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Abstract.  Roll bonding (RB) process of bi-metal laminates as a new noble method of bonding has been widely 

used in the production of bimetal laminates. In the present study, asymmetric roll bonding process as a new noble 

method has been presented to produce Al/Cu bimetallic laminates with the thickness reduction ratios 10%, 20% and 

30% together with mismatch rolling diameter (
R2

R1
) ratio 1:1, 1:1.1 and 1:1.2. ABAQUS as a finite element simulation 

software was used to model the deformation of samples. The main attention in this study focuses on the bonding 

properties of Al/Cu samples. The effect of the 
R2

R1
 ratios was investigated to improve the bond strength. During the 

simulation, for samples produced with 
R2

R1
= 1: 1.2, the vertical plastic strain of samples was reach the maximum 

value with a high quality bond. Moreover, the peeling surface of samples after the peeling test was investigated by the 

scanning electron microscopy (SEM). 
 

Keywords:  asymmetric roll bonding; mismatch roll diameter; peeling test; bimetal laminates; numerical 
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1. Introduction 

 
Nowadays the need of bimetal laminates is growing. A metal or alloy itself cannot has a group 

of desirable properties together. So, bimetal laminates become increasingly popular in various 

fields such as automobile, electrical industries and aerospace due to excellent properties such as 

strength, forming ability, wear and corrosion resistance and economic efficiency. Among various 

cladding techniques, roll bonding (RB) technique has been adopted in various industrial areas 

because of its capability of continuous and efficient production of clad sheets. Roll bonding 

process is used to fabricate many kinds of laminated composites such as Copper (Abbasi and 

Toroghinejad 2010), Copper/Iron (Arabi et al. 2009), Titanium/ Aluminum (Chaudhari and Acoff 

2010), Iron/Aluminum (Kang et al. 2007, Nezhad and Ardakani 2009), Aluminum/Steel (Manesh 

and Shahabi 2009), Aluminum/Zinc (Movahedi et al. 2008), Titanium/Iron (Zhao et al. 2009), 
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Aluminum/Magnesium (Zhang et al. 2010), Steel/Brass (Kavarana et al. 2000), Copper/Silver 

(Ohsaki et al. 2007) and Aluminum/Nickel (Mozaffari et al. 2010) laminated composites. 

Accumulative roll bonding (ARB) process as a severe plastic deformation (SPD) has been 

invented and presented by Saito in 1999. Roll bonding (RB) as the first pass in the ARB process is 

a continuous and cost efficient bonding mechanism of solid welding processes. The asymmetric 

roll bonding is a new noble method and has been the subject of some researches (Yu et al. 2014). 

There are four theories presented about the welding mechanism in the RB. The major mechanism 

theory in the RB process is the film theory (Vini et al. 2017a). Based on this theory, during the 

rolling process, by breaking off the brittle layers of surfaces during the rolling process, the virgin 

material is extruded across the strips due to the rolling pressure. To investigate the FEM aspects of 

the asymmetric rolling process, several finite element method investigations have been done. 

Reyds et al. (2003) investigated the outgoing curvature of bimetallic aluminum-copper sheets 

using FEM method. Tadanobu et al. simulated the ARB process up to three rolling cycles. They 

showed the effect of ARB cycles on the equivalent strain of aluminum layers (Tnoue et al. 2013). 

In this study, the finite element simulation and experimental investigation of the asymmetric RB 

process of bimetallic Al/Cu samples have been presented. The mismatch ratio of lower to upper 

roll diameter (
R2

R1
) was quantitatively analyzed. Also, the finite element (FEM) and experimental 

methods are used to investigate the bond strength of Al/Cu bimetallic laminates produced by the 

asymmetric RB process with various thickness reduction pct. and (
R2

R1
) ratios. Cross section and 

peeling surface of the peeling test specimens were investigated by the scanning electron 

microscopy (SEM). The investigations were used to enhance the bond strength. 

 

 

2. Materials and processing 
 

2.1 Experimental investigations 
 

In the present study, the asymmetrical roll bonding as a new noble technique is used to 

fabricate bimetallic Al/Cu laminates. RBed samples were strips of annealed commercial pure Al 

and Cu with dimensions of 100 × 30 × 1 mm where annealed preciously. The mismatch ratio of 

 

 

 

Fig. 1 Atomic arrangement during the RB process 
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Fig. 2 Schematic illustration of asymmetrical RB process 

 

 

 

Fig. 3 Schematic illustration of the peeling test fixture 

 

 

lower to upper roll diameter (
R2

R1
) was set to 1:1, 1:1.1and 1:1.2. Before the RB process, surface 

brushing of strips to be joined is necessary. As can be seen in Fig. 1, there might be some greases, 

contaminations, dust particles, adsorbed ions and oxides to exist on the metal surfaces. Thus, the 

metal surfaces were degreased in the acetone bath for ten minutes and scratch brushed. According 

to Fig. 2 after fastening one strip of Al and the other of Cu by steel wires, they were roll-bonded 

with thickness ratios 10%, 20% and 30% at 300°C, respectively. 

An Intron tensile testing machine with 100 kg load cell was used to set up the asymmetric RB 

process. Fig. 3 shows the peeling test fixture. According to Fig. 3, the peeling speed in the peeling 

test was 20 mm/min. the peeling test of samples were performed according to ASTM-D903-93 

standard. Also, the average peel strength was (Vini et al. 2017a) 
 

Average bond strength =
 Average load 

Bond width
 

 

2.2 Numerical simulation 
 

Fig. 4 shows a schematic diagram of the asymmetric roll bonding process of Al/Cu bimetallic 

laminates. In the two dimensional FE simulation, the initial thickness of both layers was 1 mm. To 

solve the process, dynamic explicit solver is used. For applying the boundary conditions on the 

rolls, the centers of them were regarded as reference points. Also, as mentioned before in the 

experiments, the thickness reduction ratios selected were 10%, 20% and 30% at 300°C with the 

roll mismatch diameter ratios (
R2

R1
) 1: 1, 1: 1.1 and 1: 1.2, respectively. During the asymmetric roll 
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Fig. 4 FE meshing of the asymmetric roll bonding process 

 

 

Table 1 Mechanical and physical properties of Cu and Al strips 

Elastic modulus (GPa) Poisons ratio Yield strength (MPa) Density (Kg/m3) Strip 

110 0.3 33.2 8900 Cu 

70 0.3 10 2700 Al 

 

 

bonding process, the plane strain condition was regarded for the plastic deformation and rolls were 

defined as rigid. Also, strips have been meshed with CPE4R elements (Vini et al. 2017b). Al and 

Cu layers defined by the isotropic material model. Also, width spread and temperature change 

were neglected during the RB. After doing the mesh sensivity analysis, the geometric models were 

meshed with 1250 square elements. Fig. 4 shows the FE meshing of bimetallic strips for the roll 

bonding process. As mentioned before in the experiment, the rolls rotated with a constant angular 

velocity 40 rpm in the rolling process. Table 1 shows the mechanical and physical properties of Cu 

and Al strips used in the experiment. 
 

 

3. Results and discussions 
 

3.1 FE simulation results 
 

In the FE simulation the dynamic explicit solver in the ABAQUS software is used. The 

problem is 2D modeled and the rolls regarded as rigid bodies. Fig. 5 shows the asymmetrical roll 

bonding process of bimetal Al/Cu laminates. As can be seen in Fig. 5, the difference of the yield 

stress of Al and Cu strips generates a curved product and an asymmetrical strain distribution along 

the thickness of strips. Moreover, Figs. 5(a)-(d) show the vertical strain amount of Al/Cu strips 

after rolling with (
R2

R1
) 1:1 and 1:1.2, for the reduction ratios of 10% and 30%, respectively. 

According to Fig. 5, increasing the (
R2

R1
) ratios increases the radius of the final rolled bimetal 

curvature. 

4



 

 

 

 

 

 

Bonding evolution of bimetallic Al/Cu laminates fabricated by asymmetric roll bonding 

 

Fig. 5 Maximum vertical strain exerted on the bimetal strips with (
R2

R1
) (a, c) 1:1 and (b, d) 1:1.2 

 

 

 

Fig. 6 Maximum rolling pressure of samples with different (
R2

R1
) ratios 

 

 

 

By increasing the roll diameter ratio up to 1.2, the curvature radius attains a maximum value. 

So, increasing the curvature radius generates the higher shear strain at the interface of Al/Cu 

bimetal laminates. The maximum rolling pressure for the roll bonding process of bimetal laminates 

with 10%, 20% and 30% of reduction ratio and with different (
R2

R1
) ratios is shown in Fig. 6. As 

can be seen in Fig. 6, increasing the (
R2

R1
) ratios leads to a lightly increasing rate of the forming 

stress. Thus, shear stresses increase along the rolling length of contact which improves the rolling 

pressure. 
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3.2 Bonding interface 
 

It is useful to investigate the interface of samples which was studied by SEM. Figs. 7(a) and (b) 

show the interface between Al and Cu with different (
R2

R1
) ratios 1:1 and 1:1.2 with the thickness 

reduction ratios 30%. According to Fig. 7(a), by increasing the (
R2

R1
) ratio, the interface gap 

becomes more and clear and the interface contains some residual voids. Also, by increasing the 

(
R2

R1
) ratio up to 1.2, the interface bond quality between Cu and Al component improves greatly. 

Thus, the interface gap vanishes and the microstructural analysis shows an apparent soundness (no 

pores or cracks). According to Fig. 7, the interfaces are all very thin (less than 1 μm) and is 

influenced by three parameters of the roll bonding process, (Ι). Rolling thickness reduction ratio, 

(ΙΙ). Roll bonding temperature and (ΙΙΙ). Mismatch diameter ratios. In fact, the higher mismatch 

diameter ratios favor the bonding process enabling to achieve sound joints (Li et al. 2011). Also, 

the results are good consistent with the analysis of stress state of asymmetric RB shown in Fig. 5. 

Also, Arrows in Fig. 7 show the residual voids generated during the roll bonding process which 

decreases in amount by increasing the rolling pressure by increasing (
R2

R1
) ratios. 

 

 

Fig. 7 SEM microstructure of asymmetric RB processed samples with different (
R2

R1
) ratios: 

(a) 1:1 and (b) 1:1.2 
 

 

 

Fig. 8 Effect of (
R2

R1
) ratio on the average peeling force of samples 
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3.3 Effect of (
𝑅2

𝑅1
) ratios on the peeling strength 

 

Fig. 8 shows the bonding strength of samples in the peeling test. According to Fig. 8, the larger 

(
R2

R1
) ratio causes an improvement in the peeling force and hence the bond strength. Also, 

According to Figs. 5 and 6, FE simulation shows that by increasing the (
R2

R1
) ratio, the rolling 

pressure increases considerably. For example, the average peeling strength of Al/Cu samples 

improves from 8.4 N up to 28.9 N and 38.4 N up to 67.4 N for samples fabricated with (
R2

R1
) ratio 

1:1 and 1:1.2 and with 10% and 30% of thickness reduction ratio registering 244% and 75.5% 

improvement, respectively. According to Fig. 8, this improvement is due to (I): increasing the 

amount of shear deformation at the interface of samples, (II): surface expansion of Al and Cu strips 

normal to the rolling direction and size of crack and finally (III): extrusion of the virgin metal 

during the asymmetrical roll bonding process. 
 

3.4 Effect of (
𝑅2

𝑅1
) ratios on the peeling surface 

 

The microstructure of peeled surface of asymmetric roll bonded Cu/Al clad sheets is shown in 

Fig. 9. According to Fig. 9, increasing the (
R2

R1
) ratio leads to enhancing the size of extrusion of 

the base metal (virgin metal) and hence the bond strength improves. Based on the Figs. 5 and 8, 
 

 

 

Fig. 9 SEM microstructure of peeled surface of samples with thickness reduction ratios (a, b) 10% 

and (c, d) 30%. Also, with (
R2

R1
) ratios as (a) 1:1; (b) 1:1.2; (c) 1:1; and (d) 1:1.2 
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increasing the (
R2

R1
) leads to introducing the plastic strain and the normal rolling pressure which 

generates higher surface expansion of Al and Cu strips. Moreover, based on the film theory, the 

higher is the surface expansion along the rolling direction the more are cracks on the metal 

surfaces which are the extrusion channel. Thus, in Fig. 9, a lot of underlying virgin metal which 

are look like small isolated islands are extruded by the rolling pressure. Finally, increasing the 

(
R2

R1
) ratio leads to the enhancing of number and area of them. 

 

 

4. Conclusions 
 
In the present study, the experimental and finite element investigation of the asymmetric roll 

bonding process of bimetal Al/Cu laminates were successfully conducted. The following results 

may be drawn from the present investigation: 
 

 Due to the asymmetric geometry of the asymmetric RB process of Al/Cu laminates, this 

process affects the final geometry of the rolled sample. 

 Asymmetrical RB creates a noticeable cross shear strain and promotes the Al and Cu 

surfaces to deform. 

 With increasing the (
R2

R1
) ratio from 1:1 up to 1:1.2, the interface bond quality improves and 

the number of visible cracks decreases considerably. Thus, number and area of bonding 

areas which are looks like isolated islands increases considerably. 

 Increasing the strain at the bimetal interface due to increasing the (
R2

R1
) ratio, leads to 

improvement of the bonding quality. 
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