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Abstract.  The static analysis of the simply supported functionally graded plate under transverse load by 
using a new sinusoidal shear deformation theory based on the neutral surface concept is investigated 
analytically in the present paper. No transversal shear correction factors are needed because a correct 
representation of the transversal shearing strain is given. The mechanical properties of the FGM plate are 
assumed to vary continuously through the thickness according to a power law formulation except Poisson’s 
ratio, which is kept constant. The equilibrium and stability equations are derived by employing the principle 
of virtual work. Results are provided for thick to thin plates and for different values of the gradient index k, 
which subjected to sinusoidal or uniformly distributed lateral loads. The accuracy of the present results is 
verified by comparing it with finite element solution. From the obtained results, it can be concluded that the 
proposed theory is accurate and efficient in predicting the displacements and stresses of functionally graded 
plates. 
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1. Introduction 
 

The idea of the construction of functionally graded materials (FGMs) was first introduced in 

1984 by a group of Japanese materials scientists (Koizumi 1993). The accomplishment of 

functionally graded material is the realization of contemporary and distinct functions that cannot 

be achieved by the traditional composite materials. These are advanced composite materials with a 

microscopically inhomogeneous anatomy and are usually made from a mixture of ceramic and 

metal using powder metallurgy techniques. Different properties change continuously according to 

the variations in constituent volume fractions and these continuous changes in microstructure 

induce chemical, material, and micro structural gradient (Rabbach et al. 2000). The advantage of 

using this material is that it eliminates the interface problem due to smooth and continuous change 

of material properties from one surface to other. 

They have many gained applications in rocket engine components, space plan body, nuclear 
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reactor components, first wall of fusion reactor, engine components, turbine blades, hip implant 
and other engineering and technological applications (Miyamoto 1999). Plates are employed in a 
wide range of mechanical and structural system components in civil, mechanical and aeronautical 
engineering. Liew et al. (2001) and Hamidi et al. (2015) studied the active control of functionally 
gradient material FGM plates with integrated piezoelectric sensor/actuator layers subjected to a 
thermal gradient using finite element formulation based on a first order shear deformation theory 
FSDT (Reddy 2000). Singha et al. (2011) have also presented asymmetric free vibration 
characteristics and thermoelastic stability of functionally graded plates using finite element 
procedure, Temperature field is assumed to be a uniform distribution over the plate surface and 
varied in thickness direction only (Abdelhak et al. 2015). Singha et al. (2011) and Bennoun et al. 
(2016) examined the nonlinear behaviors of functionally graded material (FGM) plates under 
transverse distributed load using a high precision plate bending finite element, the formulation is 
developed based on the first-order shear deformation theory (Benferhat 2015) considering the 
physical/exact neutral surface position. Hebali et al. (2014) and Bellifa et al. (2016), studied the 
static behavior of functionally graded rectangular plates based on his third-order shear deformation 
plate theory. Chi et al. (2006) carried out Mechanical behavior of functionally graded material 
plates under transverse load; the numerical solutions are evaluated directly from theoretical 
formulations and calculated by finite element method using MARC program. Zenkour (2006) has 
been investigated the static response of FG plate based on the middle surface using a generalized 
shear deformation theory with five unknown functions (Mahi 2015, Al-Basyoui 2015, Belabed 
2014, Bourada 2015, Bouderba 2013, Bousahla 2014, Bounoura 2016). Kitipornchai et al. (2004) 
carried out the nonlinear vibration of imperfect shear deformable laminated rectangular plates 
comprising a homogeneous substrate and two layers of functionally graded materials FGMs (Ait 
Yahia et al. 2015), a semi-analytical method, which makes use of the one-dimensional differential 
quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration 
frequencies for plates with various boundary conditions (Ait amar et al. 2014). 

This paper aims to develop a new refined shear deformation plate theory for the static analysis 
of the FG plates under transverse load based on the neutral surface concept using analytical 
solution procedure. This theory does not require shear correction factors and just four unknown 
displacement functions are used against five or more unknown displacement functions used in the 
corresponding ones. The governing equations of equilibrium are derived from the principle of 
virtual displacements and Navier solutions for flexure of FG simply supported plates are 
presented. Convergence tests and comparison studies have been carried out to establish the 
accuracy and efficiency of the present results by comparing it with finite element solution of 
Singha et al. (2011). The variation of the displacements and stresses is highlighted for different 
thickness ratios, aspect ratios and volume fraction index for FGM plate subjected to sinusoidal and 
uniformly distributed load.  

 
 

2. Geometric configuration and material properties 
 
The FGM plate is regarded to be a single layer plate of uniform thickness. Here we ascertain 

the FGM plate of length a, width b and total thickness h made from anisotropic material of metal 
and ceramics, in which the composition varies from top to bottom surface. To specify the position 
of neutral surface of FG plates, two different planes are considered for the measurement of z, 
namely zms and zns measured from the middle surface and the neutral surface of the plate,  
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a homogeneous isotropic plate. 
 
 

3. Displacement field and strains 
 
In the present study, system of governing equations for FGM plate is derived by using 

variational approach. The origin of the material coordinates is at the neutral surface of the plate as 
shown in Fig. 1. The in-plane displacements and the transverse displacement for the plate is 
assumed as 
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Where f(zns) represents shape functions determining the distribution of the transverse shear 
strains and stresses along the thickness and is given as 
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It should be noted that unlike the first-order shear deformation theory, this theory does not 
require shear correction factors. The kinematic relations can be obtained as follows 
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The constitutive relation describes how the stresses and strains are related within the plate and 
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is expressed as 
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where  yzxzxyyx  ,,,, are the stress components;  yzxzxyyx  ,,,, are the strain components; Qij 

are the plane stress-reduced stiffnesses which can be calculated by 
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3.1 Equilibrium equations 
 
The equilibrium equations are derived by using the virtual work principle, which can be written 

for the plate as 
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where  is the top surface and q is the applied transverse load. 
Substituting Eqs. (9) and (10) into Eq. (12) and integrating through the thickness of the plate, 

Eq. (12) can be rewritten as 
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The governing equations of equilibrium can be derived from Eq. (16) by integrating the 
displacement gradients by parts and setting the coefficients δu0, δv0, δwb, and δws zero separately. 
Thus, one can obtain the equilibrium equations associated with the present shear deformation 
theory 
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Using Eq. (10) in Eq. (14), the stress resultants of a plate can be related to the total strains by 
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The stiffness coefficients Aij and Bij, etc., are defined as 
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Substituting from Eq. (14) into Eq. (16), we obtain the following equation 
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where dij, dijl, and dijlm are the following differential operators 

ji
ij xx

d





2

, 
lji

ijl xxx
d





3

, 
mlji

ijlm xxxx
d





4

,   2,1,,, mlji (30)

 
 
4. Numerical results and discussion 

 
In this section, various numerical examples are presented and discussed to verify the accuracy 

of present theory in predicting the bending of simply supported FG plates under distributed 
transverse load is taken up for investigation. For numerical results, an Al/Al2O3 plate composed of 
aluminium (as metal) and alumina (as ceramic) is considered. The material properties assumed in 
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the present analysis are as follows: 
Ceramic ( CP : Alumina, Al2O3): 380cE GPa; 3/5700 mkgc   

Metal ( MP : Aluminium, Al): 70mE  GPa; 
3/2702 mkgm   

Poisson’s ratio is 0.3 for both alumina and aluminium. And their properties change through the 
thickness of the plate according to power-law. The bottom surfaces of the FG plate are aluminium 
rich, whereas the top surfaces of the FG plate are alumina rich. 

The boundary conditions considered here are as follows: Immovable simply supported: 
u0=v0=w=0 on the neutral surface edges 

The coefficients qmn in the case of a uniformly distributed load are 
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Where q0 is the intensity of the load at the plate center. In the case of a sinusoidally distributed 
load, we have (with : m=n=1 and q11=q0.) 
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For verification purpose, the obtained results are compared with those predicted using finite 
element solutions of Singha et al. (2011). In all examples, no transversal shear correction factors 
are used because a correct representation of the transversal shearing strain is given. For 
convenience, the following nondimensionalizations and the stresses are used in presenting the 
numerical results in graphical and tabular form 
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(33)

To illustrate the accuracy of present theory for wide range of power law index k and thickness 
ratio a/h, the variations of Non-dimensional central displacement and stresses are illustrated in 
Table 1 and Table 2. 

Table 1 shows the comparison of Non-dimensional central displacement and the maximum 
shear stress of simply supported thin (a/h=100) square alumina/aluminum FGM plate under 
uniformly distributed load obtained by present theory with those given by Singha et al. (2011). It 
can be seen that the proposed refined theory using analytical solution based on the neutral surface  
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Table 1 Comparison study of Non-dimensional central displacement and the maximum shear stress of simply 
supported thin (a/h=100) square alumina/aluminum FGM plate under uniformly distributed load (q0) 

Volume fraction 
index k 

Theory 
Shift of neutral 

surface C 
Shear correction 

factor 
w  xz  

Ceramic 
Singha (2011) Model 0 0.83333 0.004064 0.50699 

Present Model 0 / 0.004064 0.51644 

0,5 
Singha (2011) Model 0.0747 0.84515 0.006269 0.53114 

Present Model 0.0747 / 0.006269 0.52799 

1 
Singha (2011) Model 0.1148 0.82921 0.008154 0.54043 

Present Model 0.1148 / 0.008154 0.51714 

1,5 
Singha (2011) Model 0.1370 0.80016 0.009525 0.53804 

Present Model 0.1370 / 0.009525 0.49742 

2 
Singha (2011) Model 0.1490 0.76778 0.010449 0.53039 

Present Model 0.1490 / 0.010449 0.47644 

3 
Singha (2011) Model 0.1576 0.71661 0.011482 0.51386 

Present Model 0.1576 / 0.011482 0.44339 

5 
Singha (2011) Model 0.1517 0.67677 0.012359 0.49427 

Present Model 0.1517 / 0.012359 0.42445 

10 
Singha (2011) Model 0.1196 0.1196 0.013569 0.47897 

Present Model 0.1517 0.67677 0.012359 0.49427 

Metal 
Singha (2011) Model 0 0.83333 0.022064 0.50699 

Present Model 0 / 0.022064 0.51644 

 
Table 2 Comparison study of Non-dimensional central displacement and in- plane stress of thick square 
(a/h=10) alumina/ aluminum FGM plates under uniformly distributed (q0) and sinusoidal loads 

Volume fraction 
index k 

w  xx  

Singha (2011) Model Present Model Singha (2011) Model Present Model

Uniformly distributed load 

Ceramic (k=0) 0.4666 0.4665 2.8688 2.8932 

k=1 0.9290 0.9287 4.4303 4.4499 

k=2 1.1952 1.1936 5.1689 5.1737 

k=4 1.3908 1.3952 5.8035 5.8132 

Metal (k=∞) 2.5327 2.5326 2.8687 2.8932 

Lateral sinusoidal load 

Ceramic (k=0) 0.2961 0.2960 1.9679 1.9955 

k=1 0.5891 0.5889 3.0389 3.1212 

k=2 0.7582 0.7575 3.5456 3.6720 

k=4 0.8831 0.8822 3.9813 4.1647 

Metal (k=∞) 1.6072 1.6070 1.9679 1.9955 
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concept and finite element solution give identical results of non-dimensional central displacement 
as well as maximum shear stress for all values of power law index k. It is observed that the 
physical neutral surface and the geometric middle surface are the same (C=0) in a homogeneous 
isotropic plate and takes maximum values (C=0.1579) when the power low index k is equal to 3.3. 
Is to be mentioned that the results are obtained without using shear correction factors because a 
correct representation of the transversal shearing strain. 

The capability of the present solution is also tested for the non-dimensional central 
displacement and in-plane stress of thick square (a/h=10) alumina/aluminum FGM plates under 
uniformly distributed and sinusoidal loads in Table 2. Close correlation is achieved. It is important 
to observe that the uniform load distribution always over predicts the displacements and stresses 
magnitude; also the stresses for a fully ceramic plate are the same as that for a fully metal plate. 
This is because the plate for these two cases is fully homogeneous and the stresses do not depend 
on the modulus of elasticity. 

Table 3 examines the effect of volume fraction exponent on the dimensionless stresses and 
displacements of a FGM rectangular plate (b=2a) subjected to uniform distributed loads with two 
values of side to thickness ratio (a/h=4, 10). This effect is much more pronounced when volume 
fraction index k increase and the plate becomes thinner. It is seen from Table 3 that as the value of 
the power-law exponent k increases, the deflections of the plate increase. This is due to the fact 
that an increase in the power-law exponent yields an increase in the bending rigidity of the plate. 
Results in Table 3 should serve as benchmark results for future comparisons. 

Fig. 2 contains the plots of the non dimensional central deflection for thick to thin rectangular 
(b=2a) FGM plate subjected to uniform distributed load versus power law index k (k=0 to 5). It is 
clear that the increase of the power law index k causes an increase of the non dimensional central 
deflection. Figs. 3 and 4 shows the variation of the non-dimensional deflexion for the rectangular 
(b=2a) FGM plate under uniform load as function as the aspect and side-to-thickness ratio, 
respectively. It can be observed that deflection of metal rich composition is more when compared 
to ceramic rich Al/Al2O3 FGM plate. This can be accounted for the Young’s modulus of ceramic 
(Ec=380 GPa) being high when compared to that of metal (Em=70 GPa). 

Figs. 5 and 6 illustrates the distribution of normal stresses of the FGM plate (b=2a and k=2) 
with different values of side-to-thickness ratio. As expected the normal stresses are compressive on 
the ceramic rich face (top) and tensile on the metal rich face (bottom). Note that the plots read 
negative sign for tensile stresses and positive sign for compressive stresses. Figs. 7 to 9 displays 
the shear stresses of the FGM plate through the thickness. The volume fraction exponent of the 
FGM plate is taken as k=2 in this figures. As seen from Fig. 7, the longitudinal tangential stress xy 

takes maximum values on the top and bottom surfaces of the rectangular (b=2a) FGM plate. It is 
observed from the Figs. 8 and 9 that, the shear stress xz,yz across plate thickness is symmetric 
about the neutral axis, this last upwards towards the ceramic rich face. 

 
 

Table 3 Effects of volume fraction exponent and side to thickness ratio on the dimensionless stresses and 
displacements of a FGM rectangular plate (b=2a) under uniformly distributed loads 

Volume 
fraction 
index k 

Side to 
thickness 
ratio a/h 

w  x  y  yz  xz  xy  

Ceramic 
4 1.3272 2.5108 0.7341 0.4723 0.6946 0.7103 

10 1.1415 6.1293 1.8510 0.4822 0.7086 1.8362 
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