
 

 

 

 

 

 

 

Advances in Materials Research, Vol. 7 No. 2 (2018) 119-136 
DOI: https://doi.org/10.12989/amr.2018.7.2.119 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=amr&subpage=5         ISSN: 2234-0912 (Print), 2234-179X (Online) 
  
 
 

 
 
 
 

Dynamic analysis for anti-symmetric cross-ply and angle-ply 
laminates for simply supported thick hybrid rectangular plates 

 

Mohamed Amine Benhenni
1,2, Tahar Hassaine Daouadji1, Boussad Abbes2, 

Belkacem Adim1, Yuming Li2 and Fazilay Abbes2 

 
1
Laboratoire de Géomatique et Développement Durable, Université Ibn Khaldoun Tiaret Algérie 

2
Laboratoire GRESPI - Campus du Moulin de la Housse BP 1039 - 51687 Reims cedex 2, France 

 
(Received January 10, 2019, Revised March 7, 2019, Accepted March 13, 2019) 

 
Abstract.  In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass 

hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply 

supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton’s principle. 

The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution. 

The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are 

investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of 

composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy 

of the present analytical solution is confirmed by making some comparisons of the present results with those 

available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free 

vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates. 
 

Keywords:  hybrid laminated composite plate; higher-order shear deformation theory; free vibration; 

Navier’s solution 

 
 
1. Introduction 
 

Laminated composite plates are widely used in different engineering and industrial domains, 

thanks to their light weight and sustainability. In order to be able to use this kind of plate in the 

field, Countless studies are done by researchers to study the composition and the behavior of 

composite plate in order to determinate the major factors that impacts this revolutionary structure. 

The classical laminated plate theory (CLPT) was the first hypothesis that seen light by Kirchhoff 

Love. This theory was quickly exceeded due to the negligence of transverse shear effects, which 

limits its appliance to thin plates only. In the case of plates relatively thick, A lot of shear 

deformation theories that takes into account the transverse shear effects have been proposed to 

beat the shortcomings of the classical laminated plate theory, where the first-order shear 

deformation theory is the first alternative proposed by Mindlin (1951) that takes into consideration 

the transverse shear effects in determination of deformation and stresses. Such The first theory for 

laminated isotropic plates was apparently. This theory was generalized to laminated anisotropic 
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plates in Stavski (1965). It was shown in Srnivas (1970) and Whitney (1973), the first-order shear 

deformation theory doesn’t satisfy equilibrium conditions at the top and bottom faces of the plate, 

shear correction factors are required to rectify the unrealistic variation of the shear strain/stress 

through the thickness. In order to overcome the limitations of first order shear deformation, higher-

order shear deformation theories are proposed. Since it involve higher-order terms in Taylor’s 

expansions of the displacements in the thickness coordinate, were developed by Reddy (1984), 

Bouadi (2018), Bouhadra (2018), Hassaine Daouadji (2016b), Benferhat (2016c), Tahar (2013b), 

Bousahla (2016), Chikh (2016), Zenkour (2006), Oktem (2008), Tounsi (2013), Hassaine Daouadji 

(2013), Benferhat (2014), Youcef (2018), Younsi (2018), Zine (2018), Abdelhak (2014), Mantari 

(2012), Abdelaziz (2017), Adim (2016a), Abunalour (2018), Attia (2018), Hassaine Daouadji 

(2016c), Belabed (2018), Beldjillali (2016), Bellifa (2017), Draiche (2016), Elhania (2017), Fourn 

(2018), Kaci (2018), Karami (2018), Sayyad (2014), Swaminathan (2007), Witheney (1972), Yazid 

(2018), Khalifa (2018), Benhenni (2018), Adim (2018), Hassaine Daouadji (2017), Zaoui (2019), 

Tahar (2016b), Hassaine Daouadji (2016a), Bakhada (2018), Bourada (2018), Bourad 2019, 

Zenkour 2004 and Ren (1990), Reddy (1984), Kant and Pandya (1988), and Mohan (1994). A 

good review of these theories for the analysis of laminated composite plates is available in the 

work of Tounsi (2013), Mantari (2012), Hassaine Daouadji (2012) and Benferhat (2016a). A two 

variable refined plate theory using only two unknown functions was developed by Shimpi (2002), 

Hassaine Daouadji (2012), Benachour (2011), Tahar (2012), Lazreg (2014), Hadji (2015a), Tlidji 

(2014), Mazari (2015), Zoubida (2016), Sallai (2015), Menasria (2017), Mokhtar (2018), Tahar 

(2016a), Abdelhak (2016), Tahar (2017), Adim (2016c), Chedad (2017), Lazreg (2016), Tayeb 

(2018), Bensatallah (2018), Rabahi (2018), Benferhat (2018), Rabahi (2017), Hadji (2015b), 

Lazreg (2015), Tahar (2013a), Oktem (2007), Benferhat (2016b), Khelifa (2016) and Tlidji (2014) 

for isotropic plates, and was extended by Shimpi and Patel (2006) for orthotropic plates. The most 

interesting feature of this theory is that it does not require shear correction factor and has strong 

similarities with the classical plate theory in some aspects such as governing equation, boundary 

conditions and moment expressions.  

In addition of the matrix, most composite structures are made of one type of fibers which mean 

that the composite properties depend on this particular type of fibers. If this fiber presents a 

handicap like fragility or low strength, the all structure will be vulnerable to damage or failure. 

Hybrid composite plates are made of more than one type of fibers, generally two types; this feature 

provides various features like reducing manufacturing cost or improving a specific quality of one 

of the fibers such as wear resistance, vibration damping, toughness, strength, …etc. In this paper, a 

refined and simple shear deformation theory of plates is presented and applied to the investigation 

of free vibration behavior of Carbon/Glass hybrid laminated composite plates.  
  

 

2. Material properties 
 

In this study a hybrid laminated carbon/glass epoxy hybrid composite plate is considered, the 

longitudinal and transversal Young modulus are given in Vaseliev (2001) by 

𝐸1 = 𝐸𝑓
1𝑉𝑓

1 + 𝐸𝑓
2𝑉𝑓

2 + 𝐸𝑚𝑉𝑚  (1) 

Where E1 is longitudinal Young’s modulus. 𝐸𝑓
1 , 𝐸𝑓

2 and Em are the Young’s moduli of the first 

type of fibers, the second type of fibers and the matrix respectively. 𝑉𝑓
1

 
, 𝑉𝑓

2  and 𝑉𝑚  are the 

volume fraction of the first type of fibers, the second type of fibers and the matrix, respectively, 
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where: 

𝑉𝑓
1 + 𝑉𝑓

2 + 𝑉𝑚  = 1 and 𝑉𝑓
1 + 𝑉𝑓

2 = V𝑓  (2) 

Assuming that: 

 𝑤𝑓 =  
𝑉𝑓

1

𝑉𝑓
 (3) 

Where wf is the first fiber percentage over the total fiber’s volume fraction. 

By replacing Eq (3) into Eq (1) we obtain: 

 𝐸1 = 𝑉𝑓 𝐸𝑓
1𝑤𝑓 + 𝐸𝑓

2 1 − 𝑤𝑓  + 𝐸𝑚𝑉𝑚  (4) 

Using the same approach, the Poisson’s coefficient can be calculated by 

𝑣12 = 𝑉𝑓 𝑣𝑓
1𝑤𝑓 + 𝑣𝑓

2 1− 𝑤𝑓  + 𝑣𝑚𝑉𝑚  (5) 

The shear modulus of the fibers and the matrix are expressed by 

G𝑓
1 =

𝐸𝑓
1

2(1 + v𝑓
1)

, G𝑓
2 =

𝐸𝑓
2

2(1 + 𝑣𝑓
2)

, G𝑚 =
𝐸𝑚

2(1 + 𝑣𝑚 )
 (6) 

Where G𝑓
1, G𝑓

2 and G𝑚 , are the shear modulus of the first type of fibers, the second type of 

fibers and the matrix, respectively, also the total shear modulus of fibers is given by 

 G𝑓 = G𝑓
1w𝑓 + 𝐺𝑓

2(1− 𝑤𝑓) (7) 

The compressibility modulus of the fibers and the matrix are given as 

𝑘𝑓 =
𝐸𝑓

1𝑤𝑓

3(1− 2v𝑓
1)

+
𝐸𝑓

2(1− 𝑤𝑓)

3(1− 2𝑣𝑓
2)

, 𝑘𝑚 =
𝐸𝑚

3(1− 2𝑣𝑚 )
  (8) 

The lateral compressibility modulus of the fibers and the matrix are given as 

Kf = kf + 
𝐺𝑓

3
, 𝐾𝑚  = km + 

𝐺𝑚

3
 (9) 

The shear moduli of the plate are (G23 is different from G12 = G13) 

𝐺23 = 𝐺𝑚  1 +  
𝑉𝑓

𝐺𝑚

𝐺𝑓−𝐺𝑚
+ 𝑉𝑚

𝑘𝑚+7𝐺𝑚 /3

2𝑘𝑚+8𝐺𝑚 /3

   (10a) 

𝐺12 = 𝐺𝑚
𝐺𝑓 1 + 𝑉𝑓 + 𝐺𝑚 (1− 𝑉𝑓)

𝐺𝑓 1− 𝑉𝑓 + 𝐺𝑚 (1 + 𝑉𝑓)
, 𝐺13 =  𝐺12  (10b) 

The lateral compressibility modulus of the plate is given as 

𝐾𝐿 = 𝐾𝑚 +  
𝑉𝑓

1

𝑘𝑓−𝑘𝑚+(𝐺𝑓−𝐺𝑚 )/3
+

1−𝑉𝑓

𝑘𝑚+(4/3)𝐺𝑚

 (11) 

Using equations from (4) to (11), the transversal Young’s modulus is given as follow 
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𝐸2 =  
2

1

2𝐾𝐿
+  

1

2𝐺23
+  

2(𝑣12 )2

𝐸1

 
(12) 

 

 

3. Refined plate theory for laminated composite plates 
 

3.1 Kinematics 
 

Consider a rectangular plate of total thickness h composed of Np orthotropic layers with the 

coordinate system as shown in Figure 1. 

The displacement field can be obtained according to Adim (2016a) as follows: 

𝑢 𝑥,𝑦, 𝑧, 𝑡 =  u0 𝑥,𝑦, 𝑡 − 𝑧
𝜕𝑤𝑏
𝜕𝑥

− (𝑧 − 𝑧𝑒
−2

𝑧2

ℎ2)
𝜕𝑤𝑠
𝜕𝑥

  

𝑣 𝑥,𝑦, 𝑧, 𝑡 =  𝑣0 𝑥,𝑦, 𝑡 − 𝑧
𝜕𝑤𝑏
𝜕𝑦

− (𝑧 − 𝑧𝑒
−2

𝑧2

ℎ2)
𝜕𝑤𝑠
𝜕𝑦

 

𝑤 𝑥,𝑦, 𝑧, 𝑡 =  𝑤𝑏 𝑥,𝑦, 𝑡 + 𝑤𝑠 𝑥,𝑦, 𝑡  

𝑓 𝑧 = 𝑧 − 𝑧𝑒
 −2

𝑧2

ℎ2  

(13) 

where u0 and v0 are the mid-plane displacements of the plate in the x and y direction, 

respectively; wb and ws are the bending and shear components of transverse displacement, 

respectively, while f(z) represents shape functions determining the distribution of the transverse 

shear strains and stresses along the thickness, This function ensures zero transverse shear stresses 

at the top and bottom surfaces of the plate. The parabolic distributions of transverse shear stresses 

across the plate thickness are taken into account in the analysis by means of present function of the 
 

 

 

Fig. 1 Coordinate system and layer numbering used for a typical laminated plate 
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displacement field assumed. The strains and stresses associated with the displacements can be 

found with details in Adim et al. (2016a). 

 

3.2 Governing equations 
 

The strain energy of the plate can be written as 

 
V

xzxzyzyzxyxyyyxx
V

ijij dVdVU )(
2

1

2

1


 
(14) 

Substituting Eqs. (13) into Eq. (14) and integrating through the thickness of the plate, the strain 

energy of the plate can be rewritten as 
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Where the stress resultants N, M, and Q are defined by 
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(16) 

The kinetic energy of the plate can be written as 
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(17) 

Where ρ is mass of density of the plate and Ii are the inertias defined by 

dzzfzzfzfzzIIIIII

h

h

))]([),(),(,,,1(),,,,,( 22

2/

2/

654321 


   
(18) 

Hamilton’s principle is used here in order to derive the equations of motion appropriate to the 

displacement field and the constitutive equation. The principle can be stated in analytical form as 

 
t

dtTU
0

0)(
 

(19) 
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Substituting Eqs. (15) and (17) into Eq. (19) and integrating the equation by parts, collecting 

the coefficients of δ𝑢 ,  δ𝑣 , δ𝑤𝑏  and  δ𝑤𝑠 , the equations of motion for the laminate plate are 

obtained as follows: 
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(20) 

Equation (20) can be expressed in terms of displacements (u , v ,
bw ,

sw ) by substituting for the 

stress resultants from Eq. (16). For homogeneous laminates, the equations of motion (20) take the 

form 
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3.3 Analytical solutions for an antisymmetric cross-ply hybrid laminates 
 

The Navier solutions can be developed for rectangular laminates with two sets of simply 

supported boundary conditions. For antisymmetric cross-ply and angle-play laminates, the 

following plate stiffnesses are identically zero: 
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ss BB 1122   
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The following boundary conditions for antisymmetric cross-ply and angle-play laminates can 

be written as 
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The boundary conditions in Eq. (23) are satisfied by the following expansions 
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Where Umn, Vmn, Wbmn and Wsmn unknown parameters must be determined,  is the Eigen 

frequency associated with (m, n) the Eigen-mode, and α =  
𝑚𝜋

𝑎
 and 𝛽 =  

𝑛𝜋

𝑏
. 

Substituting Eqs. (22) and (24) into Eq. (21), the Navier solution of antisymmetric cross-ply 

laminates can be determined from equations 
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4. Numerical results and discussion 
 

In this study, a free vibration analysis of an anti-symmetrically cross-ply and angle-ply 

laminated Carbon/Glass Epoxy hybrid composite plates is examined using the present refined 

shear deformation theory. The Navier solution is used in order to determine the natural frequencies 

of laminated hybrid composite plates by solving Eigen value equations. For the verification 

purpose, the results obtained by present model are compared with those of the Reddy, Belkacem 

and exact solution of three-dimensional elasticity. The material properties used in this study are 

cited in Table 1. For convenience, the following dimensionless parameter is used in presenting the 

numerical results in graphical and tabular forms:

   

 

Table 1 The materials properties used in the present research 

Material 1 (Noor 1975) E1 = 40E2 , G12 = G13 = 0,6E2 , G23 = 0,5E2 , 12 = 0,25 

Material 2 (Noor 1973) E1 = 40E2 , G12 = G13 = 0,5E2 , G23 = 0,6E2 , 12 = 0,25 

Carbon’s fiber (Berthelot 1992) Ef = 380,   f = 0.33 

Glass’s fiber (Berthelot 1992) Ef = 86,   f = 0.22 

Epoxy’s matrix (Berthelot 1992) Em = 3.45,   m = 0.3 
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Table 2 Dimensionless fundamental frequencies of antisymmetric cross-ply square laminated plate un

der various degrees of orthotropie (a/h=5, Material 1) 

N° of layers Theory 
E1/E2 

3 10 20 30 40 

(0°/90°)1 

Exact (Noor 1973) 6.2578 6.9845 7.6745 8.1763 8.5625 

Belkacem (2016) 6.2168 6.9881 7.8198 8.5028 9.0841 

Reddy (1984) 6.2169 6.9887 7.8210 8.5050 9.0871 

Present 6.2188 6.9964 7.8379 8.5316 9.1236 

(0°/90°)2 

Exact (Noor 1973) 6.5455 8.1445 9.4055 10.1650 10.6790 

Belkacem (2016) 6.5009 8.1958 9.6273 10.5359 11.1728 

Reddy (1984) 6.5008 8.1954 9.6265 10.5348 11.1716 

Present 6.5012 8.1929 9.6205 10.5268 11.1628 

(0°/90°)3 

Exact (Noor 1973) 6.6100 8.4143 9.8398 10.6950 11.2720 

Belkacem (2016) 6.5558 8.4053 9.9182 10.8546 11.5009 

Reddy (1984) 6.5558 8.4052 9.9181 10.8547 11.5012 

Present 6.5567 8.4065 9.9210 10.8603 11.5102 

(0°/90°)5 

Exact (Noor 1973) 6.6458 8.5625 10.0843 11.0027 11.6245 

Belkacem (2016) 6.5842 8.5126 10.0671 11.0191 11.6721 

Reddy (1984) 6.5842 8.5126 10.0674 11.0197 11.6730 

Present 6.5854 8.5156 10.0740 11.0309 11.6893 

(0°/90°)8 Present 6.5952 8.5529 10.1263 11.0894 11.7509 

(0°/90°)16 Present 6.6000 8.5708 10.1515 11.1175 11.7806 

(0°/90°)32 Present 6.6012 8.5753 10.1577 11.1245 11.7880 

 

Table 3 The volume fraction Vf effect on the natural frequencies variation of a cross-ply antisymm

etric (0°/90°)2 hybrid square laminated composite plate 

wf (%) Vf 

Carbon Glass 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

0 100 7.3744 7.4649 7.5199 7.5423 7.5341 7.4967 7.4308 7.3367 7.2138 

10 90 7.8672 7.9785 8.0454 8.0717 8.0600 8.0121 7.9287 7.8098 7.6545 

20 80 8.3196 8.4489 8.5262 8.5563 8.5423 8.4862 8.3887 8.2496 8.0675 

30 70 8.7373 8.8822 8.9685 9.0020 8.9862 8.9233 8.8139 8.6577 8.4526 

40 60 9.1254 9.2838 9.3781 9.4146 9.3974 9.3287 9.2092 9.0381 8.8129 

50 50 9.4879 9.6582 9.7595 9.7988 9.7804 9.7068 9.5785 9.3943 9.1514 

60 40 9.8280 10.0089 10.1164 10.1582 10.1389 10.0610 9.9250 9.7293 9.4706 

70 30 10.1482 10.3386 10.4518 10.4958 10.4758 10.3943 10.2514 10.0456 9.7728 

80 20 10.4509 10.6498 10.7679 10.8141 10.7936 10.7088 10.5600 10.3451 10.0597 

90 10 10.7377 10.9442 11.0669 11.1151 11.0941 11.0066 10.8525 10.6296 10.3328 

100 0 11.0101 11.2236 11.3504 11.4004 11.3791 11.2892 11.1305 10.9004 10.5933 

Unless cited otherwise the following parameters are fixed as: a/h=10, a/b=1, Vf =0.5. 
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Fig. 2 The volume fraction Vf effect on the natural 

frequencies variation of a cross-ply antisymmetric 

(0°/90°)2 hybrid square laminated composite plate 

Fig. 3 Dimensionless natural frequency of an 

antisymmetric cross-ply (0/90)5 hybrid square 

laminated composite plate under various a/h ratios 
 

Table 4 Dimensionless natural frequency of an antisymmetric cross-ply (0/90)5 hybrid square laminated 

composite plate under various a/h ratios 

wf (%) a/h 

Carbon Glass 5 10 20 50 100 

0 100 6.7741 7.7531 8.0850 8.1872 8.2022 

10 90 7.1787 8.3525 8.7642 8.8926 8.9115 

20 80 7.5315 8.8984 9.3935 9.5498 9.5729 

30 70 7.8406 9.3978 9.9793 10.1650 10.1925 

40 60 8.1138 9.8577 10.5280 10.7447 10.7769 

50 50 8.3572 10.2838 11.0451 11.2940 11.3311 

60 40 8.5759 10.6807 11.5347 11.8172 11.8594 

70 30 8.7734 11.0519 12.0003 12.3175 12.3651 

80 20 8.9531 11.4005 12.4446 12.7976 12.8507 

90 10 9.1172 11.7290 12.8697 13.2596 13.3185 

100 0 9.2679 12.0394 13.2777 13.7054 13.7703 

 

 

The dimensionless fundamental frequencies of anti-symmetrically laminated cross-ply (0/90)n 

plates obtained by using different shear deformation theories are shown in Table 2 for various 

values of modules ratios E1/E2. It can be seen that, in general, the present model gives more 

accurate results in predicting the natural frequencies than the Belkacem (2016), Reddy (1984) and 

the three-dimensional elasticity solution given in Noor (1973). It should be noted that the unknown 

functions in present and Belkacem (2016) models are four; while there are five unknown functions 

in the Reddy’s model (1984). It can be concluded that the present model is not only accurate, but 

also simple in predicting the natural frequencies of laminated composite plates. 

The Table 3 and Figure 2 presents the dimensionless fundamental frequency variation of anti-

symmetric cross-ply (0/90)2 Carbon/Glass hybrid laminated composite plate using the present 

high-order shear deformation theory. It is clear that the natural frequencies increase with 

augmentation of the volume fraction Vf until reaching its peak (at Vf = 0.45), this point represents 

the optimum percentage of fibers needed to reach the maximum natural frequencies. Also, the 

fibers mixture vary gradually from full Glass (wf =0%) to full Carbon (wf =100%), where the 

combination of this two types of fibers gives rise to a hybrid composite plate that respond to 

different criteria’s (resistance, strength, economic…). 
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Table 5 Dimensionless natural frequency of an antisymmetric cross-ply (0/90)2 hybrid rectangular laminated 

composite plate under aspect ratio a/b 

a/h 
wf (%) a/b 

Carbon Glass 0.2 0.6 0.8 1 1.2 1.6 2 

10 

0 100 4.6874 5.4482 6.2990 7.5341 9.1481 13.3668 18.6252 

10 90 5.1321 5.8800 6.7574 8.0600 9.7819 14.2970 19.8894 

20 80 5.5299 6.2738 7.1778 8.5423 10.3596 15.1278 20.9927 

30 70 5.8902 6.6352 7.5654 8.9862 10.8884 15.8748 21.9644 

40 60 6.2200 6.9696 7.9249 9.3974 11.3757 16.5518 22.8286 

50 50 6.5244 7.2810 8.2603 9.7804 11.8273 17.1698 23.6041 

60 40 6.8073 7.5725 8.5748 10.1389 12.2481 17.7373 24.3049 

70 30 7.0715 7.8465 8.8709 10.4758 12.6416 18.2611 24.9422 

80 20 7.3194 8.1052 9.1507 10.7936 13.0112 18.7466 25.5250 

90 10 7.5530 8.3501 9.4158 11.0941 13.3593 19.1985 26.0606 

100 0 7.7737 8.5827 9.6677 11.3791 13.6881 19.6205 26.5547 

20 

0 100 4.8262 5.6194 6.5214 7.8490 9.6137 14.3796 20.6250 

10 90 5.3138 6.0943 7.0307 8.4443 10.3501 15.5404 22.3488 

20 80 5.7570 6.5331 7.5041 8.9983 11.0336 16.6065 23.9133 

30 70 6.1648 6.9414 7.9465 9.5163 11.6711 17.5921 25.3452 

40 60 6.5440 7.3242 8.3625 10.0035 12.2694 18.5101 26.6667 

50 50 6.8994 7.6854 8.7560 10.4643 12.8341 19.3705 27.8949 

60 40 7.2347 8.0280 9.1298 10.9020 13.3696 20.1811 29.0429 

70 30 7.5525 8.3543 9.4864 11.3194 13.8793 20.9479 30.1208 

80 20 7.8551 8.6661 9.8277 11.7187 14.3661 21.6761 31.1371 

90 10 8.1422 8.9652 10.1552 12.1019 14.8324 22.3697 32.0985 

100 0 8.4213 9.2526 10.4704 12.4704 15.2801 23.0320 33.0105 

 

 

  

Fig. 4 The stacking sequence effect on the 

dimensionless natural frequency of an 

antisymmetric cross-ply (0/90)n hybrid square 

laminated composite plate 

Fig. 5 Dimensionless natural frequency of an 

antisymmetric cross-ply (0/90)2 hybrid rectangular 

laminated composite plate under aspect ratio a/b 
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Table 6 The stacking sequence effect on the dimensionless natural frequency of an antisymmetric cross-ply 

(0/90)n hybrid square laminated composite plate 

Number of 

layers 
a/h 100 % Glass 

25 % Carbon 

75 % Glass 

50 % Carbon 

50 % Glass 

75 % Carbon 

25 % Glass 
100 % Carbon 

(0/90) 1 

5 6.0083 6.4154 6.7702 7.0883 7.3779 

10 6.7136 7.2455 7.7114 8.1359 8.5298 

20 6.9443 7.5251 8.0356 8.5039 8.9417 

50 7.0144 7.6110 8.1360 8.6188 9.0713 

100 7.0246 7.6235 8.1508 8.6357 9.0904 

(0/90) 2 

5 6.6014 7.4144 8.0208 8.4923 8.8714 

10 7.5341 8.7687 9.7804 10.6370 11.3791 

20 7.8486 9.2604 10.4624 11.5184 12.4665 

50 7.9453 9.4158 10.6836 11.8115 12.8370 

100 7.9595 9.4387 10.7165 11.8554 12.8929 

(0/90) 3 

5 6.7154 7.5972 8.2433 8.7389 9.1333 

10 7.6794 9.0247 10.1158 11.0317 11.8198 

20 8.0057 9.5476 10.8512 11.9904 13.0088 

50 8.1061 9.7133 11.0911 12.3116 13.4177 

100 8.1208 9.7378 11.1268 12.3598 13.4796 

(0/90) 4 

5 6.7555 7.6613 8.3212 8.8253 9.2253 

10 7.7298 9.1129 10.2309 11.1668 11.9703 

20 8.0600 9.6461 10.9841 12.1512 13.1932 

50 8.1616 9.8154 11.2302 12.4819 13.6150 

100 8.1765 9.8404 11.2669 12.5315 13.6790 

(0/90) 5 

5 6.7741 7.6910 8.3572 8.8653 9.2679 

10 7.7531 9.1535 10.2838 11.2289 12.0394 

20 8.0850 9.6914 11.0451 12.2250 13.2777 

50 8.1872 9.8622 11.2940 12.5599 13.7054 

100 8.2022 9.8875 11.3311 12.6102 13.7703 

(0/90) 8 

5 6.7943 7.7231 8.3963 8.9087 9.3142 

10 7.7782 9.1973 10.3409 11.2957 12.1139 

20 8.1120 9.7402 11.1108 12.3044 13.3687 

50 8.2149 9.9128 11.3628 12.6439 13.8027 

100 8.2299 9.9383 11.4003 13.6949 13.8685 

(0/90) 16 

5 6.8040 7.7386 8.4151 8.9296 9.3364 

10 7.7903 9.2183 10.3682 11.3278 12.1495 

20 8.1250 9.7636 11.1422 12.3424 13.4122 

50 8.2281 9.9369 11.3957 12.6841 13.8492 

100 8.2432 9.9626 11.4335 12.7355 13.9155 
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The thickness variation a/h and the aspect ratio a/b effects on the dimensionless fundamental 

frequency are shown in Tables (4 and 5) and Figures (3 and 5), where the increase of this two 

ratios conduct to the direct increase of the fundamental frequencies for all types of composite 

plates (full carbon, full glass and hybrid plate), it means that the plate geometry has a very 

important impact on the stability of the hybrid composite plate. 

The Table 6 and Figures 4 show the variation if dimensionless fundamental frequency of an 

anti-symmetric cross-ply (0/90)n hybrid composite laminated plate for different values of 

thickness ratio a/h, fibers mixture wf and number of layers. Where the fundamental frequency 

increase as the number of layers used increases, which is logic because the increase of number of 

layers conduct to increasing the rigidity of the plate and by consequence the frequencies rises. 

In the last example (Table 7) a different combinations of fibers are used in hybrid composite 

plate, the fundamental frequency are minimum for the case of Kevlar/Glass and maximal for the 

case of Kevlar/Carbon, which is logic since this last combination gives the better features of the 

three combination, when the carbon fibers gives rigidity to the plate and the Kevlar fibers assure 

the vibration damping.  

 

 

5. Conclusions 
 

In this study, a refined shear deformation theory has been successfully used for the free 

vibration of simply supported antisymmetric cross-ply hybrid laminated composite plates. The 

present theory allows for parabolic variation in terms of the transverse shear strains across the 

plate thickness and satisfies the zero shear stress on the top and bottom surfaces of the plate 

without needing shear correction factors. The equations of motion were developed using 

Hamilton’s principle. Where the accuracy and efficiency of the present theory has been 

demonstrated for free vibration stability of anti-symmetric cross-ply hybrid laminated composite 

plate. 

From this research, we conclude as follows: 

• The natural frequencies predicted by the present theory using just four unknowns are almost 

identical to those found by the shear deformation theories of five unknowns and to the three-

dimensional elasticity solution. 

• The present theory is applicable for different combinations of materials in terms of predicting 

the natural frequencies. 

• The material combinations affect significantly the fundamental frequencies, where the 

mixture of Carbon and Kevlar gives the maximum frequencies. 

Finally, it is up to the researchers and manufacturer to choose wisely the material combinations 

that gives rise to a hybrid composite plate that offers rigidity, strength and most of all less greedy 

in terms of cost. 
 

 

Acknowledgments 
 

This research was supported by the French Ministry of Foreign Affairs and International 

Development (MAEDI) and Ministry of National Education, Higher Education and Research 

(MENESR) and by the Algerian Ministry of Higher Education and Scientific Research under 

Grant No. PHC Tassili 17MDU992. Their support is greatly appreciated. 

131



 

 

 

 

 

 

Mohamed Amine Benhenni et al. 

References 
 

Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), 

“An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM 

sandwich plates with various boundary conditions”, Steel Compos. Struct., 25(6), 693-704.  

Abdelhak, Z., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), “Thermal buckling of 

functionally graded plates using a n-order four variable refined theory”, Adv. Mater. Res., 4(1), 31-44. 

Abdelhak, Z., Hadji, L., Khelifa, Z., Hassaine Daouadji, T. and Adda Bedia, E.A. (2016), “Analysis of 

buckling response of functionally graded sandwich plates using a refined shear deformation theory”, 

Wind Struct., 22(3), 291-305. 

Abderezak, R., Hassaine Daouadji, T., Abbes, B., Rabia, B., Belkacem, A. and Abbes, F. (2017), “Elastic 

analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage”, 

Adv. Mater. Res., 6(3), 257-278. 

Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), “A novel quasi-3D trigonometric 

plate theory for free vibration analysis of advanced composite plates”, Compos. Struct., 184, 688-697.  

Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), “A refined four variable 

plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations”, Struct. 

Eng. Mech.., 65(4), 453-464.  

Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), 

“Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation”, 

Wind Struct., 27(5), 311-324. 

Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), “A new 3-unknown 

hyperbolic shear deformation theory for vibration of functionally graded sandwich plate”, Earthq. Struct., 

14(2), 103-115.  

Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), “Hygro-thermo-mechanical bending of S-FGM plates 

resting on variable elastic foundations using a four-variable trigonometric plate theory”, Smart Struct. 

Syst., 18(4), 755-786. 

Belkacem, A. and Hassaine Daouadji, T. (2016c), “Effects of thickness stretching in FGM plates using a 

quasi-3D higher order shear deformation theory”, Adv. Mater. Res., 5(4), 223-244. 

Belkacem, A., Hassaine Daouadji, T. and Rabahi, A. (2016b), “A simple higher order shear deformation 

theory for bending, buckling, and dynamic of laminated composite plates”, J. Adv. Struct. Eng, 8, 103-

117. 

Belkacem, A., Hassaine Daouadji, T., Abbas, B. and Rabahi, A. (2016), “Buckling and free vibration analysis 

of laminated composite plates using an efficient and simple higher order shear deformation theory”, J. 

Mech. Industry, 17(5), 512. 

Belkacem, A., Hassaine Daouadji, T., Benferha, R. and Hadji, L. (2016a), “An efficient and simple higher 

order shear deformation theory for bending analysis of composite plates under various boundary 

conditions”, Earthq. Struct., 11(1), 63-82. 

Belkacem, A., Hassaine Daouadji, T., Rabia, B. and Hadji, L. (2016), “An efficient and simple higher order 

shear deformation theory for bending analysis of composite plates under various boundary conditions”, 

Earthq. Struct., 11(1), 63-82.  

Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), 

“Mechanical buckling analysis of hybrid laminated composite plates under different boundary 

conditions”, Struct. Eng. Mech., 66(6), 761-769. 

Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), “An efficient and simple four 

variable refined plate theory for buckling analysis of functionally graded plates”, Steel Compos. Struct., 

25(3), 257-270.  

Benachour, A., Hassaine Daouadji, T., Ait atman, H., Tounsi, A, Meftah, S.A. (2011), “A four variable 

refined plate theory for free vibrations of functionally graded plates with arbitrary gradient using”, 

Compos. Part B Eng., 42(6), 1386-1394. 

Benferhat, R., Hassaine Daouadji, T. and Mansour, M.S. (2014), “A higher order shear deformation model 

132

http://technopress.kaist.ac.kr/?page=search2&mode=result#1


 

 

 

 

 

 

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates… 

for bending analysis of functionally graded plates”, Transact. Indian Inst. Metal, 68(1), 7-16. 

Benhenni, M., Hassaine Daouadji, T., Abbes, B., LI, Y.M. and Abbes, F. (2018), “Analytical and numerical 

results for free vibration of laminated composites plates”, J. Chem. Molecul. Eng., 12(6), 300-304. 

Bensattalah, T., Bouakkaz, K., Zidour, M. and Hassaine Daouadji, T. (2018), “Critical buckling loads of 

carbon nanotube embedded in Kerr’s medium”, Adv. Nano Res., 6(4), 339-356. 

Bensattalah, T., Zidour, M., Meziane, M.A.A., Hassaine Daouadji, T. and Tounsi, A. (2018), “Critical 

buckling load of carbon nanotube with non-local Timoshenko beam using the differential transform 

method”, Int. J. Civil Environ. Eng., 12(6). 

Berthelot, J.M. (1992), Matériaux Composites: Comportement Mécanique et Analyse Des Structures, Tec & 

Doc Lavoisier, Paris. 

Bouadi, A., Bousahla, A. A., Houari, M. S. A., Heireche, H. and Tounsi, A. (2018), “A new nonlocal HSDT 

for analysis of stability of single layer graphene sheet”, Adv. Nano Res., 6(2), 147-162. 

Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), “Improved HSDT 

accounting for effect of thickness stretching in advanced composite plates”, Struct. Eng. Mech.., 66(1), 

61-73.  

Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), “A novel refined plate 

theory for stability analysis of hybrid and symmetric S-FGM plates”, Struct. Eng. Mech.., 68(6), 661-675.  

Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), “Dynamic 

investigation of porous functionally graded beam using a sinusoidal shear deformation theory”, Wind 

Struct., 28(1), 19-30. 

Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), “On thermal stability of plates with 

functionally graded coefficient of thermal expansion”, Struct. Eng. Mech., 60(2), 313-335.  

Chedad, A., Hassaine Daouadji, T., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2017), 

“A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC 

beams”, Adv. Mater. Res., 6(4), 317-328. 

Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), “Thermal buckling analysis of cross-ply 

laminated plates using a simplified HSDT”, Smart Struct. Syst., 19(3), 289-297.  

Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), “A refined theory with stretching effect for the flexure 

analysis of laminated composite plates”, Geomech. Eng.., 11(5), 671-690.  

El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), “A simple analytical 

approach for thermal buckling of thick functionally graded sandwich plates”, Struct. Eng. Mech.., 63(5), 

585-595. 

Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), “A novel 

four variable refined plate theory for wave propagation in functionally graded material plates”, Steel 

Compos. Struct., 27(1), 109-122. 

Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015b), “A refined exponential shear deformation 

theory for free vibration of FGM beam with porosities”, Geomech. Eng., 9(3), 361-372. 

Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2016), “Dynamic behavior of FGM beam using a 

new first shear deformation theory”, Earthq. Struct., 10(2), 451-461. 

Hadji, L., Hassaine Daouadji, T., Tounsi, A. and Adda Bedia, E.A., (2015a), “A n-order refined theory for 

bending and free vibration of functionally graded beams”, Struct. Eng. Mech.., 54(5), 923-936. 

Hadji, L., Hassaine Daouadji, T., Tounsi, A. and Adda bedia, E.A. (2014), “A higher order shear deformation 

theory for static and free vibration of FGM beam”, Steel Compos. Struct., 16(5), 507-519. 

Hadji, L., Khalifa, Z., Hassaine Daouadji, T., Tounsi, A. and Adda bedia, E.A. (2015), “Static bending and 

free vibration of FGM beam using an exponential shear deformation theory”, Coupled Syst. Mech., 4(1), 

99-114. 

Hassaine Daouadj, T. (2017), “Analytical and numerical modeling of interfacial stresses in beams bonded 

with a thin plate”, Adv. Comput. Design, 2(1), 57-69. 

Hassaine Daouadji, T. and Adim, B. (2016a), “Theoretical analysis of composite beams under uniformly 

distributed load”, Adv. Mater. Res., 5(1), 1-9. 

Hassaine Daouadji, T. and Belkacem, A. (2016c), “An analytical approach for buckling of functionally 

133

http://link.springer.com/journal/12666/68/1/page/1
http://technopress.kaist.ac.kr/?page=search2&mode=result#1
http://technopress.kaist.ac.kr/?page=search2&mode=result#1


 

 

 

 

 

 

Mohamed Amine Benhenni et al. 

graded plates” Adv. Mater. Res., 5(3), 141-169. 

Hassaine Daouadji, T. and Belkacem, A. (2017), “Mechanical behaviour of FGM sandwich plates using a 

quasi-3Dhigher order shear and normal deformation theory”, Struct. Eng. Mech., 61(1), 49-63. 

Hassaine Daouadji, T. and Hadji, L. (2015), “Analytical solution of nonlinear cylindrical bending for 

functionally graded plates”, Geomech. Eng., 9(5), 631-644. 

Hassaine Daouadji, T. and Tounsi, A. and Adda Bedia, E.A. (2013), “Analytical solution for bending analysis 

of functionally graded plates”, Scientia Iranica, Transactions B Mech. Eng., 20, 516-523. 

Hassaine Daouadji, T., Abdelaziz, H.H., Tounsi, A. and Adda bedia, E.A. (2012), “A new hyperbolic shear 

deformation theory for bending analysis of functionally graded plates”, Modelling Simul. Eng., 10, 1-10. 

Hassaine Daouadji, T., Abdelaziz, H.H., Tounsi, A. and Adda bedia, E.A. (2013a), “Elasticity solution of a 

Cantilever functionally graded beam”, Appl. Compos. Mater., 20(1), 1-15. 

Hassaine Daouadji, T., Belkacem, A. and Benferha, R. (2016a), “Bending analysis of an imperfect FGM 

plates under hygro-thermo-mechanical loading with analytical validation”, Adv. Mater. Res., 5(1), 35-53. 

Hassaine Daouadji, T., Benferha, R. and Belkacem, A. (2016b), “A novel higher order shear deformation 

theory based on the neutral surface concept of FGM plate under transverse load”, Adv. Mater. Res., 5(2), 

107-120. 

Hassaine Daouadji, T., Benferha, R. and Belkacem, A. (2016b), “Bending analysis of an imperfect advanced 

composite plates resting on the elastic foundations”, Coupled Syst. Mech., 5(3), 269-285. 

Hassaine Daouadji, T., Tounsi, A, Hadji, L., Abdelaziz, H.H. and Adda bedia, E.A. (2012), “A theoretical 

analysis for static and dynamic behavior of functionally graded plates”, Mater. Phys. Mech., 14, 110-128. 

Hassaine Daouadji, T., Tounsi, A. and Adda bedia, E.A. (2013b), “A new higher order shear deformation 

model for static behavior of functionally graded plates”, Adv. Appl. Math. Mech., 5(3), 351-364.  

Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), “Post-buckling analysis of 

shear-deformable composite beams using a novel simple two-unknown beam theory”, Struct. Eng. Mech., 

65(5), 621-631 

Kant, T. and Pandya, B.N. (1988), “A simple finite element formulation of a higher-order theory for 

unsymmetrically laminated composite plates”, Compos. Struct., 9(3), 215-264. 

Karama, M., Afaq, K.S. and Mistou, S. (2003), “Mechanical behavior of laminated composite beam by the 

new multi-layered laminated composite structures model with transverse shear stress continuity”, Solids 

Struct., 40, 1525-1546. 

Karama, M., Afaq, K.S. and Mistou, S. (2009), “A new theory for laminated composite plates”, Proc. 

IMechE, 223(2), 53-62. 

Karami, B., Janghorban, M. and Tounsi, A. (2018), “Variational approach for wave dispersion in anisotropic 

doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory”, Thin-

Walled Struct., 129, 251-264. 

Khalifa, Z., Hadji, L., Hassaine Daouadji, T. and Bourada, M. (2018), “Buckling response with stretching 

effect of carbon nanotube-reinforced composite beams resting on elastic foundation”, Struct. Eng. Mech., 

67(2), 125-130. 

Khalifa, Z., Hassaine Daouadji, T., Hadji, L. Tounsi, A. and Adda Bedia, E.A. (2016), “A new higher order 

shear deformation model of functionally graded beams based on neutral surface position”, Transact. 

Indian Inst. Metal, 69(3), 683-691. 

Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), “A new trigonometric shear deformation theory for 

isotropic, laminated composite and sandwich plates”, Int. J. of Solid. Struct., 49(1), 43-53. 

Mazari, M., Hadji, L., Hassaine Daouadji, T., Tounsi, A. and Adda bedia, E.A., (2015), “A new hyperbolic 

shear deformation plate theory for static analysis of FGM plate based on neutral surface position”, 

Geomech. Eng., 8(3), 305-321. 

Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), “A new and simple 

HSDT for thermal stability analysis of FG sandwich plates”, Steel Compos. Struct., 25(2), 157-175. 

Mindlin, R.D. (1951), “Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates”, 

J. Appl. Mech., 18, 31-38. 

Mohan, P.R., Naganarayana, B.P. and Prathap, G. (1994), “Consistent and variationally correct finite 

134

http://technopress.kaist.ac.kr/content/?page=article&journal=amr&volume=5&num=2&ordernum=4
http://technopress.kaist.ac.kr/content/?page=article&journal=amr&volume=5&num=2&ordernum=4
http://technopress.kaist.ac.kr/content/?page=article&journal=amr&volume=5&num=2&ordernum=4


 

 

 

 

 

 

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates… 

elements for higher-order laminated plate theory”, Compos. Struct., 29(4), 445-456. 

Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R (2018), “A novel 

shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity 

theory”, Smart Struct. Syst., 21(4), 397-405.  

Noor, A.K. (1975), “Stability of multilayered composite plate”, Fibre Sci. Technol., 8, 81-89. 

Noor, K. (1973), “Free vibrations of multilayered composite plates”, AIAA J., 11(7), 1038-1039. 

Oktem, A.S. and Chaudhuri, R. (2007), “A Fourier solution to a thick cross-ply Levy type clamped plate 

problem”, Compos. Struct., 79(4), 481-492. 

Oktem, A.S. and Chaudhuri, R. (2008), “Boundary discontinuous Fourier analysis of thick cross-ply clamped 

plates”, Compos. Struct., 82(4), 539-548. 

Rabahi, A., Hassaine Daouadji, T., Rabia, B. and Adim, B. (2018), “Nonlinear analysis of damaged RC 

beams strengthened with glass fiber reinforced polymer plate under symmetric loads”, Earthq. Struct., 

15(2), 113-122. 

Rabia, B., Hassaine Daouadji, T. and Mansour, M.S. (2016a), “Free vibration analysis of FG plates resting 

on the elastic foundation and based on the neutral surface concept using higher order shear deformation 

theory”, Comptes Rendus Mecanique, 344(9), 631-641. 

Rabia, B., Hassaine Daouadji, T., Hadji, L. and Mansour, M.S. (2016b), “Static analysis of the FGM plate 

with porosities”, Steel Compos. Struct., 21(1), 123-136. 

Rabia, B., Hassaine Daouadji, T., Mansour, M.S. and Hadji, L. (2016c), “Effect of porosity on the bending 

and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations”, 

Earthq. Struct., 10(5), 1429-1449. 

Rabia, B., Rabahi, A., Hassaine Daouadji, T., Abbes, B., Adim, B. and Abbes, F. (2018), “Analytical analysis 

of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying 

properties plate”, Adv. Mater. Res., 7(1), 29-44. 

Reddy, J.N. (1984), “A simple higher-order theory for laminated composite plates”, J. Appl Mech, Trans 

ASME, 51, 745-752. 

Ren, J.G. (1990), “Bending, vibration and buckling of laminated plates”, Handbook of Ceramics and 

Composites, Marcel Dekker, New York, U.S.A., 413-450. 

Sallai, B., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), “Analytical solution for bending 

analysis of functionally graded beam”, Steel Compos. Struct., 19(4), 829-841. 

Sayyad, A.S. and Ghugal, Y.M. (2014), “Flexure of cross-ply laminated plates using equivalent single layer 

trigonometric shear deformation theory”, Struct. Eng. Mech., 51(5), 867-891· 

Srinivas, S. and Rao, A.K. (1970), “Bending, vibration and buckling of simply supported thick orthotropic 

rectangular plates and laminates”, Int. J. Solids Struct., 6, 1463-1481. 

Stavski, Y. (1965), “On the theory of symmetrically heterogeneous plates having the same thickness 

variation of the elastic moduli”, Topics in Applied Mechanics, Elsevier, New York, U.S.A. 

Swaminathan, K. and Patil, S.S. (2007), “Higher order refined computational model with 12 degrees of 

freedom for the stress analysis of antisymmetric angle-ply plates: Analytical solutions”, Compos, Struct., 

80(4), 595-608.  

Tlidji, Y., Hassaine Daouadji, T., Hadji, L., Tounsi, A. and Adda bedia, E.A. (2014), “Elasticity solution for 

bending response of functionally graded sandwich plates under thermo mechanical loading”, J. Thermal 

Stress, 37, 852-869. 

Tounsi, A., Sid Ahmed, H., Benyoucef, S. and Adda Bedia, E.A. (2013), “A refined trigonometric shear 

deformation theory for thermoelastic bending of functionally graded sandwich plates”, Aerosp. Sci. Tech., 

24, 209-220. 

Whiteney, J.M. (1972), “Stress analysis of thick laminated composite and sandwich plates”, J. Compos. 

Mater., 6(3), 426-440. 

Whitney, J.M. and Sun, C.T. (1973), “A higher-order theory for extensional motion of laminated composites”, 

J. Sound Vib., 30(1), 85-97. 

Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), “A novel nonlocal refined 

plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium”, 

135

http://technopress.kaist.ac.kr/?page=search2&mode=result#1
https://www.researchgate.net/journal/1225-4568_Structural_Engineering_Mechanics
https://www.sciencedirect.com/science/article/pii/S0263822306002959?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0263822306002959?via%3Dihub#!
https://www.sciencedirect.com/science/journal/02638223/80/4
https://journals.sagepub.com/home/jcm
https://journals.sagepub.com/home/jcm


 

 

 

 

 

 

Mohamed Amine Benhenni et al. 

Smart Struct. Syst., 21(1), 15-25. 

Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), “Dynamic analysis of nanoscale 

beams including surface stress effects”, Smart Struct. Syst., 21(1), 65-74. 

Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), “Novel quasi-3D and 2D 

shear deformation theories for bending and free vibration analysis of FGM plates”, Geomech. Eng., 14(6), 

519-532. 

Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), “New 2D and quasi-3D shear deformation theories for free 

vibration of functionally graded plates on elastic foundations”, Compos. Part B, 159, 231-247. 

Zenkour, A.M. (2004), “Analytical solution for bending of cross-ply laminated plates under thermo-

mechanical loading”, Compos. Struct., 65(3-4), 367-379. 

Zenkour, A.M. (2006), “Generalized shear deformation theory for bending analysis of functionally graded 

plates”, Appl. Math. Modell., 30, 67-84. 

Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), “A novel higher-order shear 

deformation theory for bending and free vibration analysis of isotropic and multilayered plates and 

shells”, Steel Compos. Struct., 26(2), 125-137.  

Zooubida, K., Hassaine Daouadji, T., Hadji, L., Tounsi, A. and Adda bedia, E.A., (2016), “A new higher 

order shear deformation model of functionally graded beams based on neutral surface position”, Transact. 

Indian Inst. Metal, 69(3), 683-691. 
 

 

LL 

136

https://www.sciencedirect.com/science/article/pii/S0263822303003490#!
https://www.sciencedirect.com/science/journal/02638223
https://www.sciencedirect.com/science/journal/02638223/65/3
http://refhub.elsevier.com/S1359-8368(13)00787-7/h0180
http://refhub.elsevier.com/S1359-8368(13)00787-7/h0180
http://refhub.elsevier.com/S1359-8368(13)00787-7/h0180
http://link.springer.com/journal/12666
http://link.springer.com/journal/12666



