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Abstract.  This paper researches static and dynamic bending behaviors of a crystalline nano-size shell having pores 

and grains in the framework of strain gradient elasticity. Thus, the nanoshell is made of a multi-phase porous material 

for which all material properties on dependent on the size of grains. Also, in order to take into account small size 

effects much accurately, the surface energies related to grains and pores have been considered. In order to take into 

account all aforementioned factors, a micro-mechanical procedure has been applied for describing material properties 

of the nanoshell. A numerical trend is implemented to solve the governing equations and derive static and dynamic 

deflections. It will be proved that the static and dynamic deflections of the crystalline nanoshell rely on pore size, 

grain size, pore percentage, load location and strain gradient coefficient. 
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1. Introduction 

 
Silicon is a basic material used in sensing systems and structures which may have macro, 

micron or nano dimensions. This material has not a perfect and ideal structure and it may possess 

small size pores. Pores or voids in material texture of silicon leads to the variation in material 

attributes. Also, grains are possible to be created within silicon and hence this type of material 

would be a crystalline material. Actually, the crystalline materials have grains or crystals of 

silicone together with voids and an interface zone between the grains and voids (Wang et al. 2003). 

The distribution of grains and voids within material structure would be random and it is not 

possible to place them in prescribed locations. In fact, the grains growth in possible positions 

during the fabrication of crystalline materials. Moreover, if the dimensions of grains are reduced to 

nano scales, the material would be a nanocrystalline material (Meyers et al. 2006). There are 

diverse approaches for describing material properties of nanocrystalline materials (Zhou et al. 

2013) having grains and voids. 

Shell structures have great application in mechanical devices and system form macro to 

micro/nano dimensions. Macro size shells are extensively researched via classic elasticity theory in 

the view of structural dynamic analysis. However, classic elasticity theory is not appropriate for 

nano dimension shells for which small scale impacts exist. Thus, another theories to carry out size-
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dependent dynamical analysis of nano dimension structural components are strain gradient and 

nonlocal elasticity theories (Aydogdu 2009, Thai 2012, Ke et al. 2012, Eltaher et al. 2013, Barati 

2017, Al-Maliki et al. 2019, Ahmed et al. 2019). Nonlocal elastic theory were used by various 

authors in order to incorporate small scale impacts in analysis of nanostructures based on a single 

scale factor (Lim 2010, Li 2014a, b, Li et al. 2013, Zenkour and Abouelregal 2014, Ebrahimi and 

Barati 2016, 2017a, Barati and Shahverdi 2016, 2017a, Bounouara et al. 2016, Besseghier et al. 

2017, Mokhtar et al. 2018). The scale factor defined by nonlocal elastic theory leads to structural 

rigidity reduction which highlights that nano size structures have different mechanical 

performance from macro scale counterparts. One another scale factor is defined by strain gradient 

theory leading to structural rigidity increment. The strain gradient theory express that the strains 

are not uniform within the material structures. Therefore, this theory would be useful for modeling 

of nanocrystalline materials and structures. For various types of materials and structures, the strain 

gradient theory has shown its efficacy (Lim et al. 2015, Li et al. 2016, Mehralian et al. 2017, 

Barati and Shahverdi 2017b). 

Mechanical analysis of nanocrystalline structures has been carried out by few researches. 

Especially nanocrysalline nanoshells having nano-size grains and pores are not studied before. 

However, some papers are published on nanocrystalline nanoplates and nanobeams based on strain 

gradient theory taking into account the size of pores and grains (Ebrahimi and Barati 2017b, 2018, 

Barati and Shahverdi 2017c, d). For other types of materials rather than nanocrystalline materials, 

some researchers studied the mechanical properties of elastic nanoshells based on nonlocal and 

strain gradient theories and proved the efficacy of the theories (Zaera et al. 2013, Ke et al. 2014, 

Mehralian et al. 2016, Farajpour et al. 2017, Sun et al. 2016). 

The present article studies static and dynamic bending behaviors of a crystalline nano-size shell 

having pores and grains in the framework of strain gradient elasticity. Thus, the nanoshell is made 

of a multi-phase porous material for which all material properties on dependent on the size of 

grains. Also, in order to take into account small size effects much accurately, the surface energies 

related to grains and pores have been considered. In order to take into account all aforementioned 

factors, a micro-mechanical procedure has been applied for describing material properties of the 

nanoshell. A numerical trend is implemented to solve the governing equations and derive static and 

dynamic deflections. It will be proved that the static and dynamic deflections of the crystalline 

nanoshell rely on pore size, grain size, pore percentage, load location and strain gradient 

coefficient. 

 

 

2. Model of nanocrystalline nanoshells 
 

Figs. 1 and 2 illustrate a nanocrystalline nanoshell made of silicone under radial dynamic load 

with specific frequency. The figures clearly show that pores are available in the material structure 

and are able to change material properties. Elastic properties (Young’s moduli and Poisson’s ratio) 

for a nanocrystalline nanoshell can be described as functions of bulk and shear moduli (𝐾𝑁𝑐𝑀, 

𝜇𝑁𝑐𝑀) as 

𝐸𝑁𝑐𝑀 =
9𝐾𝑁𝑐𝑀𝜇𝑁𝑐𝑀
3𝐾𝑁𝑐𝑀 + 𝜇𝑁𝑐𝑀

 (1) 

 

𝑣𝑁𝑐𝑀 =
3𝐾𝑁𝑐𝑀 − 2𝜇𝑁𝑐𝑀
2(3𝐾𝑁𝑐𝑀 + 𝜇𝑁𝑐𝑀)

 (2) 
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Fig. 1 A crystalline nanoshell with pores and grains 

 

 

 

Fig. 2 The cylindrical nanoshell under radial loading 
 

 

So that 

𝐾𝑁𝑐𝑀 ≅ 𝑘𝐻1 × 𝑘𝐻2 ×
1

𝜂𝑘𝑔
 (3) 

 

𝜇𝑁𝑐𝑀 ≅ 𝜇𝐻1 × 𝜇𝐻2 ×
1

𝜂𝜇𝑔
 (4) 

 

So that 𝜂 = 𝐸𝑖𝑛/𝐸𝑔 and also 
 

𝑘𝐻1 = 𝑘𝑒𝑓𝑓(𝑘𝑖𝑛 = 𝜂𝑘𝑔, 𝜇𝑖𝑛 = 𝜂𝜇𝑔, 𝑘𝑔, 𝜇𝑔, 𝑓𝑔, 𝑘𝑔
𝑠 , 𝜇𝑔

𝑠 , 𝑣𝑖𝑛 = 𝑣𝑔, 𝑅𝑔) (5a) 

 

𝜇𝐻1 = 𝜇𝑒𝑓𝑓(𝑘𝑖𝑛 = 𝜂𝑘𝑔, 𝜇𝑖𝑛 = 𝜂𝜇𝑔, 𝑘𝑔, 𝜇𝑔, 𝑓𝑔, 𝑘𝑔
𝑠 , 𝜇𝑔

𝑠 , 𝑣𝑖𝑛 = 𝑣𝑔, 𝑅𝑔) (5b) 

 

𝑘𝐻2 = 𝑘𝑒𝑓𝑓(𝑘𝑖𝑛 = 𝜂𝑘𝑔, 𝜇𝑖𝑛 = 𝜂𝜇𝑔, 𝑘𝑔 = 0, 𝜇𝑔 = 0, 𝑓𝑣, 𝑘𝑣
𝑠 , 𝜇𝑣

𝑠 , 𝑣𝑣 , 𝑅𝑣) (5c) 

 

𝜇𝐻2 = 𝜇𝑒𝑓𝑓(𝑘𝑖𝑛 = 𝜂𝑘𝑔, 𝜇𝑖𝑛 = 𝜂𝜇𝑔, 𝑘𝑔 = 0, 𝜇𝑔 = 0, 𝑓𝑣 , 𝑘𝑣
𝑠 , 𝜇𝑣

𝑠 , 𝑣𝑣, 𝑅𝑣) (5d) 

 

In above relations g denotes the nano-grains material properties. Also, v denote the porosities 

181



 

 

 

 

 

 

Luay Badr Hamad, Basima Salman Khalaf and Nadhim M. Faleh 

material properties. So, fg and fv are grain and pores volume fractions defined as 
 

𝑓𝑔 = 𝑟(1 − 𝑓𝑣), 𝑟 =
𝑅𝑔
3

(𝑅𝑔 + 𝑇𝑖𝑛)
3
 (6) 

 

Here, 𝑅𝑔, 𝑅𝑣and 𝑇𝑖𝑛 respectively denote the main radiuses of nano-grain, nano-porosity and 

interface thickness. Above equations are employed in order to characterize all material properties 

including nano-porosity effect. Without including nano-porosity effect, the material properties 

(Bulk and shear moduli) become (Ebrahimi and Barati 2017b) 
 

𝑘𝑒𝑓𝑓 =
3𝑘𝑔(4𝑓𝑔𝜇𝑖𝑛 + 3𝑘𝑖𝑛) + 2𝜇𝑖𝑛 (4𝑓𝑔𝜇𝑖𝑛𝑘𝑠

∗ + 3𝑘𝑖𝑛(2 − 2𝑓𝑔 + 𝑘𝑠
∗))

3 (3(1 − 𝑓𝑔)𝑘𝑔 + 3𝑓𝑔𝑘𝑖𝑛 + 2𝜇𝑖𝑛(2 + 𝑘𝑠
∗ − 𝑓𝑔𝑘𝑠

∗))
 (7) 

 

𝜇𝑒𝑓𝑓 =
𝜇𝑖𝑛(5 − 8𝑓𝑔𝜉3(7 − 5𝑣𝑖𝑛))

5 − 𝑓𝑔(5 − 84𝜉1 − 20𝜉2)
 (8) 

 

So that 
 

𝜉1 =
15(1 − 𝑣𝑖𝑛)(𝑘𝑠

∗ + 2𝜇𝑠
∗)

4𝐻
 (9a) 

 

𝜉2 =
−15(1 − 𝑣𝑖𝑛)((

𝜇𝑔
𝜇𝑖𝑛
)(7 + 5𝑣𝑔) − 8𝑣𝑔(5 + 3𝑘𝑠

∗ + 𝜇𝑠
∗) + 7(4 + 3𝑘𝑠

∗ + 2𝜇𝑠
∗))

4𝐻
 

(9b) 

 

𝜉3 =
5

16𝐻
[2 (

𝜇𝑔

𝜇𝑖𝑛
)
2

(7 + 5𝑣𝑔) − 4(7 − 10𝑣𝑔)(2 + 𝑘𝑠
∗)(1 − 𝜇𝑠

∗) 

         + (
𝜇𝑔

𝜇𝑖𝑛
) (7(6 + 5𝑘𝑠

∗ + 4𝜇𝑠
∗) − 𝑣𝑔(90 + 47𝑘𝑠

∗ + 4𝜇𝑠
∗))] 

(9c) 

 

and 
 

𝐻 = −2(
𝜇𝑔

𝜇𝑖𝑛
)
2

(7 + 5𝑣𝑔)(4 − 5𝑣𝑖𝑛) + 7 (
𝜇𝑔

𝜇𝑖𝑛
) (

−39 − 20𝑘𝑠
∗ − 16𝜇𝑠

∗

+5𝑣𝑔(9 + 5𝑘𝑠
∗ + 4𝜇𝑠

∗)) 

         + (
𝜇𝑔

𝜇𝑖𝑛
) 𝑣𝑔(285 + 188𝑘𝑠

∗ + 16𝜇𝑠
∗ − 5𝑣𝑖𝑛(75 + 47𝑘𝑠

∗ + 4𝜇𝑠
∗)) 

         +4(7 − 10𝑣𝑔)(−7 − 11𝜇𝑠
∗ − 𝑘𝑠

∗(5 + 4𝜇𝑠
∗) + 𝑣𝑖𝑛(5 + 13𝜇𝑠

∗ + 𝑘𝑠
∗(4 + 5𝜇𝑠

∗))) 

(9d) 

 

so that 𝑘𝑠
∗ = 𝑘𝑔

𝑠/𝑅𝑔𝜇𝑖𝑛 and 𝜇𝑠
∗ = 𝜇𝑔

𝑠/𝑅𝑔𝜇𝑖𝑛 are surfaces bulks and shear moduli, respectively 

for which 𝑘𝑔
𝑠 = 2(𝜇𝑔

𝑠 + 𝜆𝑔
𝑠 ). 

For the atoms within the material, the elastic modulus of E(r0) has been defined. This modulus 

is identical to that of nano-grains (Eg). r0 is the reference position of the atoms in which they are 

vibrating. Then, it is possible to define elastic modulus of interface atoms as Ein = E(r) at a new 

position r. Next, for the afore-mentioned elastic moduli there a relationship as follows 
 

𝐸𝑖𝑛
𝐸𝑔

=
𝐸(𝑟)

𝐸(𝑟0)
=

1

𝑛 − 𝑚
((𝑛 + 1) (

𝑟0
𝑟
)
𝑛+3

− (𝑚 + 1) (
𝑟0
𝑟
)
𝑚+3

) (10) 
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so that 

𝑟0
𝑟
= (

𝜌(𝑟)

𝜌(𝑟0)
)
1/3

 (11) 

 

Above relations are applicable to silicone when m = 8 and n = 12. Then, nanoshell mass density 

may be defined as follows taking into account the portions of nano-grains and nano-porosity 
 

𝜌𝑁𝑐𝑀 = (1 − 𝑓𝑔 − 𝑓𝑣)𝜌𝑖𝑛 + 𝑓𝑔𝜌𝑔 (12) 
 

Selecting first order shear deformable shell theory, the displacement field for crystalline 

nanoshells may be expressed by 
 

𝑢1(𝑥, 𝜃, 𝑧, 𝑡) = 𝑢(𝑥, 𝜃, 𝑡) + 𝑧𝜑𝑥(𝑥, 𝜃, 𝑡) (13a) 

 

𝑢2(𝑥, 𝜃, 𝑧, 𝑡) = 𝑣(𝑥, 𝜃, 𝑡) + 𝑧𝜑𝜃(𝑥, 𝜃, 𝑡) (13b) 

 

𝑢3(𝑥, 𝜃, 𝑧, 𝑡) = 𝑤(𝑥, 𝜃, 𝑡) (13c) 
 

so that u,𝑣 and w define axial, circumferential and lateral components, respectively; 𝜑𝑥and 

𝜑𝜃define the rotation about axial and circumferential axes. 

In the framework of above shell displacements, the strain component would be 
 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+ 𝑧

𝜕𝜑𝑥
𝜕𝑥

 

𝜀𝜃 =
1

𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤 + 𝑧

𝜕𝜑𝜃
𝜕𝜃

) 

𝛾𝑥𝜃 =
1

𝑅

𝜕𝑢

𝜕𝜃
+
𝜕𝑣

𝜕𝑥
+
𝑧

𝑅

𝜕𝜑𝑥
𝜕𝜃

+ 𝑧
𝜕𝜑𝜃
𝜕𝑥

 

𝛾𝑧𝑥 = 𝜑𝑥 +
𝜕𝑤

𝜕𝑥
, 𝛾𝑧𝜃 = 𝜑𝜃 +

1

𝑅

𝜕𝑤

𝜕𝜃
−
𝑣

𝑅
 

(14) 

 

Now, Hamilton’s principle can be written as 
 

∫ 𝛿(𝑈 − 𝑇 − 𝑉)𝑑𝑡 = 0
𝑡

0

 (15) 

 

here, 𝑈is strain energy, 𝑇is kinetic energy and 𝑉is work done by external forces and 
 

𝛿𝑈 = ∫(𝜎𝑖𝑗𝛿𝜀𝑖𝑗
𝑉

)𝑅𝑑𝑥𝑑𝜃𝑑𝑧 (16) 

 

𝛿𝑉 = ∫(𝑞𝑙𝑜𝑎𝑑
𝑉

))𝛿𝑤𝑅𝑑𝑥𝑑𝜃𝑑𝑧 (17) 

 

𝛿𝐾 = ∫((
𝜕𝛿𝑢1
𝜕𝑡

)2 + (
𝜕𝛿𝑢2
𝜕𝑡

)2 + (
𝜕𝛿𝑢3
𝜕𝑡

)2)𝑅𝑑𝑥𝑑𝜃𝑑𝑧
𝑉

 (18) 
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Also,𝑞𝑙𝑜𝑎𝑑 is radial mechanical load. 

Using Hamilton’s principle in Eq. (15) and Eqs. (16)-(18), the governing equations can be 

obtained as (Mehralian et al. 2017) 
 

𝜕𝑁𝑥𝑥
𝜕𝑥

+
1

𝑅

𝜕𝑁𝑥𝜃
𝜕𝜃

= 𝐼0
𝜕2𝑢

𝜕𝑡2
+ 𝐼1

𝜕2𝜑𝑥
𝜕𝑡2

 (19a) 

 

𝜕𝑁𝑥𝜃
𝜕𝑥

+
1

𝑅

𝜕𝑁𝜃𝜃
𝜕𝜃

+
𝑄𝑧𝜃
𝑅

= 𝐼0
𝜕2𝑣

𝜕𝑡2
+ 𝐼1

𝜕2𝜑𝜃
𝜕𝑡2

 (19b) 

 

𝜕𝑄𝑥𝑧
𝜕𝑥

+
1

𝑅

𝜕𝑄𝑧𝜃
𝜕𝜃

−
𝑁𝜃𝜃
𝑅

= +𝐼0
𝜕2𝑤

𝜕𝑡2
+ 𝑞𝑙𝑜𝑎𝑑 (19c) 

 

𝜕𝑀𝑥𝑥
𝜕𝑥

+
1

𝑅

𝜕𝑀𝑥𝜃

𝜕𝜃
− 𝑄𝑥𝑧 = 𝐼1

𝜕2𝑢

𝜕𝑡2
+ 𝐼2

𝜕2𝜑𝑥
𝜕𝑡2

 (19d) 

 

in which 
 

(𝐼0, 𝐼1, 𝐼2) = ∫ (1, 𝑧, 𝑧2)𝜌𝑁𝑐𝑀

ℎ/2

−ℎ/2

𝑑𝑧 (20) 

 

and 
 

{𝑁𝑥𝑥 , 𝑁𝜃𝜃 , 𝑁𝑥𝜃} = ∫ {𝜎𝑥𝑥 , 𝜎𝜃𝜃 , 𝜎𝑥𝜃}
ℎ/2

−ℎ/2

𝑑𝑧 (21a) 

 

{𝑀𝑥𝑥 , 𝑀𝜃𝜃 , 𝑀𝑥𝜃} = ∫ {𝜎𝑥𝑥 , 𝜎𝜃𝜃 , 𝜎𝑥𝜃}
ℎ/2

−ℎ/2

𝑧𝑑𝑧 (21b) 

 

{𝑄𝑥𝑧, 𝑄𝑧𝜃} = 𝜅𝑠∫ {𝜎𝑥𝑧, 𝜎𝑧𝜃}
ℎ/2

−ℎ/2

𝑑𝑧 (21c) 

 

in which 𝜅𝑠is shear correction factor. 

In the framework of strain gradient theory, the stress-strain relations would be 
 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝜃𝜃
𝜎𝑥𝜃
𝜎𝑥𝑧
𝜎𝑧𝜃}

 
 

 
 

=
𝐸(𝑧)

1 − 𝑣2
(1 − 𝑙2𝛻2)

(

 
 

1 𝑣 0 0 0
𝑣 1 0 0 0
0 0 (1 − 𝑣)/2 0 0
0 0 0 (1 − 𝑣)/2 0
0 0 0 0 (1 − 𝑣)/2)

 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝜃𝜃
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑧𝜃}

 
 

 
 

 (22) 

 

so that l is strain gradient or length scale parameter. Integrating Eq. (22) over the nanoshell 

thickness, the resultants presented in Eq. (21) can be obtained as 
 

𝑁𝑥𝑥 = (1 − 𝜆𝛻
2) [𝐴11

𝜕𝑢

𝜕𝑥
+ 𝐵11

𝜕𝜑𝑥
𝜕𝑥

+
𝐴12
𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) +

𝐵12
𝑅

𝜕𝜑𝜃
𝜕𝜃

] (23) 
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𝑀𝑥𝑥 = (1 − 𝜆𝛻
2) [𝐵11

𝜕𝑢

𝜕𝑥
+ 𝐷11

𝜕𝜑𝑥
𝜕𝑥

+
𝐵12
𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) +

𝐷12
𝑅

𝜕𝜑𝜃
𝜕𝜃

] (24) 

 

𝑁𝜃𝜃 = (1 − 𝜆𝛻
2) [𝐴12

𝜕𝑢

𝜕𝑥
+ 𝐵12

𝜕𝜑𝑥
𝜕𝑥

+
𝐴11
𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) +

𝐵11
𝑅

𝜕𝜑𝜃
𝜕𝜃

] (25) 

 

𝑀𝜃𝜃 = (1 − 𝜆𝛻
2) [𝐵12

𝜕𝑢

𝜕𝑥
+ 𝐷12

𝜕𝜑𝑥
𝜕𝑥

+
𝐵11
𝑅
(
𝜕𝑣

𝜕𝜃
+ 𝑤) +

𝐷11
𝑅

𝜕𝜑𝜃
𝜕𝜃

] (26) 

 

𝑁𝑥𝜃 = (1 − 𝜆𝛻
2) [𝐴66 (

1

𝑅

𝜕𝑢

𝜕𝜃
+
𝜕𝑣

𝜕𝑥
) + 𝐵66 (

1

𝑅

𝜕𝜑𝑥
𝜕𝜃

+
𝜕𝜑𝜃
𝜕𝑥

)] (27) 

 

𝑀𝑥𝜃 = (1 − 𝜆𝛻
2) [𝐵66 (

1

𝑅

𝜕𝑢

𝜕𝜃
+
𝜕𝑣

𝜕𝑥
) + 𝐷66 (

1

𝑅

𝜕𝜑𝑥
𝜕𝜃

+
𝜕𝜑𝜃
𝜕𝑥

)] (28) 

 

𝑄𝑥𝑧 = (1 − 𝜆𝛻2)�̃�66 (𝜑𝑥 +
𝜕𝑤

𝜕𝑥
) (29) 

 

𝑄𝜃𝑧 = (1 − 𝜆𝛻
2)�̃�66 (𝜑𝜃 +

1

𝑅

𝜕𝑤

𝜕𝜃
−
𝑣

𝑅
) (30) 

 

in which 
 

𝐴11 = ∫
𝐸𝑁𝑐𝑀
1 − 𝑣2

ℎ/2

−ℎ/2

𝑑𝑧,         𝐵11 = ∫
𝐸𝑁𝑐𝑀
1 − 𝑣2

𝑧
ℎ/2

−ℎ/2

𝑑𝑧,        𝐷11 = ∫
𝐸𝑁𝑐𝑀𝑧

2

1 − 𝑣2

ℎ/2

−ℎ/2

𝑑𝑧, 

𝐴12 = ∫
𝑣𝐸𝑁𝑐𝑀
1 − 𝑣2

ℎ/2

−ℎ/2

𝑑𝑧,         𝐵12 = ∫
𝑣𝐸𝑁𝑐𝑀
1 − 𝑣2

𝑧
ℎ/2

−ℎ/2

𝑑𝑧,        𝐷12 = ∫
𝑣𝐸𝑁𝑐𝑀𝑧

2

1 − 𝑣2

ℎ/2

−ℎ/2

𝑑𝑧, 

𝐴66 = ∫
𝐸𝑁𝑐𝑀

2(1 + 𝑣)

ℎ/2

−ℎ/2

𝑑𝑧,     𝐵66 = ∫
𝐸𝑁𝑐𝑀

2(1 + 𝑣)

ℎ/2

−ℎ/2

𝑧𝑑𝑧,     𝐷66 = ∫
𝐸𝑁𝑐𝑀

2(1 + 𝑣)
𝑧2

ℎ/2

−ℎ/2

𝑑𝑧 

�̃�66 = 𝑘𝑠∫
𝐸𝑁𝑐𝑀

2(1 + 𝑣)

ℎ/2

−ℎ/2

𝑑𝑧, 

(31) 

 

The governing equations in terms of the displacements for a crystalline nanoshell can be 

derived by substituting Eqs. (23)-(30), into Eq. (19) as follows 
 

(1 − 𝜆𝛻2) [𝐴11
𝜕2𝑢

𝜕𝑥2
+ 𝐵11

𝜕2𝜑𝑥
𝜕𝑥2

+
𝐴12
𝑅
(
𝜕2𝑣

𝜕𝑥𝜕𝜃
+
𝜕𝑤

𝜕𝑥
) +

𝐵12
𝑅

𝜕2𝜑𝜃
𝜕𝑥𝜕𝜃

 

+
𝐴66
𝑅
(
1

𝑅

𝜕2𝑢

𝜕𝜃2
+
𝜕2𝑣

𝜕𝑥𝜕𝜃
) +

𝐵66
𝑅
(
1

𝑅

𝜕2𝜑𝑥
𝜕𝜃2

+
𝜕2𝜑𝜃
𝜕𝑥𝜕𝜃

)] − 𝐼0
𝜕2𝑢

𝜕𝑡2
− 𝐼1

𝜕2𝜑𝑥
𝜕𝑡2

= 0 

(32a) 

 

(1 − 𝜆𝛻2) [𝐴66 (
1

𝑅

𝜕2𝑢

𝜕𝑥𝜕𝜃
+
𝜕2𝑣

𝜕𝑥2
) + 𝐵66 (

1

𝑅

𝜕2𝜑𝑥
𝜕𝑥𝜕𝜃

+
𝜕2𝜑𝜃
𝜕𝑥2

)
𝐴12
𝑅

𝜕2𝑢

𝜕𝑥𝜕𝜃
 

+
𝐵12
𝑅

𝜕2𝜑𝑥
𝜕𝑥𝜕𝜃

+
𝐴11
𝑅2

(
𝜕2𝑣

𝜕𝜃2
+
𝜕𝑤

𝜕𝜃
) +

𝐵11
𝑅2

𝜕2𝜑𝜃
𝜕𝜃2

+
�̃�66
𝑅
(𝜑𝜃 +

1

𝑅

𝜕𝑤

𝜕𝜃
−
𝑣

𝑅
)] 

(32b) 
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−𝐼0
𝜕2𝑣

𝜕𝑡2
− 𝐼1

𝜕2𝜑𝜃
𝜕𝑡2

= 0 (32b) 

 

(1 − 𝜆𝛻2) [�̃�66 (
𝜕𝜑𝑥
𝜕𝑥

+
𝜕2𝑤

𝜕𝑥2
) +

�̃�66
𝑅
(
𝜕𝜑𝜃
𝜕𝜃

+
1

𝑅

𝜕2𝑤

𝜕𝜃2
−
1

𝑅

𝜕𝑣

𝜕𝜃
) 

−
𝐴12
𝑅

𝜕𝑢

𝜕𝑥
−
𝐵12
𝑅

𝜕𝜑𝑥
𝜕𝑥

−
𝐴11
𝑅2

(
𝜕𝑣

𝜕𝜃
+ 𝑤) −

𝐵11
𝑅2

𝜕𝜑𝜃
𝜕𝜃

] − 𝐼0
𝜕2𝑤

𝜕𝑡2
= 𝑞𝑙𝑜𝑎𝑑 

(32c) 

 

(1 − 𝜆𝛻2) [𝐵11
𝜕2𝑢

𝜕𝑥2
+ 𝐷11

𝜕2𝜑𝑥
𝜕𝑥2

+
𝐵12
𝑅
(
𝜕2𝑣

𝜕𝑥𝜕𝜃
+
𝜕𝑤

𝜕𝑥
) +

𝐷12
𝑅

𝜕2𝜑𝜃
𝜕𝑥𝜕𝜃

 

+
𝐵66
𝑅
(
1

𝑅

𝜕2𝑢

𝜕𝜃2
+
𝜕2𝑣

𝜕𝑥𝜕𝜃
) +

𝐷66
𝑅
(
1

𝑅

𝜕2𝜑𝑥
𝜕𝜃2

+
𝜕2𝜑𝜃
𝜕𝑥𝜕𝜃

) − �̃�66 (𝜑𝑥 +
𝜕𝑤

𝜕𝑥
)] 

−𝐼1
𝜕2𝑢

𝜕𝑡2
− 𝐼2

𝜕2𝜑𝑥
𝜕𝑡2

= 0 

(32d) 

 

(1 − 𝜆𝛻2) [𝐵66 (
1

𝑅

𝜕2𝑢

𝜕𝑥𝜕𝜃
+
𝜕2𝑣

𝜕𝑥2
) + 𝐷66 (

1

𝑅

𝜕2𝜑𝑥
𝜕𝑥𝜕𝜃

+
𝜕2𝜑𝜃
𝜕𝑥2

) 

𝐵12
𝑅

𝜕2𝑢

𝜕𝑥𝜕𝜃
+
𝐷12
𝑅

𝜕2𝜑𝑥
𝜕𝑥𝜕𝜃

+
𝐵11
𝑅2

(
𝜕2𝑣

𝜕𝜃2
+
𝜕𝑤

𝜕𝜃
) +

𝐷11
𝑅2

𝜕2𝜑𝜃
𝜕𝜃2

 

−�̃�66 (𝜑𝜃 +
1

𝑅

𝜕𝑤

𝜕𝜃
−
𝑣

𝑅
)] − 𝐼1

𝜕2𝑣

𝜕𝑡2
− 𝐼2

𝜕2𝜑𝜃
𝜕𝑡2

= 0 

(32e) 

 

 

3. Method of solution 
 

A numerical trend has been employed in the present research based on Galerkin’s approach and 

also the below assumptions for displacement components (Saidi et al. 2016, Merazi et al. 2015) 
 

𝑢 = ∑ ∑𝑈𝑚𝑛
𝜕𝑋𝑚(𝑥)

𝜕𝑥

∞

𝑛=1

𝑐𝑜𝑠(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (33) 

 

𝑣 = ∑ ∑𝑉𝑚𝑛𝑋𝑚(𝑥)

∞

𝑛=1

𝑠𝑖𝑛(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (34) 

 

𝑤 = ∑ ∑𝑊𝑚𝑛𝑋𝑚(𝑥)

∞

𝑛=1

𝑐𝑜𝑠(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (35) 

 

𝜑𝑥 = ∑ ∑𝛷𝑚𝑛
𝜕𝑋𝑚(𝑥)

𝜕𝑥

∞

𝑛=1

𝑐𝑜𝑠(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (36) 

 

𝜑𝜃 = ∑ ∑𝛩𝑚𝑛𝑋𝑚(𝑥)

∞

𝑛=1

𝑠𝑖𝑛(𝑛𝜃) 𝑠𝑖𝑛(𝜔𝑒𝑥𝑡)

∞

𝑚=1

 (37) 
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The maximum values of displacements are denoted by 𝑈𝑚𝑛,𝑉𝑚𝑛,𝑊𝑚𝑛,𝛷𝑚𝑛,𝛩𝑚𝑛 and 𝑋𝑚 is a 

function based on simply-supported the boundary condition. Here are the boundary conditions at x 

= 0, L of nanoshell (Li 2014a, b, Shen et al. 2019) 

 

𝑤 =
𝜕2𝑤

𝜕𝑥2
=
𝜕4𝑤

𝜕𝑥4
= 0 (38) 

 

By putting Eqs. (33)-(37) in Eqs. (32) and taking into account the Galerkin’s concept, we obtain 

 

{[𝐾] + 𝜔𝑒𝑥
2 [𝑀]}

{
 
 

 
 
𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛
𝛷𝑚𝑛
𝛩𝑚𝑛 }

 
 

 
 

=

{
 
 

 
 
0
0
𝑄𝑙𝑜𝑎𝑑
0
0 }

 
 

 
 

 (39) 

 

in which 𝜔𝑒𝑥 is the excitation frequency and 
 

𝑘1,1 = 𝐴11(ϒ31 − 𝜆(ϒ51 −
𝑛2

𝑅
ϒ31)) − 𝑛

2
𝐴66
𝑅2

(ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) (40) 

 

𝑘2,1 = 𝑛 (
𝐴12
𝑅
+
𝐴66
𝑅
)(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)) , 

𝑘1,2 = −𝑛 (
𝐴12
𝑅
+
𝐴66
𝑅
)(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) 

(41) 

 

𝑘3,1 = +
𝐴12
𝑅
(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)) , 

𝑘1,3 = −
𝐴12
𝑅
(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) 

(42) 

 

𝑘4,1 = +𝐵11 (ϒ31 − 𝜆 (ϒ51 −
𝑛2

𝑅
ϒ31)) − 𝑛

2
𝐵66
𝑅2

(ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) , 

𝑘1,4 = 𝐵11(ϒ31 − 𝜆(ϒ51 −
𝑛2

𝑅
ϒ31)) − 𝑛

2
𝐵66
𝑅2

(ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) 

(43) 

 

𝑘5,1 = 𝑛 (
𝐵12
𝑅
+
𝐵66
𝑅
)(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)), (44) 

 

𝑘1,5 = −𝑛 (
𝐵66
𝑅
+
𝐵12
𝑅
)(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) (45) 
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𝑘2,2 = 𝐴66 (ϒ20 − 𝜆 (ϒ40 −
𝑛2

𝑅
ϒ20)) − 𝑛

2
𝐴11
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

            −
�̃�66
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

(46) 

 

𝑘3,2 = −𝑛(
𝐴11
𝑅2

+
�̃�66
𝑅2
)(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)) , 

𝑘2,3 = −𝑛(
�̃�66
𝑅2

+
𝐴11
𝑅2
)(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)) 

(47) 

 

𝑘4,2 = −𝑛 (
𝐵12
𝑅
+
𝐵66
𝑅
)(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) , 

𝑘2,4 = +𝑛 (
𝐵12
𝑅
+
𝐵66
𝑅
)(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)) 

(48) 

 

𝑘5,2 = 𝐵66 (ϒ20 − 𝜆 (ϒ40 −
𝑛2

𝑅
ϒ20)) − 𝑛

2
𝐵11
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

            +
�̃�66
𝑅
(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)), 

(49) 

 

𝑘3,3 = �̃�66 (ϒ20 − 𝜆 (ϒ40 −
𝑛2

𝑅
ϒ20)) − 𝑛

2
�̃�66
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

            −
𝐴11
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

(50) 

 

𝑘4,3 = (�̃�66 −
𝐵12
𝑅
)(ϒ20 − 𝜆 (ϒ40 −

𝑛2

𝑅
ϒ20)) , 

𝑘3,4 = +(
𝐵12
𝑅
− �̃�66)(ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11)) 

(51) 

 

𝑘5,3 = 𝑛(+
�̃�66
𝑅
−
𝐵11
𝑅2
)(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)) , 

𝑘3,5 = −𝑛(+
𝐵11
𝑅2

−
�̃�66
𝑅
)(ϒ00 − 𝜆 (ϒ20 −

𝑛2

𝑅
ϒ00)) 

(52) 

 

𝑘4,4 = +𝐷11 (ϒ31 − 𝜆 (ϒ51 −
𝑛2

𝑅
ϒ31)) − 𝑛

2
𝐷66
𝑅2

(ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) 

             −�̃�66 (ϒ11 − 𝜆 (ϒ31 −
𝑛2

𝑅
ϒ11)) 

(53) 
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𝑘5,4 = +𝑛 (
𝐷12
𝑅
+
𝐷66
𝑅
) (ϒ11 − 𝜆 (ϒ31 −

𝑛2

𝑅
ϒ11) , ) , 

𝑘4,5 = −𝑛(
𝐷66
𝑅
+
𝐷12
𝑅
)(ϒ20 − 𝜆(ϒ40 −

𝑛2

𝑅
ϒ20)) 

(54) 

 

𝑘5,5 = +𝐷66 (ϒ20 − 𝜆 (ϒ40 −
𝑛2

𝑅
ϒ20)) − 𝑛

2
𝐷11
𝑅2

(ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

            −�̃�66 (ϒ00 − 𝜆 (ϒ20 −
𝑛2

𝑅
ϒ00)) 

(55) 

 

𝑚1,1 = +𝐼0ϒ11 (56) 

 

𝑚2,2 = 𝑚3,3 = 𝑚5,5 = +𝐼0ϒ00 (57) 

 

𝑚4,1 = +𝐼1ϒ11, 𝑚4,4 = +𝐼2ϒ11, (58) 

 

𝑚5,2 = 𝑚2,5 = +𝐼1ϒ00 (59) 

 

𝑄𝑙𝑜𝑎𝑑 = 𝑄𝑛ϒ00 (60) 
 

where 
 

ϒ00 = ∫ 𝑋𝑚

𝐿

0

𝑋𝑚𝑑𝑥 (61) 

 

ϒ20 = ∫
𝑑2𝑋𝑚
𝑑𝑥2

𝐿

0

𝑋𝑚𝑑𝑥 (62) 

 

ϒ11 = ∫
𝑑𝑋𝑚
𝑑𝑥

𝐿

0

𝑑𝑋𝑚
𝑑𝑥

𝑑𝑥 (63) 

 

ϒ31 = ∫
𝑑3𝑋𝑚
𝑑𝑥3

𝐿

0

𝑑𝑋𝑚
𝑑𝑥

𝑑𝑥 (64) 

 

ϒ40 = ∫
𝑑4𝑋𝑚
𝑑𝑥4

𝐿

0

𝑋𝑚𝑑𝑥 (65) 

 

For solving static ending problem of the nanoshell, the excitation frequency is set to zero. In the 

following, the normalized parameters and also suitable forms of function Xm have been introduced 

 

𝜛 = 100𝜔𝑛ℎ√
𝜌𝑔

𝐸𝑔
, 𝜆 =

𝑙

𝐿
,          �̄�𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 𝑊

10𝐸𝑐ℎ
3

𝐿4𝑞0
 (66) 
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X𝑚(𝑥) = sin (
𝑚𝜋

𝐿
𝑥) (67) 

 

The dynamical loading acted in the nanoshell may be defined as 

 

𝑞𝑙𝑜𝑎𝑑 = ∑𝑄𝑛𝑠

∞

𝑛=1

𝑖𝑛[
𝑚𝜋

𝑎
𝑥] 𝑐𝑜𝑠[ 𝑛𝜃] 𝑠𝑖𝑛 𝜔𝑒𝑥 𝑡 (68) 

 

𝑄𝑛 =
1

2𝜋𝐿
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𝐿
𝑥] 𝑐𝑜𝑠[ 𝑛𝜃]

𝑥0+0.5𝐿0

𝑥0−0.5𝐿0

𝑞(𝑥)𝑑𝑥𝑑𝜃 

       =
8𝑞0
𝑚𝑛𝜋2

𝑠𝑖𝑛[
𝑚𝜋

𝐿
𝑥0] 𝑠𝑖𝑛[

𝑚𝜋𝐿0
2𝐿

] 

(69) 

 

So that q(x) = q0 defines the magnitude of uniform loading and x0 is load position. 

 

 

4. Discussions on results 
 
The present section is concerned with the study of static/dynamic bending of crystalline porous 

nano-dimension shells taking into account strain gradient impacts. Also, in order to take into 

account small size effects much accurately, the surface energies related to grains and pores have 

been considered. In order to describe the material structure of crystalline shell, a micro-mechanical 

procedure is applied. A numerical trend was implemented in previous section to solve the 

governing equations and derive static and dynamic deflections. Based on strain gradient theory 

(SGT), Table 1 presents the verification of vibrational frequency of a nanoshell based on the data 

provided by Zeighampour and Beni (2014). The scale factor is selected to be l/h = 1 for this 

verification study. Further investigations are done for crystalline nanoshells based on the material 

properties provided in Table 2. 

 

 
Table 1 Comparison of natural frequencies of strain gradient shells (l = h) 

 𝜔11 𝜔22 

h/R 
SGT (Zeighampour 

and Beni 2014) 
present 

SGT (Zeighampour 

and Beni 2014) 
present 

0.02 0.1980 0.1980 0.2795 0.2795 

0.05 0.2110 0.2111 0.3953 0.3954 

 

 
Table 2 Material properties of crystalline nanoshells 

Phase-1 (Interface) Ein = 45.56 GPa, vin = 0.064, ρin = 2004.3 kg/m3 

Phase-2 (Si-nanograins) Eg = 169 GPa, vg = 0.064, ρg = 2300 kg/m3 

Phase-3 (nanovoids) Ev = 0 

Surface coefficients of grains and voids 𝜆𝑠 = -4.488 N/m, 𝜇𝑠 = -2.774 N/m 
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Fig. 3 Impact of grain sizes on dimensionless deflection variation of the nanoshell with respect to 

strain gradient coefficient (R/h = 20, fv = 0.1) 

 

 

 

Fig. 4 Impact of pore percentage on dimensionless deflection variation of the nanoshell with 

respect to strain gradient coefficient (R/h = 20, Rg = 20 nm) 

 

 

Fig. 3 illustrates the influences of the radius value of grains and pores on static bending 

deflection of the crystalline nanoshell with varying strain gradient coefficient (λ). The pore 

percentage value has been selected to be fv = 10%. It is obvious from the figure that the shell 

deflection is reducing with increase of strain gradient coefficient which means that bending 

rigidity of the nanoshell is increasing. Hence, strain gradient coefficient plays an important role in 

static bending behavior of crystalline shells. Another finding form the figure is that increase of 

grain radius may increase the static deflection of the crystalline shell. Actually, the smallest value 

of bending deflection is obtained for Rg = 100 nm for which the crystalline shell is more rigid. So, 

the size of grains inside material will change bending behavior of the crystalline shell. 

Pores percentage effects on static deflection of crystalline nanoshells is presented in Fig. 4 with 

varying strain gradient coefficient at Rg = 20 nm. Again, one can see that regardless of the amount 
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of pores, the shell deflection is reducing with increase of strain gradient coefficient which 

highlights the bending rigidity increment of the nanoshell. However, increase of pores percentage 

will increase the static deflection of crystalline shell. This means that bending rigidity of the 

crystalline shell has been reduced with increasing of pores percentage. 

Fig. 5 explores the effects of radius-to-thickness ratios (R/h) of crystalline nanoshells on static 

deflections at Rg = 20 nm and fv = 0.1. It is obvious form the figure that bending deflection is 

prominently increased by increasing of radius-to-thickness ratio. Such observation is owning to 

lower bending rigidity of the crystalline nanoshell as the radius-to-thickness ratios growth. As a 

conclusion, geometry of the nanoshell has great impact on its static bending behavior. 

Influence of loading area (L0/L) and location (x0/L) on static deflections of crystalline 

nanoshells is plotted in Figs. 6 and 7, respectively. The pore percentage value has been selected to 

be fv = 10%. It is obvious form the figure that as the transverse static load becomes far away from 

 

 

 

Fig. 5 Impact of shell radius on dimensionless deflection variation of the nanoshell with respect 

to strain gradient coefficient (fv = 0.1, Rg = 20 nm) 

 

 

Fig. 6 Impact of dynamic load area on dimensionless deflection variation of the nanoshell with 

respect to strain gradient coefficient (x0 = 0.5L, fv = 0.1, Rg = 20 nm) 
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the shell edges, the static deflections are lower. Actually, when the mechanical load is near the 

shell center, the static deflections growth. Also, as the area of transverse mechanical load is greater, 

the static deflections become larger. 

Fig. 8 examine dynamic bending behavior of the crystalline shell having grain size of Rg = 100 

nm for various values of strain gradient coefficient. Actually, this figure illustrates the dynamic 

deflection versus excitation frequency of dynamical load. According to this figure, it can be seen 

that the dynamic deflection of the crystalline shell is first increasing with increase of excitation 

frequency until a particular value of excitation frequency in which dynamic deflection is infinite. 

Such behavior is due to occurrence of resonance in the nanoshell related to its forced vibrations. 

The frequency in which the resonance occurs is dependent on the value of strain gradient 

coefficient. Actually, the resonance frequency is higher at larger values of strain gradient 

coefficient. 

 

 

Fig. 7 Impact of dynamic load location on dimensionless deflection variation of the nanoshell 

with respect to strain gradient coefficient (L0 = 0.3L, fv = 0.1, Rg = 20 nm) 

 

 

 

Fig. 8 Impact of strain gradient parameter on dimensionless deflection variation of the nanoshell 

with respect to excitation frequency (R/h = 20, Rg = 100 nm) 
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5. Conclusions 
 

The presented article was concerned with the study of static/dynamic bending of crystalline 

porous nano-dimension shells taking into account strain gradient impacts. In order to take into 

account small size effects much accurately, the surface energies related to grains and pores were 

considered. In order to describe the material structure of crystalline shell, a micro-mechanical 

procedure was applied. A numerical trend was implemented to solve the governing equations and 

derive static and dynamic deflections. It was found that the shell deflection was reducing with 

increase of strain gradient coefficient which means that bending rigidity of the nanoshell was 

increasing. Another finding was that increase of grain radius may increase the static deflection of 

the crystalline shell. However, increase of pores percentage increased the static deflection of 

crystalline nanoshell. 
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