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Abstract. In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass
hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply
supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton’s principle.
The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution.
The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are
investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of
composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy
of the present analytical solution is confirmed by making some comparisons of the present results with those
available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free
vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates.

Keywords: hybrid laminated composite plate; higher-order shear deformation theory; free vibration;
Navier’s solution

1. Introduction

Laminated composite plates are widely used in different engineering and industrial domains,
thanks to their light weight and sustainability. In order to be able to use this kind of plate in the
field, Countless studies are done by researchers to study the composition and the behavior of
composite plate in order to determinate the major factors that impacts this revolutionary structure.
The classical laminated plate theory (CLPT) was the first hypothesis that seen light by Kirchhoff
Love. This theory was quickly exceeded due to the negligence of transverse shear effects, which
limits its appliance to thin plates only. In the case of plates relatively thick, A lot of shear
deformation theories that takes into account the transverse shear effects have been proposed to
beat the shortcomings of the classical laminated plate theory, where the first-order shear
deformation theory is the first alternative proposed by Mindlin (1951) that takes into consideration
the transverse shear effects in determination of deformation and stresses. Such The first theory for
laminated isotropic plates was apparently. This theory was generalized to laminated anisotropic
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plates in Stavski (1965). It was shown in Srnivas (1970) and Whitney (1973), the first-order shear
deformation theory doesn’t satisfy equilibrium conditions at the top and bottom faces of the plate,
shear correction factors are required to rectify the unrealistic variation of the shear strain/stress
through the thickness. In order to overcome the limitations of first order shear deformation, higher-
order shear deformation theories are proposed. Since it involve higher-order terms in Taylor’s
expansions of the displacements in the thickness coordinate, were developed by Reddy (1984),
Bouadi (2018), Bouhadra (2018), Hassaine Daouadji (2016b), Benferhat (2016c), Tahar (2013b),
Bousahla (2016), Chikh (2016), Zenkour (2006), Oktem (2008), Tounsi (2013), Hassaine Daouadji
(2013), Benferhat (2014), Youcef (2018), Younsi (2018), Zine (2018), Abdelhak (2014), Mantari
(2012), Abdelaziz (2017), Adim (2016a), Abunalour (2018), Attia (2018), Hassaine Daouadji
(2016c), Belabed (2018), Beldjillali (2016), Bellifa (2017), Draiche (2016), Elhania (2017), Fourn
(2018), Kaci (2018), Karami (2018), Sayyad (2014), Swaminathan (2007), Witheney (1972), Yazid
(2018), Khalifa (2018), Benhenni (2018), Adim (2018), Hassaine Daouadji (2017), Zaoui (2019),
Tahar (2016b), Hassaine Daouadji (2016a), Bakhada (2018), Bourada (2018), Bourad 2019,
Zenkour 2004 and Ren (1990), Reddy (1984), Kant and Pandya (1988), and Mohan (1994). A
good review of these theories for the analysis of laminated composite plates is available in the
work of Tounsi (2013), Mantari (2012), Hassaine Daouadji (2012) and Benferhat (2016a). A two
variable refined plate theory using only two unknown functions was developed by Shimpi (2002),
Hassaine Daouadji (2012), Benachour (2011), Tahar (2012), Lazreg (2014), Hadji (2015a), Tlidji
(2014), Mazari (2015), Zoubida (2016), Sallai (2015), Menasria (2017), Mokhtar (2018), Tahar
(2016a), Abdelhak (2016), Tahar (2017), Adim (2016c), Chedad (2017), Lazreg (2016), Tayeb
(2018), Bensatallah (2018), Rabahi (2018), Benferhat (2018), Rabahi (2017), Hadji (2015b),
Lazreg (2015), Tahar (2013a), Oktem (2007), Benferhat (2016b), Khelifa (2016) and Tlidji (2014)
for isotropic plates, and was extended by Shimpi and Patel (2006) for orthotropic plates. The most
interesting feature of this theory is that it does not require shear correction factor and has strong
similarities with the classical plate theory in some aspects such as governing equation, boundary
conditions and moment expressions.

In addition of the matrix, most composite structures are made of one type of fibers which mean
that the composite properties depend on this particular type of fibers. If this fiber presents a
handicap like fragility or low strength, the all structure will be vulnerable to damage or failure.
Hybrid composite plates are made of more than one type of fibers, generally two types; this feature
provides various features like reducing manufacturing cost or improving a specific quality of one
of the fibers such as wear resistance, vibration damping, toughness, strength, ...etc. In this paper, a
refined and simple shear deformation theory of plates is presented and applied to the investigation
of free vibration behavior of Carbon/Glass hybrid laminated composite plates.

2. Material properties
In this study a hybrid laminated carbon/glass epoxy hybrid composite plate is considered, the
longitudinal and transversal Young modulus are given in Vaseliev (2001) by
E\ = EfVi + EFVF + Ep Wy, (1)
Where E; is longitudinal Young’s modulus. Efl , Efz and E, are the Young’s moduli of the first

type of fibers, the second type of fibers and the matrix respectively. Vf1 : sz and V,, are the
volume fraction of the first type of fibers, the second type of fibers and the matrix, respectively,
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where:
V4 VP4V, =land V+ VP =V )
Assuming that:
Vl
Wy = # 3

Where w is the first fiber percentage over the total fiber’s volume fraction.
By replacing Eq (3) into Eq (1) we obtain:

Ey = Ve[Efwy + EF (1 — wy)| + En Vi (4)
Using the same approach, the Poisson’s coefficient can be calculated by
Vip = Vf[v}wf + v]?(l - Wf)] + v,V (5)
The shear modulus of the fibers and the matrix are expressed by
1 2
G =gt Gmgd o Gu= gt ®
2(1+vf) 2(1+vf) 2(1 +v,)

Where G}, Gﬁ and G,,, are the shear modulus of the first type of fibers, the second type of
fibers and the matrix, respectively, also the total shear modulus of fibers is given by

Gr = Gfwy + GF (1 — wy) (7)
The compressibility modulus of the fibers and the matrix are given as
1 2
P73 -2vh " 3(1-20)""" T 3(1 - 2vy,)
The lateral compressibility modulus of the fibers and the matrix are given as
Kf:kf+ G?)—f, Km =km+GTm (9)
The shear moduli of the plate are (G,3 is different from Gy, = Gy3)
Ve
G23 = Gm 1+ [ Kk ¥7Gr /3 (10a)
Gf—Gp M 2k, +8Gp, /3
Gr(1+Ve)+Gn(1—Vp)
Gy = G~ ! “ L= G =Gy (10b)
Gr(1-V)+ G, (1 + V)
The lateral compressibility modulus of the plate is given as
Vr
KL = Km + 1 1_Vf (11)

kf—km+(Gr—Gn)/3  km+(4/3)Gn

Using equations from (4) to (11), the transversal Young’s modulus is given as follow
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2

11 20m) (12)
2K, t 2Go3 + Eq

3. Refined plate theory for laminated composite plates
3.1 Kinematics

Consider a rectangular plate of total thickness h composed of Np orthotropic layers with the
coordinate system as shown in Figure 1.
The displacement field can be obtained according to Adim (2016a) as follows:

owy, 2= 0w,
u(@,y,z,6) = w0y, 0) —z—>— (2= ze ¥) >
( t) (x,y,t) owy, 2% 0w
= s Z _ P
vix,y,z, vo(X,y, VA 3y (z — ze ) 5 13)

w(x,v,z,t) = wp(x,y,t) + we(x,y,t)

f(z)=z- Ze(—zfz)

where up and v, are the mid-plane displacements of the plate in the x and y direction,
respectively; wy, and ws are the bending and shear components of transverse displacement,
respectively, while f(z) represents shape functions determining the distribution of the transverse
shear strains and stresses along the thickness, This function ensures zero transverse shear stresses
at the top and bottom surfaces of the plate. The parabolic distributions of transverse shear stresses
across the plate thickness are taken into account in the analysis by means of present function of the

b=

I Z

o

s

LI L L S L L 1
Fig. 1 Coordinate system and layer numbering used for a typical laminated plate
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displacement field assumed. The strains and stresses associated with the displacements can be
found with details in Adim et al. (2016a).

3.2 Governing equations
The strain energy of the plate can be written as
1 1
U= EL o,V = EL (08, +0y8,+0, 7 +0,7, +0,7,)dV (14)

Substituting Egs. (13) into Eq. (14) and integrating through the thickness of the plate, the strain
energy of the plate can be rewritten as

+MPkP +M?P kb+M k>

Xy j/xy Xy Xy

U zlj‘ {ngf+Nyg§’+N
(15)
+ M ks+M kS+M ks +Qy27yz+Qx27xz}dXdy

Xy Xy

Where the stress resultants N, M, and Q are defined by
h/2 N, Zeot
(NN, N =[ " (0,,0,,0,)d2=> [ (0,,0,,0,)dz
k=1 "7k
b r b rrb hi2 No oz
MMy M) =] (0,.0,0,)22=3 [ (0,.0,.0,)2dz
< (16)
(M3, M3, M) = j (0,,0,,0,) fdz = f“(ax,ay,axy)fdz
1 k
s R h/2 Np Zun
(sz'Qyz) = J‘—h/z (O-leo-yz)gdz = ZJ‘Z (O-xz'o-yz)gdz
k=1 "
The kinetic energy of the plate can be written as

1y oo, 1 L oW, oW, v,
_ZLpuiidV—Z{{é'uo(lluo—lz— axjm/[l IZE

OoX

ayj
o, oM, O w
a’Vb |1 “b “s Iz 0 =1 b zb - S
. { (3, +1) +1,(— ay) ot ) } (17)

}dxdy
h/2

(o la 1 1 1) = [ P 2,27, 1(2),2f (2),[ f (2))dz (18)

—h/2

Ol oW, 0% 6W
ow,| 1, (W, | 0 0—I b Zb—l
+ {(W+W)+( ay) ( +8y) (

Where p is mass of density of the plate and I; are the inertias defined by

Hamilton’s principle is used here in order to derive the equations of motion appropriate to the
displacement field and the constitutive equation. The principle can be stated in analytical form as

jo‘ SU-T)dt=0 (19)
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Substituting Egs. (15) and (17) into Eqg. (19) and integrating the equation by parts, collecting
the coefficients of 6u, 6v, dw;, and dwg, the equations of motion for the laminate plate are
obtained as follows:

ON, ON,, .. OW, O
o - +—>=NLl,—1,——1,
OX oy OX OX
aN aN .. ..
- Xy + y . |2 aWb _ |4 O\Ns

: =1V, -
0 6X 8y 1vo0 ay ay
22MP ’My  o*MY

oW, : >+ 2 + 5
ou oA, O%W, 2, 82\7\'/
=1, (W, + W)+ 1, ( x0+6';)_|( b+8y2b)_|( ayzs)
2 s aZMs aZMs s a s
&/vs:a N2|X+2 LA 2y+aQXZ+ Qe
OX oxoy oy OX oy
2\ 2 . 2.
1 )+ 1, (S0 °)—|(‘3Wb Ty 1y (e Ty
oy oy OX oy

Equation (20) can be expressed in terms of displacements (u,v,w,,w,) by substituting for the

stress resultants from Eqg. (16). For homogeneous laminates, the equations of motion (20) take the
form

o%u o%u o o%, oY, o%,
Ay axf +2A, Y a;+ s ayzo + Ay 2° + (A + Agg) a; Ao 8y2°
o*w, o*w, ow, o O°w,
-B,—5 Py =3B 5 o oy - (B, 2866)a ay ZBW (218.)
3 . .
—Bflavg 3Blseaw (Blsz+2866)87W_stsaW —|1U0_|2%_|46W8
ox ox20y oxdy? oy ox ox
Bzv
A16 a 2 (Ai AGG A26 ayz AG A26 6X6y AQZ ayz
o*w, R o*w, o*w,
-Bie—3" xC — — (B, +2Byg) oz ﬁby 3By 8X6’yb2 -B, 8y3b (21b)
3 3 3 3 .. .
_Blsea 3 (Blsz+ZBese) W 3st6 aW stzaws :|1V0_|2%_|46Ws
OX ox*oy oxoy*® oy’ oy oy
d%u, d%u, o%u o%u
Bii——= o 3 +3Bs o Zay +(B,; +2Byg) 8; + By 8y30
v, %, o,
+Bie——= aC >+ (B, + ZBes) ay +3B,; axa; + By 6y30
o*w o*w, o*w, o*w, o*w,
- D11 aX4b _4D16 6’X36'by _2(D12 +2D66) axza;z _4D26 6X8yb3 - Dzz 8y4b (21C)
s 0w, s 0w, s o'w, GCATA s 0w,
- D11 6X4 _4D1e 6x38y 2(D12 +2Dse) 6y 4Dze 5X8y3 - D22 ay4

- ol, oV, o*W, O, o%vi, OV,
=L, +wW)+ 1, —+— |1, = | s PR
ox oy OX oy OX oy
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3 2% 3
By, aa;; +3B;, aiz‘g’y + (Bl +2BL) £ + B, ‘2;‘30
3 3 3
+Blseaavo+(8152+2866) 6\:30y+3 25666(;/; gziyve?
X
4 4 4
- Dlsl oW 4 4D156 a 3Wb Z(Dlsz + 2D66)7sz 4D§6LV\ID3,_ D252 ° V\:b
X ooy x>0y oxoy oy
4 4 a (Zld)
7H15167V21374 1sea3w 2(H152+2H66)7W2*4H256 6W537H2526V\:S
OX ox oy x20y OoxXoy oy
. O%w s 0w, s 0w,
+l%5 a 25 +A44 2A45
X oy? oxoy

N oli, v, o°W, oV, O°W, OV,
=1L (W, + W)+ 1, ox + oy -5 ox2 + oy? =g o2 + oy?

3.3 Analytical solutions for an antisymmetric cross-ply hybrid laminates

The Navier solutions can be developed for rectangular laminates with two sets of simply
supported boundary conditions. For antisymmetric cross-ply and angle-play laminates, the
following plate stiffnesses are identically zero:

As =P =Djs=D,s= Dlse Dzse Hlsﬁ sts =0
B, =By = B16 =B =B, =B =B, =B = A;; =0 (22)
= _B11, stz = _B11

The following boundary conditions for antisymmetric cross-ply and angle-play laminates can
be written as

OW, OW,
001 = bO, = 501 =—> 0, =—>3(0, =0
Va(0,Y) = W, (0y) =W, 0.Y) = TE (0.9 = T=©0.y)
V(@ y) =W, (2, y) = w, (@, y) = i“;b (ay) = ‘f;”ys (ay)=0

N,(0,y)=M2(0,y)=M;(0,y)=N,(a,y) =M (@, y) =M3(a,y) =0

2
U, (X,0) = w, (x,0) = w, (X,0) = 3(;’be (x,0) = 8;;3 (x,00=0 23)

a\Nb _a\Ns —
— (b ="—5(xb) =0

N, (x,0) = M?(x,0) = M; (x,0) = N, (x,b) = M? (x,b) = M$ (x,b) =0
The boundary conditions in Eq. (23) are satisfied by the following expansions

Uy = iium e'* cos(a x)sin(B y)

Ug (X, b) = w, (X,b) =w,(x,b) =

Vv, = iivmn e'* sin(a x) cos(B y)

@)
W, = D> W, €' sin(a x)sin(5 y)
w, =3 W, e sin(a x)sin(S y)

3
Il
N
>
Il
N
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Where Unn, Vin, Womn and Wsnn unknown parameters must be determined, o is the Eigen

frequency associated with (m, n) the Eigen-mode, and o = ";—” and g = %

Substituting Eqgs. (22) and (24) into Eq. (21), the Navier solution of antisymmetric cross-ply
laminates can be determined from equations

mn mll O 0 0 U

m

(25)
Si3 Sa; Sy Sy ||Wh

Mgz My, ||W,
Mgy MS, J{W.

mn

U
Sz S Sz Su ||V,
W

n
S14 S24 S34 S44 smn smn

Where
su=A’ + AL s, =af(A+AG) S=—Bua® s, =-Bla®
S = A’ + A 53 =B S s, = BB
Sq5 = D +2(Dy, + 2Dg)a’ 5% + D,,B*
s,, = D +2(D5, +2D3)a” B2+ D5, B* (26)
Spq = HSo + 2(H5, + 2HE) G2 B2 + HE, B + B + A5
m,=my,=1, Mg=1l+ I,(a® + %)

2 2
my, =1+ ls(x +ﬂ), m44:|1+|s(0‘2+52)

4. Numerical results and discussion

In this study, a free vibration analysis of an anti-symmetrically cross-ply and angle-ply
laminated Carbon/Glass Epoxy hybrid composite plates is examined using the present refined
shear deformation theory. The Navier solution is used in order to determine the natural frequencies
of laminated hybrid composite plates by solving Eigen value equations. For the verification
purpose, the results obtained by present model are compared with those of the Reddy, Belkacem
and exact solution of three-dimensional elasticity. The material properties used in this study are
cited in Table 1. For convenience, the following dimensionless parameter is used in presenting the
numerical results in graphical and tabular forms:

Table 1 The materials properties used in the present research

Material 1 (Noor 1975) E; = 40E, , Gy, = Gy3 = 0,6E, , Gy = 0,5E;, , vy, = 0,25
Material 2 (Noor 1973) Ei1 = 40E, , Gy = Gy3 = 0,5E, , Gy = 0,6E, , v = 0,25
Carbon’s fiber (Berthelot 1992) Ef = 380, wvf= 0.33
Glass’s fiber (Berthelot 1992) Ef = 86, v;=0.22

Epoxy’s matrix (Berthelot 1992) En, = 345, u, = 0.3
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Table 2 Dimensionless fundamental frequencies of antisymmetric cross-ply square laminated plate un
der various degrees of orthotropie (a/h=5, Material 1)

EJ/E;
Ne of layers Theory
3 10 20 30 40
Exact (Noor 1973) 6.2578 6.9845 7.6745 8.1763 8.5625
(080%, Belkacem (2016) 6.2168 6.9881 7.8198 8.5028 9.0841
Reddy (1984) 6.2169 6.9887 7.8210 8.5050 9.0871
Present 6.2188 6.9964 7.8379 8.5316 9.1236
Exact (Noor 1973) 6.5455 8.1445 9.4055 10.1650 10.6790
(01807, Belkacem (2016) 6.5009 8.1958 9.6273 10.5359 11.1728
Reddy (1984) 6.5008 8.1954 9.6265 10.5348 11.1716
Present 6.5012 8.1929 9.6205 10.5268 11.1628
Exact (Noor 1973) 6.6100 8.4143 9.8398 10.6950 11.2720
(01807, Belkacem (2016) 6.5558 8.4053 9.9182 10.8546 11.5009
Reddy (1984) 6.5558 8.4052 9.9181 10.8547 11.5012
Present 6.5567 8.4065 9.9210 10.8603 11.5102
Exact (Noor 1973) 6.6458 8.5625 10.0843 11.0027 11.6245
(01907 Belkacem (2016) 6.5842 8.5126 10.0671 11.0191 11.6721
Reddy (1984) 6.5842 8.5126 10.0674 11.0197 11.6730
Present 6.5854 8.5156 10.0740 11.0309 11.6893
(0°/90°),  Present 6.5952 8.5529 10.1263 11.0894 11.7509
(0°/90°),; Present 6.6000 8.5708 10.1515 11.1175 11.7806
(0°/90°),, Present 6.6012 8.5753 10.1577 11.1245 11.7880

Table 3 The volume fraction Vf effect on the natural frequencies variation of a cross-ply antisymm
etric (0°/90°), hybrid square laminated composite plate

wr (%) Vi
Carbon  Glass 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0 100 7.3744 7.4649 7.5199 7.5423 7.5341 7.4967 7.4308 7.3367 7.2138
10 90 7.8672 7.9785 8.0454 8.0717  8.0600 8.0121 7.9287 7.8098  7.6545
20 80 8.3196 8.4489 8.5262 8.5563 8.5423  8.4862  8.3887 8.2496  8.0675
30 70 8.7373 8.8822 8.9685 9.0020  8.9862 8.9233 8.8139  8.6577  8.4526
40 60 9.1254 9.2838 9.3781 94146  9.3974  9.3287  9.2092 9.0381  8.8129
50 50 9.4879 9.6582 9.7595 9.7988  9.7804 9.7068 9.5785 9.3943 9.1514
60 40 9.8280 10.0089 10.1164 10.1582 10.1389 10.0610 9.9250 9.7293  9.4706
70 30 10.1482 10.3386 10.4518 10.4958 10.4758 10.3943 10.2514 10.0456 9.7728
80 20 10.4509 10.6498 10.7679 10.8141 10.7936 10.7088 10.5600 10.3451 10.0597
90 10 10.7377  10.9442 11.0669 11.1151 11.0941 11.0066 10.8525 10.6296 10.3328
100 0 11.0101  11.2236 11.3504 11.4004 11.3791 11.2892 11.1305 10.9004 10.5933

Unless cited otherwise the following parameters are fixed as: a/h=10, a/b=1, V; =0.5.
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Fig. 2 The volume fraction V; effect on the natural Fig. 3 Dimensionless natural frequency of an
frequencies variation of a cross-ply antisymmetric antisymmetric cross-ply (0/90)s hybrid square
(0°/90°), hybrid square laminated composite plate laminated composite plate under various a/h ratios

Table 4 Dimensionless natural frequency of an antisymmetric cross-ply (0/90)s hybrid square laminated
composite plate under various a/h ratios

Carbon Glass 5 10 20 50 100

0 100 6.7741 7.7531 8.0850 8.1872 8.2022
10 90 7.1787 8.3525 8.7642 8.8926 8.9115
20 80 7.5315 8.8984 9.3935 9.5498 9.5729
30 70 7.8406 9.3978 9.9793 10.1650 10.1925
40 60 8.1138 9.8577 10.5280 10.7447 10.7769
50 50 8.3572 10.2838 11.0451 11.2940 11.3311
60 40 8.5759 10.6807 11.5347 11.8172 11.8594
70 30 8.7734 11.0519 12.0003 12.3175 12.3651
80 20 8.9531 11.4005 12.4446 12.7976 12.8507
90 10 9.1172 11.7290 12.8697 13.2596 13.3185
100 0 9.2679 12.0394 13.2777 13.7054 13.7703

The dimensionless fundamental frequencies of anti-symmetrically laminated cross-ply (0/90),
plates obtained by using different shear deformation theories are shown in Table 2 for various
values of modules ratios Ei/E,. It can be seen that, in general, the present model gives more
accurate results in predicting the natural frequencies than the Belkacem (2016), Reddy (1984) and
the three-dimensional elasticity solution given in Noor (1973). It should be noted that the unknown
functions in present and Belkacem (2016) models are four; while there are five unknown functions
in the Reddy’s model (1984). It can be concluded that the present model is not only accurate, but
also simple in predicting the natural frequencies of laminated composite plates.

The Table 3 and Figure 2 presents the dimensionless fundamental frequency variation of anti-
symmetric cross-ply (0/90)2 Carbon/Glass hybrid laminated composite plate using the present
high-order shear deformation theory. It is clear that the natural frequencies increase with
augmentation of the volume fraction V¢ until reaching its peak (at V¢ = 0.45), this point represents
the optimum percentage of fibers needed to reach the maximum natural frequencies. Also, the
fibers mixture vary gradually from full Glass (w; =0%) to full Carbon (w; =100%), where the
combination of this two types of fibers gives rise to a hybrid composite plate that respond to
different criteria’s (resistance, strength, economic...).
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Table 5 Dimensionless natural frequency of an antisymmetric cross-ply (0/90), hybrid rectangular laminated
composite plate under aspect ratio a/b

Wi (%) alb
Carbon Glass 0.2 0.6 0.8 1 1.2 1.6 2
0 100 4.6874 5.4482 6.2990 7.5341 9.1481 13.3668 18.6252
10 90 5.1321 5.8800 6.7574 8.0600 9.7819 14.2970 19.8894
20 80 5.5299 6.2738 7.1778 8.5423 10.3596 15.1278 20.9927
30 70 5.8902 6.6352 7.5654 8.9862 10.8884 15.8748 21.9644
40 60 6.2200 6.9696 7.9249 9.3974 11.3757 16.5518 22.8286
10 50 50 6.5244 7.2810 8.2603 9.7804 11.8273 17.1698 23.6041
60 40 6.8073 7.5725 8.5748 10.1389 12.2481 17.7373 24.3049
70 30 7.0715 7.8465 8.8709 10.4758 12.6416 18.2611 24,9422
80 20 7.3194 8.1052 9.1507 10.7936 13.0112 18.7466 25.5250
90 10 7.5530 8.3501 9.4158 11.0941 13.3593 19.1985 26.0606
100 0 71.7737 8.5827 9.6677 11.3791 13.6881 19.6205 26.5547
0 100 4.8262 5.6194 6.5214 7.8490 9.6137 14.3796 20.6250
10 90 5.3138 6.0943 7.0307 8.4443 10.3501 15.5404 22.3488
20 80 5.7570 6.5331 7.5041 8.9983 11.0336 16.6065 23.9133
30 70 6.1648 6.9414 7.9465 9.5163 11.6711 17.5921 25.3452
40 60 6.5440 7.3242 8.3625 10.0035 12.2694 18.5101 26.6667
20 50 50 6.8994 7.6854 8.7560 10.4643 12.8341 19.3705 27.8949
60 40 7.2347 8.0280 9.1298 10.9020 13.3696 20.1811 29.0429
70 30 7.5525 8.3543 9.4864 11.3194 13.8793 20.9479 30.1208
80 20 7.8551 8.6661 9.8277 11.7187 14.3661 21.6761 31.1371
90 10 8.1422 8.9652 10.1552 12.1019 14.8324 22.3697 32.0985
100 0 8.4213 9.2526 10.4704 12.4704 15.2801 23.0320 33.0105
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Fig. 4 The stacking sequence effect on the
dimensionless  natural ~ frequency of an
antisymmetric cross-ply (0/90), hybrid square
laminated composite plate

Fig. 5 Dimensionless natural frequency of an
antisymmetric cross-ply (0/90), hybrid rectangular
laminated composite plate under aspect ratio a/b
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Table 6 The stacking sequence effect on the dimensionless natural frequency of an antisymmetric cross-ply
(0/90)n hybrid square laminated composite plate

5 6.0083 6.4154 6.7702 7.0883 7.3779

10 6.7136 7.2455 7.7114 8.1359 8.5298

(0/90) , 20 6.9443 7.5251 8.0356 8.5039 8.9417
50 7.0144 7.6110 8.1360 8.6188 9.0713

100 7.0246 7.6235 8.1508 8.6357 9.0904

5 6.6014 7.4144 8.0208 8.4923 8.8714

10 7.5341 8.7687 9.7804 10.6370 11.3791

(0/90) » 20 7.8486 9.2604 10.4624 11.5184 12.4665
50 7.9453 9.4158 10.6836 11.8115 12.8370

100 7.9595 9.4387 10.7165 11.8554 12.8929

5 6.7154 7.5972 8.2433 8.7389 9.1333

10 7.6794 9.0247 10.1158 11.0317 11.8198

(0/90) 3 20 8.0057 9.5476 10.8512 11.9904 13.0088
50 8.1061 9.7133 11.0911 12.3116 13.4177

100 8.1208 9.7378 11.1268 12.3598 13.4796

5 6.7555 7.6613 8.3212 8.8253 9.2253

10 7.7298 9.1129 10.2309 11.1668 11.9703

(0/90) 4 20 8.0600 9.6461 10.9841 12.1512 13.1932
50 8.1616 9.8154 11.2302 12.4819 13.6150

100 8.1765 9.8404 11.2669 12.5315 13.6790

5 6.7741 7.6910 8.3572 8.8653 9.2679

10 7.7531 9.1535 10.2838 11.2289 12.0394

(0/90) 5 20 8.0850 9.6914 11.0451 12.2250 13.2777
50 8.1872 9.8622 11.2940 12.5599 13.7054

100 8.2022 9.8875 11.3311 12.6102 13.7703

5 6.7943 7.7231 8.3963 8.9087 9.3142

10 7.7782 9.1973 10.3409 11.2957 12.1139

(0/90) g 20 8.1120 9.7402 11.1108 12.3044 13.3687
50 8.2149 9.9128 11.3628 12.6439 13.8027

100 8.2299 9.9383 11.4003 13.6949 13.8685

5 6.8040 7.7386 8.4151 8.9296 9.3364

10 7.7903 9.2183 10.3682 11.3278 12.1495

(0/90) 46 20 8.1250 9.7636 11.1422 12.3424 13.4122
50 8.2281 9.9369 11.3957 12.6841 13.8492

100 8.2432 9.9626 11.4335 12.7355 13.9155
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The thickness variation a/h and the aspect ratio a/b effects on the dimensionless fundamental
frequency are shown in Tables (4 and 5) and Figures (3 and 5), where the increase of this two
ratios conduct to the direct increase of the fundamental frequencies for all types of composite
plates (full carbon, full glass and hybrid plate), it means that the plate geometry has a very
important impact on the stability of the hybrid composite plate.

The Table 6 and Figures 4 show the variation if dimensionless fundamental frequency of an
anti-symmetric cross-ply (0/90)n hybrid composite laminated plate for different values of
thickness ratio a/h, fibers mixture ws and number of layers. Where the fundamental frequency
increase as the number of layers used increases, which is logic because the increase of number of
layers conduct to increasing the rigidity of the plate and by consequence the frequencies rises.

In the last example (Table 7) a different combinations of fibers are used in hybrid composite
plate, the fundamental frequency are minimum for the case of Kevlar/Glass and maximal for the
case of Kevlar/Carbon, which is logic since this last combination gives the better features of the
three combination, when the carbon fibers gives rigidity to the plate and the Kevlar fibers assure
the vibration damping.

5. Conclusions

In this study, a refined shear deformation theory has been successfully used for the free
vibration of simply supported antisymmetric cross-ply hybrid laminated composite plates. The
present theory allows for parabolic variation in terms of the transverse shear strains across the
plate thickness and satisfies the zero shear stress on the top and bottom surfaces of the plate
without needing shear correction factors. The equations of motion were developed using
Hamilton’s principle. Where the accuracy and efficiency of the present theory has been
demonstrated for free vibration stability of anti-symmetric cross-ply hybrid laminated composite
plate.

From this research, we conclude as follows:

« The natural frequencies predicted by the present theory using just four unknowns are almost
identical to those found by the shear deformation theories of five unknowns and to the three-
dimensional elasticity solution.

* The present theory is applicable for different combinations of materials in terms of predicting
the natural frequencies.

« The material combinations affect significantly the fundamental frequencies, where the
mixture of Carbon and Kevlar gives the maximum frequencies.

Finally, it is up to the researchers and manufacturer to choose wisely the material combinations
that gives rise to a hybrid composite plate that offers rigidity, strength and most of all less greedy
in terms of cost.
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