑉𝑀 = 1 − 𝑉𝐺𝑃𝐿 expresses the volume fractions of matrix component. Herein, three 

dispersions of the platelets have been assumed as: 
 

Uniform: 
 

𝑊𝐺𝑃𝐿 = 𝜆1𝑊𝐺𝑃𝐿
0  (5a) 

 

Linear: 
 

𝑊𝐺𝑃𝐿 = 𝜆2𝑊𝐺𝑃𝐿
0 (

𝑧

ℎ
+

1

2
) (5b) 

 

Nonlinear: 
 

𝑊𝐺𝑃𝐿 =
𝜆3𝑊𝐺𝑃𝐿

0 𝑧2

𝑠2ℎ2(4𝑠2 − ℎ2)
[4ℎ2𝑧2 − ℎ4 +

16𝑠2

𝑛
(𝑠2 − 𝑧2)] ,          𝑠 = 0.45ℎ (5c) 

 

where 𝑊𝐺𝑃𝐿
0 = 1% expresses a particular weight fraction for graphene platelets. 

With the employment of classical beam theory, a displacement field having following forms 

might be expressed to start mathematical modeling of the microbeam 
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𝒖𝟏(𝒙, 𝒛) = 𝒖(𝒙) − 𝒛
𝝏𝒘

𝝏𝒙
 (6a) 

 

𝒖𝟑(𝒙, 𝒛) = 𝒘(𝒙) (6b) 
 

Here, u(x) and w(x) express the axial and transverse field coefficients. For the classic beam 

mode, the strain field including geometric imperfection deflection (w*) might be expressed by 

(Emam 2009) 
 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
+

1

2
[(

𝜕𝑤

𝜕𝑥
)2 − (

𝜕𝑤∗

𝜕𝑥
)2] − 𝑧(

𝜕2𝑤

𝜕𝑥2
−

𝜕2𝑤∗

𝜕𝑥2
) 

𝛾𝑥𝑧 = 0 

(7) 

 

Moreover, in order to take into account couple stress effects, there is a need to define the 

curvature tensor components as 
 

𝜒𝑥𝑦 = −
1

2

𝜕2𝑤

𝜕𝑥2
 𝜒𝑥𝑥 = 𝜒𝑦𝑦 = 𝜒𝑧𝑧 = 𝜒𝑥𝑧 = 𝜒𝑦𝑧 = 0 (8) 

 

Now, one can express the following constitutive relations based on couple stress coefficient (l) 

and Lame’s constants (𝜆𝑛𝑐 , 𝜇𝑛𝑐) as (Ebrahimi and Barati 2018) 
 

𝜎𝑥𝑥 = [𝜆𝑛𝑐 + 2𝜇𝑛𝑐]𝜀𝑥𝑥 (9) 

 

𝑚𝑥𝑦 = 2𝜇𝑛𝑐𝑙2𝜒𝑥𝑦 (10) 
 

So that 
 

𝜆𝑛𝑐 =
𝐸1𝑣1

[1 + 𝑣1][1 − 2𝑣1]
 (11) 

 

𝜇𝑛𝑐 =
𝐸1

2[1 + 𝑣1]
 (12) 

 

For a microbeam, the governing equations based on classic beam theory and couple stress 

effects may be expressed by (Emam 2009) 
 

𝜕𝑁𝑥

𝜕𝑥
= 0 (13) 

 

𝜕2𝑀𝑥
𝑏

𝜕𝑥2
+

𝜕2𝑌1

𝜕𝑥2
= −

𝜕

𝜕𝑥
(𝑁𝑥

𝜕𝑤

𝜕𝑥
) + 𝑘𝐿𝑤 − 𝑘𝑃𝛻2𝑤 + 𝑘𝑁𝐿𝑤3 (14) 

 

so that kL, kp, and kNL define Winkler, Pasternak and nonlinear foundation factors. Then, the 

resultants in above relations might be written by 
 

𝑁𝑥 = 𝐴 [
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

−
1

2
(

𝜕𝑤∗

𝜕𝑥
)

2

] − 𝐵 (
𝜕2𝑤

𝜕𝑥2
−

𝜕2𝑤∗

𝜕𝑥2
) − 𝑁𝑇 (15) 
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𝑀𝑥
𝑏 = 𝐵 [

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

−
1

2
(

𝜕𝑤∗

𝜕𝑥
)

2

] − 𝐷 (
𝜕2𝑤

𝜕𝑥2
−

𝜕2𝑤∗

𝜕𝑥2
) (16) 

 

𝑌1 = −�̃� (
𝜕2𝑤

𝜕𝑥2
−

𝜕2𝑤∗

𝜕𝑥2
) (17) 

 

where NT is in-plane thermal loading: 𝑁𝑇 = ∫ 𝐸1𝛼1𝛥𝑇𝑑𝑧
ℎ/2

−ℎ/2
 and 𝛥𝑇 is temperature rise. 

 

𝐴 = ∫ (𝜆𝑛𝑐

ℎ/2

−ℎ/2

1 − 𝑣1

𝑣1
)𝑑𝑧, 𝐵 = ∫ (𝜆𝑛𝑐

1 − 𝑣1

𝑣1
)𝑧

ℎ/2

−ℎ/2

𝑑𝑧, 

𝐷 = ∫ (𝜆𝑛𝑐

1 − 𝑣1

𝑣1
)𝑧2

ℎ/2

−ℎ/2

𝑑𝑧, 

�̃� = ∫ 𝜇𝑛𝑐𝑙2
ℎ/2

−ℎ/2

𝑑𝑧, 

(18) 

 

As final step, obtained governing equations of microbeams having geometrical imperfection 

according to displacement variables might be written after placing Eqs. (15)-(17) into Eqs. (13) 

and (14) as 
 

𝐴 (
𝜕2𝑢

𝜕𝑥2
) − 𝐵 (

𝜕3𝑤

𝜕𝑥3
−

𝜕3𝑤∗

𝜕𝑥3
) + 𝐴 (

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
−

𝜕𝑤∗

𝜕𝑥

𝜕2𝑤∗

𝜕𝑥2
) = 0 (19) 

 

𝐵
𝜕

𝜕𝑥
(

𝜕2𝑢

𝜕𝑥2
+

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
−

𝜕𝑤∗

𝜕𝑥

𝜕2𝑤∗

𝜕𝑥2
) − (𝐷 + �̃�) (

𝜕4𝑤

𝜕𝑥4
−

𝜕4𝑤∗

𝜕𝑥4
) 

+
𝜕

𝜕𝑥
(𝑁𝑥

𝜕𝑤

𝜕𝑥
) − 𝑘𝐿(𝑤 − 𝑤∗) + 𝑘𝑃𝛻2(𝑤 − 𝑤∗) − 𝑘𝑁𝐿(𝑤 − 𝑤∗)3 = 0 

(20) 

 

An important conclusion from Eq. (19) is 
 

𝜕

𝜕𝑥
(𝐴

𝜕𝑢

𝜕𝑥
+

𝐴

2
(

𝜕𝑤

𝜕𝑥
)

2

−
𝐴

2
(

𝜕𝑤∗

𝜕𝑥
)

2

− 𝐵 (
𝜕2𝑤

𝜕𝑥2
−

𝜕2𝑤∗

𝜕𝑥2
)) = 0 (21) 

 

Then, above relation gives 
 

𝜕𝑢

𝜕𝑥
= −

1

2
(

𝜕𝑤

𝜕𝑥
)

2

+
1

2
(

𝜕𝑤∗

𝜕𝑥
)

2

+
𝐵

𝐴
(

𝜕2𝑤

𝜕𝑥2
−

𝜕2𝑤∗

𝜕𝑥2
) +

𝑐1

𝐴
 (22) 

 

Next, an integration of Eq. (22) results in 
 

𝑢 = −
1

2
∫ (

𝜕𝑤

𝜕𝑥
)

2𝑥

0

𝑑𝑥 +
1

2
∫ (

𝜕𝑤∗

𝜕𝑥
)

2𝑥

0

𝑑𝑥 +
𝐵

𝐴
(

𝜕𝑤

𝜕𝑥
−

𝜕𝑤∗

𝜕𝑥
) +

𝑐1

𝐴
𝑥 + 𝑐2 (23) 

There are two cases of in-plane boundary conditions for the microbeams based on the type of 
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applied load. When applying a mechanical load (P) the conditions are: u(0) = 0, u(L) = -PL/A. 

When applying thermal loading they are u(0) = 0, u(L) = 0. Introducing the boundary conditions 

for the case of mechanical load leads to 
 

𝑐2 = −
𝐵

𝐴
(

𝜕𝑤

𝜕𝑥
−

𝜕𝑤∗

𝜕𝑥
) |𝑥 = 0 

𝑐1 = −𝑃 +
𝐴

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝐿

0

𝑑𝑥 −
𝐴

2𝐿
∫ (

𝜕𝑤∗

𝜕𝑥
)

2𝐿

0

𝑑𝑥 

          −
𝐵

𝐿
(

𝜕𝑤

𝜕𝑥
−

𝜕𝑤∗

𝜕𝑥
) |𝑥 = 𝐿 +

𝐵

𝐿
(

𝜕𝑤

𝜕𝑥
−

𝜕𝑤∗

𝜕𝑥
) |𝑥 = 0 

(24) 

 

Based on above constants, Eq. (22) finds the following form 
 

𝜕𝑢

𝜕𝑥
= −

1

2
(

𝜕𝑤

𝜕𝑥
)

2

+
1

2
(

𝜕𝑤∗

𝜕𝑥
)

2

+
𝐵

𝐴
(

𝜕2𝑤

𝜕𝑥2
−

𝜕2𝑤∗

𝜕𝑥2
) −

𝑃

𝐴
+

1

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝐿

0

𝑑𝑥 

−
1

2𝐿
∫ (

𝜕𝑤∗

𝜕𝑥
)

2𝐿

0

𝑑𝑥 −
𝐵

𝐿𝐴
(

𝜕𝑤𝑏

𝜕𝑥
−

𝜕𝑤𝑏
∗

𝜕𝑥
) |𝑥 = 𝐿 +

𝐵

𝐿𝐴
(

𝜕𝑤𝑏

𝜕𝑥
−

𝜕𝑤𝑏
∗

𝜕𝑥
) |𝑥 = 0 

(25) 

 

Based on above relation, it is possible to derive 
 

𝜕2𝑢

𝜕𝑥2
= −

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
+

𝜕𝑤∗

𝜕𝑥

𝜕2𝑤∗

𝜕𝑥2
+

𝐵

𝐴
(

𝜕3𝑤

𝜕𝑥3
−

𝜕3𝑤∗

𝜕𝑥3
) (26) 

 

𝜕3𝑢

𝜕𝑥3
= − (

𝜕2𝑤

𝜕𝑥2
)

2

−
𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥3
+ (

𝜕2𝑤∗

𝜕𝑥2
)

2

+
𝜕𝑤∗

𝜕𝑥

𝜕3𝑤∗

𝜕𝑥3
+

𝐵

𝐴
(

𝜕4𝑤

𝜕𝑥4
−

𝜕4𝑤∗

𝜕𝑥4
) (27) 

 

The final governing equation for the microbeam will be derived after placing Eqs. (25)-(27) in 

Eq. (20) as 
 

    
𝐵2

𝐴
(

𝜕4𝑤

𝜕𝑥4
−

𝜕4𝑤∗

𝜕𝑥4
) + 𝐴 [−

𝑃

𝐴
+

1

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝐿

0

𝑑𝑥 −
1

2𝐿
∫ (

𝜕𝑤∗

𝜕𝑥
)

2𝐿

0

𝑑𝑥 

−
𝐵

𝐿𝐴
(

𝜕𝑤

𝜕𝑥
−

𝜕𝑤∗

𝜕𝑥
) |𝑥 = 𝐿 +

𝐵

𝐿𝐴
(

𝜕𝑤

𝜕𝑥
−

𝜕𝑤∗

𝜕𝑥
) |𝑥 = 0]

𝜕2𝑤

𝜕𝑥2
 

−𝑘𝐿(𝑤 − 𝑤∗) + 𝑘𝑃𝛻2(𝑤 − 𝑤∗) − 𝑘𝑁𝐿(𝑤 − 𝑤∗)3 − (𝐷 + �̃�) (
𝜕4𝑤

𝜕𝑥4
−

𝜕4𝑤∗

𝜕𝑥4
) = 0 

(28) 

 

 

3. Method of solution 
 

The governing equation for microbeam only contains transverse displacement (w) which needs 

to be approximated based on following assumption (Ebrahimi and Barati 2017, Hadji et al. 2015) 
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𝑤 = ∑ 𝑊𝑖ℚ𝑖(𝑥)

∞

𝑖=1

 (29) 

 

So that Wi define the maximum amplitudes and ℚ𝑖(𝑥) = 0.5 (1 − 𝑐𝑜𝑠 (
2𝑖𝜋

𝐿
𝑥)) is called shape 

functions of a clamped-clamped microbeam having below condition 
 

𝑤|𝑥 = 0 = 𝑤|𝑥 = 𝐿 = 0,          
𝜕𝑤

𝜕𝑥
|𝑥 = 0 =

𝜕𝑤

𝜕𝑥
|𝑥 = 𝐿 = 0 (30) 

 

Herein, the microbeam is considered to be geometrically imperfect. Also, the imperfection 

shape is considered as first buckling mode of the microbeam as 
 

𝑤∗ = 𝑊∗ 𝛷 = 0.5𝑊∗ (1 − 𝑐𝑜𝑠 (2𝜋
𝑥

𝐿
)) (31) 

 

Accordingly, placing Eqs. (29)-(31) in obtained governing equation of the microbeam yields 

the below nonlinear equation based on maximum amplitude �̃� 
 

𝐾�̃� + 𝐺∗ �̃�3 + 𝛤�̃�2 + 𝛹𝑊∗ = 0 (32) 
 

where 
 

𝐾 = − (𝐷 + �̃� −
𝐵2

𝐴
) 𝑅40 − 𝐾𝐿(𝑅00) + 𝐾𝑃(𝑅20) − (𝑃)𝑅20 −

𝐴

2𝐿
(𝑊∗ )2 ∫ (𝛷′)2

𝐿

0

𝑑𝑥𝑅20 

         +
𝐵

𝐿𝐴
(

𝜕𝑤∗

𝜕𝑥
|𝑥 = 𝐿 −

𝜕𝑤∗

𝜕𝑥
|𝑥 = 0) 𝑊∗ 𝑅20 − 3𝑘𝑁𝐿(𝑊∗ )2 ∫ 𝛷𝛷

𝐿

0

𝜑𝑖𝜑𝑖𝑑𝑥 

(33) 

 

𝐺∗ = 𝐴(
1

2𝐿
𝑅11𝑅20) − 𝐾𝑁𝐿(𝑅0000) (34) 

 

𝛹 = (𝐷 + �̃� +
𝐵2

𝐴
) ∫ 𝛷(4)

𝐿

0

𝜑𝑖𝑑𝑥 + 𝑘𝐿 ∫ 𝛷
𝐿

0

𝜑𝑖𝑑𝑥 

         −𝑘𝑝 ∫ 𝛷(2)
𝐿

0

𝜑𝑖𝑑𝑥 + 𝑘𝑁𝐿(𝑊∗ )3 ∫ 𝛷
𝐿

0

𝛷𝛷𝜑𝑖𝑑𝑥 

(35) 

 

𝛤 = −
𝐵

𝐿𝐴
(

𝜕𝑤

𝜕𝑥
|𝑥 = 𝐿 −

𝜕𝑤

𝜕𝑥
|𝑥 = 0) 𝑅20 + 3𝑘𝑛𝑙(𝑊∗ ) ∫ 𝛷

𝐿

0

𝜑𝑖𝜑𝑖𝜑𝑖𝑑𝑥 (36) 

 

So that in the case of thermal loading one can delete mechanical load and insert NT in above 

relations. Also, other coefficients are 
 

{𝑅00, 𝑅20, 𝑅40, 𝑅11} = ∫ {𝜑𝑖𝜑𝑖 , 𝜑𝑖
′′𝜑𝑖 , 𝜑𝑖

′′′′𝜑𝑖 , 𝜑𝑖
′𝜑𝑖

′ }
𝐿

0

𝑑𝑥 

{𝑅0000} = ∫ (𝜑𝑖)4
𝐿

0

𝑑𝑥 

(37) 
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The below dimensionless coefficients are also used for further investigations 
 

𝐾𝐿 = 𝑘𝐿

𝐿4

𝐷
,           𝐾𝑝 = 𝑘𝑝

𝐿2

𝐷
,           𝐾𝑁𝐿 = 𝑘𝑁𝐿

𝐿4

𝐴
 (38) 

 

 

4. Discussion on results 
 

This section is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size 

beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. 

Graphene platelets have three types of dispersion within the structure including uniform-type, 

linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or 

imperfect. All of material properties have been expressed in Tables 1 and 2. Buckling mode shape 

of the micro-size beam has been assumed as geometric imperfection. Modified couple stress 

theory has been used for describing scale-dependent character of the beam having micro 

dimension. In the following paragraphs, the results are first validated by previous data and then 

new findings are presented. 
 

 

Table 1 Gradient index effect on total content of GPLs 

Uniform (λ1) Linear (λ2) Nonlinear (λ3) %W*
GPL 

0 0 0 0 

0.33 0.67 0.43 0.33 

1 2 1.29 1 

 

 

Table 2 Material and geometrical parameters for a GPL-reinforced beam 

GPLs Matrix (Epoxy resin) 

EGPL = 1.01 TPa EM = 2.85 GPa 

ρGPL = 1062.5 kg/m3 ρM = 1200 kg/m3 

vGPL = 0.006 vM = 0.34 

αGPL = 2.35 × 10-5/K αM = 8.2 × 10-5/K 

tGPL = 1.5 nm - 

wGPL = 1.5 µm - 

lGPL = 2.5 µm - 

 

 

Table 3 Verification of nonlinear buckling loads for laminated GPLs reinforced beams 

(WGPL = 0.3%, �̃�/h=1) 

Number of layers Yang et al. (2017) present 

4 0.1175 0.1174 

6 0.1192 0.1190 

10 0.1201 0.1200 

28 0.1205 0.1205 
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First, according to Table 3 nonlinear buckling load of laminated graphene-reinforced beams has 

been verified with those of Yang et al. (2017). For this comparison, different number of layers in 

laminated composite material are considered and obtained buckling loads are very close to those of 

Yang et al. (2017). So, it may be deduced that presented solution and mathematical model of the 

graphene reinforced beam in our article is accurate. 

Fig. 3 illustrates nonlinear buckling load of graphene based C-C microbeams with respect to 

normalized amplitude with/without geometry imperfection based upon diverse graphene weight 

fractions and diffusions. For presenting this figure, other factors are set as l/h = 0.4, L/h = 20, 

 

 

  

(a) Uniformly dispersed (b) Linearly dispersed 
 

 

(c) Nonlinearly dispersed 

Fig. 3 Impact of graphene weight fraction on nonlinear buckling path of the micro-scale beam 

(L/h = 20, Kw = 0, Kp = 0, W* = 0.01h, l/h = 0.4) 
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Kw = 0, Kp = 0 and W* = 0.01 h. In order to obtain critical buckling load of the graphene based 

microbeam, one may set the normalized amplitude to zero, �̃�/h = 0. However, the critical 

buckling load exists for perfect beams with nonzero value of imperfection amplitude. The main 

conclusion based on this figure is that increase of graphene weight fraction gives greater nonlinear 

buckling load owing to rigidity growth of the microbeam. However, the greatest and lowest 

nonlinear buckling load have been observed based on nonlinear and linear graphene diffusions. 

Couple stress impacts on post-buckling curves of ideal and imperfect graphene based 

microbeams are shown in Fig. 4. For presenting this figure, other factors are set as L/h = 20, Kw = 

0, Kp = 0 and W* = 0.01 h. Also, nonlinear graphene dispersion with W*GPL = 1% has been 

selected. At micron scales, two particles apply couple stresses to each other and experience micro 

rotation. Modified couple stress theory introducing one scale coefficient is able to consider the 
 

 

 

Fig. 4 Impact of couple stress coefficient on nonlinear buckling path of the micro-scale beam 

(L/h = 20, Kw = 0, Kp = 0, W* = 0.01h, W*GPL = 1%) 

 

 

 

Fig. 5 Impact of slenderness ratio on nonlinear buckling path of the micro-scale beam 

(l/h = 0.4, W* = 0.01h, W*GPL = 1%) 
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Fig. 6 Impact of imperfection amplitude on nonlinear buckling path of the micro-scale beam 

(L/h = 20, l/h = 0.2, W*GPL = 1%) 

 

 

micro rotation effects. Increase of couple stress coefficient results in greater nonlinear buckling 

loads owing to rigidity growth of the microbeam. 

Fig. 5 indicates the impacts of slenderness ratio (L/h) on nonlinear buckling path of graphene 

based microbeams. For this figure, nonlinear graphene dispersion with W*GPL = 1% has been 

selected. The microbeams having larger slenderness ratio are less rigid and possess lower buckling 

load. Therefore, increasing in slenderness ratios will reduce the value of nonlinear buckling loads. 

Such conclusion can be expressed for either ideal or imperfect microbeams. 

Impact of imperfection amplitude on nonlinear buckling path of the micro-scale beam has been 

shown in Fig. 6. One may observe that the discrepancy among buckling loads according to perfect 

and imperfect microbeams is negligible at huge normalized amplitude (�̃�/h). Thus, geometrical 

imperfection impact is more significant at low normalized amplitude. 
 

 

 

Fig. 7 Impact of graphene distribution on thermal post-buckling path of the micro-scale beam 

(L/h = 20, l/h = 0.4, W*GPL = 1%) 
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Fig. 8 Impact of foundation factors on thermal post-buckling path of the micro-scale beam 

(L/h = 20, l/h = 0.4, W*GPL = 1%) 

 

 

 

Fig. 7 illustrates the impact of graphene distribution on thermal post-buckling path of the 

micro-scale beam modeled by modified couple stress theory. For presenting this figure, other 

factors are set as L/h = 20, Kw = 0, Kp = 0 and W* = 0.01 h. The three graphene distribution types 

with W*GPL=1% are selected. It is clear from the figure that nonlinear graphene distribution is 

corresponding to highest buckling loads among considered distributions. However, the buckling 

loads based on uniform graphene distribution are among linear and nonlinear distributions. So, 

thermal post-buckling of graphene reinforced microbeams are influenced by the graphene 

distribution type. 

Nonlinear post-buckling temperatures versus normalized amplitude according to various 

foundation factors are plotted in Fig. 8 when l/h = 0.4. Nonlinear graphene distribution with W*GPL 

= 1% has been assumed for this graph. All foundation factors result in greater buckling 

temperatures. It is obvious that nonlinear factor of elastic substrate (KNL) exerts no impact on 

buckling temperature at smaller amplitude while its impact is more significant at larger amplitude. 

 

 

5. Conclusions 
 
The presented research examined mechanical-thermal post-buckling of geometrically imperfect 

microbeams made of graphene based composites. Graphene platelets has three types of dispersion 

within the structure including uniform-type, linear-type and nonlinear-type. The buckling 

temperatures or loads were derived based on an analytical procedure. Increase of graphene weight 

fraction gave greater nonlinear buckling load owing to rigidity growth of the microbeam. However, 

the greatest and lowest nonlinear buckling load have been observed based on nonlinear and linear 

graphene diffusions. Increase of couple stress coefficient led to greater nonlinear buckling loads 

owing to rigidity growth of the microbeam. Also, it was seen that geometrical imperfection impact 

was more significant at low normalized amplitude. 
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