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Abstract. The static analysis of the simply supported functionally graded plate under transverse load by
using a new sinusoidal shear deformation theory based on the neutral surface concept is investigated
analytically in the present paper. No transversal shear correction factors are needed because a correct
representation of the transversal shearing strain is given. The mechanical properties of the FGM plate are
assumed to vary continuously through the thickness according to a power law formulation except Poisson’s
ratio, which is kept constant. The equilibrium and stability equations are derived by employing the principle
of virtual work. Results are provided for thick to thin plates and for different values of the gradient index k,
which subjected to sinusoidal or uniformly distributed lateral loads. The accuracy of the present results is
verified by comparing it with finite element solution. From the obtained results, it can be concluded that the
proposed theory is accurate and efficient in predicting the displacements and stresses of functionally graded
plates.

Keywords: functionally graded material; analytical solution; static analysis; neutral surface concept;
power law formulation

1. Introduction

The idea of the construction of functionally graded materials (FGMs) was first introduced in
1984 by a group of Japanese materials scientists (Koizumi 1993). The accomplishment of
functionally graded material is the realization of contemporary and distinct functions that cannot
be achieved by the traditional composite materials. These are advanced composite materials with a
microscopically inhomogeneous anatomy and are usually made from a mixture of ceramic and
metal using powder metallurgy techniques. Different properties change continuously according to
the variations in constituent volume fractions and these continuous changes in microstructure
induce chemical, material, and micro structural gradient (Rabbach et al. 2000). The advantage of
using this material is that it eliminates the interface problem due to smooth and continuous change
of material properties from one surface to other.

They have many gained applications in rocket engine components, space plan body, nuclear
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reactor components, first wall of fusion reactor, engine components, turbine blades, hip implant
and other engineering and technological applications (Miyamoto 1999). Plates are employed in a
wide range of mechanical and structural system components in civil, mechanical and aeronautical
engineering. Liew ef al. (2001) and Hamidi et al. (2015) studied the active control of functionally
gradient material FGM plates with integrated piezoelectric sensor/actuator layers subjected to a
thermal gradient using finite element formulation based on a first order shear deformation theory
FSDT (Reddy 2000). Singha et al. (2011) have also presented asymmetric free vibration
characteristics and thermoelastic stability of functionally graded plates using finite element
procedure, Temperature field is assumed to be a uniform distribution over the plate surface and
varied in thickness direction only (Abdelhak et al. 2015). Singha et al. (2011) and Bennoun ef al.
(2016) examined the nonlinear behaviors of functionally graded material (FGM) plates under
transverse distributed load using a high precision plate bending finite element, the formulation is
developed based on the first-order shear deformation theory (Benferhat 2015) considering the
physical/exact neutral surface position. Hebali et al. (2014) and Bellifa et al. (2016), studied the
static behavior of functionally graded rectangular plates based on his third-order shear deformation
plate theory. Chi et al. (2006) carried out Mechanical behavior of functionally graded material
plates under transverse load; the numerical solutions are evaluated directly from theoretical
formulations and calculated by finite element method using MARC program. Zenkour (2006) has
been investigated the static response of FG plate based on the middle surface using a generalized
shear deformation theory with five unknown functions (Mahi 2015, Al-Basyoui 2015, Belabed
2014, Bourada 2015, Bouderba 2013, Bousahla 2014, Bounoura 2016). Kitipornchai et al. (2004)
carried out the nonlinear vibration of imperfect shear deformable laminated rectangular plates
comprising a homogeneous substrate and two layers of functionally graded materials FGMs (Ait
Yahia et al. 2015), a semi-analytical method, which makes use of the one-dimensional differential
quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration
frequencies for plates with various boundary conditions (Ait amar et al. 2014).

This paper aims to develop a new refined shear deformation plate theory for the static analysis
of the FG plates under transverse load based on the neutral surface concept using analytical
solution procedure. This theory does not require shear correction factors and just four unknown
displacement functions are used against five or more unknown displacement functions used in the
corresponding ones. The governing equations of equilibrium are derived from the principle of
virtual displacements and Navier solutions for flexure of FG simply supported plates are
presented. Convergence tests and comparison studies have been carried out to establish the
accuracy and efficiency of the present results by comparing it with finite element solution of
Singha et al. (2011). The variation of the displacements and stresses is highlighted for different
thickness ratios, aspect ratios and volume fraction index for FGM plate subjected to sinusoidal and
uniformly distributed load.

2. Geometric configuration and material properties

The FGM plate is regarded to be a single layer plate of uniform thickness. Here we ascertain
the FGM plate of length a, width b and total thickness h made from anisotropic material of metal
and ceramics, in which the composition varies from top to bottom surface. To specify the position
of neutral surface of FG plates, two different planes are considered for the measurement of z,
namely z,, and z,, measured from the middle surface and the neutral surface of the plate,
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Ceramic

Fig. 1 Geometry and dimensions of the plate

respectively as shown in Fig. 1.
The volume fraction of ceramic (Vc¢) can be written in terms of z,, and z, coordinates as

(Praveen et al. 1998)
k k
z 1 z,o +c 1
V (2) = ms_ 4 — ns 4+ — 1
() [ : 2] ( p 2) M

Where h is the thickness of the plate and & denotes the power of FGM which takes values
greater than or equal to zero. Also, the parameter C is the distance of neutral surface from the
middle surface. The volume fraction of metal is expressed as

Viu(z) =1-V.(2) )
The effective Young’s modulus £ is expressed as
E(z)=E,V,(z)+ EJV . (2) (€)

Where E,, and E. are the Young’s modulus of the metal and ceramic respectively. The position
of the neutral surface of the FG plate is determined to satisfy the first moment with respect to
Young’s modulus being zero as follows (Zhang et al. 2008, Singha et al. 2011)

hi2
J‘E(st)(zms _C)dzms =0 (4)
—h/2
Consequently, the position of neutral surface can be obtained as
hi/2

E(st dZmS

C =97 )
J‘E(Zmé ms
-h/2

It can be seen that the physical neutral surface and the geometric middle surface are the same in
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a homogeneous isotropic plate.

3. Displacement field and strains

In the present study, system of governing equations for FGM plate is derived by using
variational approach. The origin of the material coordinates is at the neutral surface of the plate as
shown in Fig. 1. The in-plane displacements and the transverse displacement for the plate is
assumed as

ow ow
u(x,ynzns)=u0(x9y)_zns b_f(Zns)—S
Oox ox
ow ow,
V(X Y, 2 ) = Vo (X0 ¥) = 2y ol f(z,) ©)
oy oy

W(xnyazns)z Wb(x,y)+WS(x,y)

Where f(z,;) represents shape functions determining the distribution of the transverse shear
strains and stresses along the thickness and is given as

f(z, )=z, +C —sin( w

It should be noted that unlike the first-order shear deformation theory, this theory does not
require shear correction factors. The kinematic relations can be obtained as follows

) (7

+ za kD + f(z,) kS

ns X

0
X
0 b
=‘9y+Zns ky+ f(zns)k;

Vo = Ve + Za kD + f(2,) k)

s ®)

e, =0
where
o_Oup — pb __ow L s 0w
C ox * ox? ot
0 _ v b 52Wb s _62"%
y = ay > y T 8_)/2 ? vy a)/z
X )
73:%4_%, fv:_zazwb , k;y:_2_6 Ws
Yooy ox ’ oxdy Oxdy
ow, ow , df (z,

ns

The constitutive relation describes how the stresses and strains are related within the plate and
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is expressed as

Oy Oy On 0 Ex
o,r=10n On 0 €y
T 0 0 Q¢ ]lr, (10)
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where (Gx’o'y’rxy,z'xz,ryz)are the stress components; (gx,gy,]/xy,yxz,yyz)are the strain components; O

are the plane stress-reduced stiffnesses which can be calculated by

E(z,)

E(Z ) VE(Zns)
21+ v) (1D

01 =0xn =120 Op = T, OQu =055 = Q¢ =

3.1 Equilibrium equations

The equilibrium equations are derived by using the virtual work principle, which can be written
for the plate as

+£7C

2

I J(O‘x§€x +0,06, + 7,07, +7,,07,, +7,,0r,)dQ.dz - Iq.é‘w.dQ =0 (12)

K0 Q
c

where Q) is the top surface and ¢ is the applied transverse load.
Substituting Egs. (9) and (10) into Eq. (12) and integrating through the thickness of the plate,
Eq. (12) can be rewritten as

I(Nxﬁgfj AN, N Syl MOk MOk + M P SkD, + M kS
Q

(13)
M Sk - M K], + S8y S+ S8y 1)dQ - [g (6w + 8w,)dQ = 0
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2
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h
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The governing equations of equilibrium can be derived from Eq. (16) by integrating the
displacement gradients by parts and setting the coefficients dug, dvo, Owp, and ow;, zero separately.
Thus, one can obtain the equilibrium equations associated with the present shear deformation

theory
ON
Su : N, +—2=0
Ox oy
ON ON
ov i —2+ L =0
Ox oy
2 b azM b, 82Mb
5wbzaMz"+2 =+ 2y+q:0
0x 0x0y oy
2y s oM oM s a8}
éwS:aM"+2 2+ v, 95 Z +g=0
ox? Ox0y oy? Ox oy

(16)

Using Eq. (10) in Eq. (14), the stress resultants of a plate can be related to the total strains by

N A B B'||¢
MP = 4 D D[k’
MS BS DS HS ks
; S = AS]/
Where
a
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The stiffness coefficients 4; and Bj;, etc., are defined as

(17)

(18)

(19)

(20)

e2y)

(22)
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Substituting from Eq. (14) into Eq. (16), we obtain the following equation
Aydiug + Agg Dypyig + (Ajp + Agg )d1avo — Byydyywy — (Bip +2Bgs )dip Wy,

(26)
—(By +2Bg)dywy — Bjjdywy =0
Aypdypvy+ Agedyvo + (A + Agg )djpug — Byyd gy Wy — (B + 2B )di1n vy 27
— (B3 +2Bgs)dijawy — Bydypywy =0
Byydyjyug+ (Byp + 2B )dippug+ (Biy +2Bge)di13vg + Bpndoy vo — Dydyg wy
—2(Dyy +2Dgs)d 10 Wy = Doy dyyay Wy, = Diydyyyy Wy = 2(Dyy + 2D g )d 15 Wy (28)

= Dydyy wi+q =0
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= 2(Dy +2Dgg)d 19 Wy — Dysdygyy Wy — Hiydyyy wy = 2(Hy + 2H g5 )dy1ap W (29)
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where dj;, d;;, and dy;,, are the following differential operators

02 o3 04
dy = ————» dy = —————, dy, = L jalom = 1.2
’ Ox;0x; P 0x;0x ;0x, > 0x;0x ;0x,;0x, o @tm ) (30)

4. Numerical results and discussion

In this section, various numerical examples are presented and discussed to verify the accuracy
of present theory in predicting the bending of simply supported FG plates under distributed
transverse load is taken up for investigation. For numerical results, an 4//A,05 plate composed of
aluminium (as metal) and alumina (as ceramic) is considered. The material properties assumed in
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the present analysis are as follows:
Ceramic ( P : Alumina, ALO;): £, =380 GPa; p, =5700kg/ m’
Metal (Py; : Aluminium, Al): £, =70 GPa; p,, =2702kg/ m’

Poisson’s ratio is 0.3 for both alumina and aluminium. And their properties change through the
thickness of the plate according to power-law. The bottom surfaces of the FG plate are aluminium
rich, whereas the top surfaces of the FG plate are alumina rich.

The boundary conditions considered here are as follows: Immovable simply supported:

up=v,=w=0 on the neutral surface edges
The coefficients gmp in the case of a uniformly distributed load are

M for odd m and n»

9mn =
" mnoﬂ' for even m and n

€2y
Where g is the intensity of the load at the plate center. In the case of a sinusoidally distributed
load, we have (with : m=n=1 and q;=¢y.)

g(x,v) = g, sin (%} sin [%) (32)

For verification purpose, the obtained results are compared with those predicted using finite
element solutions of Singha et al. (2011). In all examples, no transversal shear correction factors
are used because a correct representation of the transversal shearing strain is given. For
convenience, the following nondimensionalizations and the stresses are used in presenting the
numerical results in graphical and tabular form

_ 3 _ 3 B
w=10 Ech w(i,%J, u =100 Ech u(O,%,—h—Cj,

40114 2 %a4 4
p— 3 —
v =100 Ech4 v(i,o,—h—c)
o, = i Gx(iazﬂl_c)i a: i O-J’[z’é’ﬁ_cj’ (33)
hq 222 hq o 2°2°3
S fo0tec)
hq 3
T, =L1xz(0,£,—CJ, :: h T Z(i,O,E—Cj.
hq 2 Y hq, “\2 6

To illustrate the accuracy of present theory for wide range of power law index & and thickness
ratio a/h, the variations of Non-dimensional central displacement and stresses are illustrated in
Table 1 and Table 2.

Table 1 shows the comparison of Non-dimensional central displacement and the maximum
shear stress of simply supported thin (a/A=100) square alumina/aluminum FGM plate under
uniformly distributed load obtained by present theory with those given by Singha et al. (2011). It
can be seen that the proposed refined theory using analytical solution based on the neutral surface
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Table 1 Comparison study of Non-dimensional central displacement and the maximum shear stress of simply
supported thin (a/h=100) square alumina/aluminum FGM plate under uniformly distributed load (g,)

Volume fraction Shift of neutral ~ Shear correction — —

index k Theory surface C factor W Txz

. Singha (2011) Model 0 0.83333 0.004064 0.50699
Ceramic

Present Model 0 / 0.004064 0.51644
0.5 Singha (2011) Model 0.0747 0.84515 0.006269 0.53114
’ Present Model 0.0747 / 0.006269 0.52799
! Singha (2011) Model 0.1148 0.82921 0.008154 0.54043
Present Model 0.1148 / 0.008154 0.51714
L5 Singha (2011) Model 0.1370 0.80016 0.009525 0.53804
’ Present Model 0.1370 / 0.009525 0.49742
) Singha (2011) Model 0.1490 0.76778 0.010449 0.53039
Present Model 0.1490 / 0.010449 0.47644
3 Singha (2011) Model 0.1576 0.71661 0.011482 0.51386
Present Model 0.1576 / 0.011482 0.44339
5 Singha (2011) Model 0.1517 0.67677 0.012359 0.49427
Present Model 0.1517 / 0.012359 0.42445
10 Singha (2011) Model 0.1196 0.1196 0.013569 0.47897
Present Model 0.1517 0.67677 0.012359 0.49427
Metal Singha (2011) Model 0 0.83333 0.022064 0.50699
Present Model 0 / 0.022064 0.51644

Table 2 Comparison study of Non-dimensional central displacement and in- plane stress of thick square
(a/h=10) alumina/ aluminum FGM plates under uniformly distributed (go) and sinusoidal loads

Volume fraction w O
index k Singha (2011) Model ~ Present Model ~ Singha (2011) Model Present Model
Uniformly distributed load

Ceramic (k=0) 0.4666 0.4665 2.8688 2.8932
k=1 0.9290 0.9287 4.4303 4.4499

=2 1.1952 1.1936 5.1689 5.1737

k=4 1.3908 1.3952 5.8035 5.8132
Metal (k=o0) 2.5327 2.5326 2.8687 2.8932

Lateral sinusoidal load

Ceramic (k=0) 0.2961 0.2960 1.9679 1.9955
k=1 0.5891 0.5889 3.0389 3.1212

k=2 0.7582 0.7575 3.5456 3.6720

k=4 0.8831 0.8822 3.9813 4.1647

Metal (k=) 1.6072 1.6070 1.9679 1.9955
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concept and finite element solution give identical results of non-dimensional central displacement
as well as maximum shear stress for all values of power law index k. It is observed that the
physical neutral surface and the geometric middle surface are the same (C=0) in a homogeneous
isotropic plate and takes maximum values (C=0.1579) when the power low index £ is equal to 3.3.
Is to be mentioned that the results are obtained without using shear correction factors because a
correct representation of the transversal shearing strain.

The capability of the present solution is also tested for the non-dimensional central
displacement and in-plane stress of thick square (a/A=10) alumina/aluminum FGM plates under
uniformly distributed and sinusoidal loads in Table 2. Close correlation is achieved. It is important
to observe that the uniform load distribution always over predicts the displacements and stresses
magnitude; also the stresses for a fully ceramic plate are the same as that for a fully metal plate.
This is because the plate for these two cases is fully homogeneous and the stresses do not depend
on the modulus of elasticity.

Table 3 examines the effect of volume fraction exponent on the dimensionless stresses and
displacements of a FGM rectangular plate (b=2a) subjected to uniform distributed loads with two
values of side to thickness ratio (a/h=4, 10). This effect is much more pronounced when volume
fraction index k& increase and the plate becomes thinner. It is seen from Table 3 that as the value of
the power-law exponent k increases, the deflections of the plate increase. This is due to the fact
that an increase in the power-law exponent yields an increase in the bending rigidity of the plate.
Results in Table 3 should serve as benchmark results for future comparisons.

Fig. 2 contains the plots of the non dimensional central deflection for thick to thin rectangular
(b=2a) FGM plate subjected to uniform distributed load versus power law index k (k=0 to 5). It is
clear that the increase of the power law index & causes an increase of the non dimensional central
deflection. Figs. 3 and 4 shows the variation of the non-dimensional deflexion for the rectangular
(b=2a) FGM plate under uniform load as function as the aspect and side-to-thickness ratio,
respectively. It can be observed that deflection of metal rich composition is more when compared
to ceramic rich Al/Al,O; FGM plate. This can be accounted for the Young’s modulus of ceramic
(E:=380 GPa) being high when compared to that of metal (£,=70 GPa).

Figs. 5 and 6 illustrates the distribution of normal stresses of the FGM plate (h)=2a and £=2)
with different values of side-to-thickness ratio. As expected the normal stresses are compressive on
the ceramic rich face (top) and tensile on the metal rich face (bottom). Note that the plots read
negative sign for tensile stresses and positive sign for compressive stresses. Figs. 7 to 9 displays
the shear stresses of the FGM plate through the thickness. The volume fraction exponent of the
FGM nplate is taken as /=2 in this figures. As seen from Fig. 7, the longitudinal tangential stress z,
takes maximum values on the top and bottom surfaces of the rectangular (b=2a) FGM plate. It is
observed from the Figs. 8 and 9 that, the shear stress 7.,7,. across plate thickness is symmetric
about the neutral axis, this last upwards towards the ceramic rich face.

Table 3 Effects of volume fraction exponent and side to thickness ratio on the dimensionless stresses and
displacements of a FGM rectangular plate (b=2a) under uniformly distributed loads

Volume Side to . o o o o
fraction  thickness w o, o, T T, Tyy
index k ratio a’h

. 4 1.3272 2.5108 0.7341 0.4723 0.6946 0.7103
Ceramic

10 1.1415 6.1293 1.8510 0.4822 0.7086 1.8362
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Table 3 Continued
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Volume Side to o _ o o
fraction  thickness w o, o, e T, Tyy
index k ratio a’h

{ 4 2.5574 2.2478 0.6771 0.5118 1.1141 0.6200

10 2.2777 8.7001 2.0404 0.5164 0.4856 1.5781

5 4 3.4854 7.6716 1.0511 0.7394 1.1865 0.5418

10 2.9234 9.4198 2.1137 0.6144 0.4147 1.3831

4 3.7858 4.3999 0.9826 0.4976 0.2696 0.8317

3 10 3.2287 12.0859 1.8312 0.6121 0.6248 1.4275

4 4 4.0311 5.2096 0.6277 0.5409 0.6432 0.5177

10 3.3857 11.3239 1.6200 0.5081 0.7823 1.4672

5 4 4.5673 12.9306 1.1386 0.1759 1.5095 0.4390

10 3.4935 11.8503 1.4842 0.5119 0.7141 1.4906

6 4 4.6281 12.1421 0.8783 0.6433 1.2443 0.5656

10 3.5825 13.2704 1.4593 0.5048 0.5877 1.5007

- 4 4.5253 7.2964 0.6285 0.5353 0.7264 0.5625

10 3.6611 15.7895 1.1875 0.6068 0.7144 1.4479

g 4 4.6137 7.6834 0.5054 0.5056 0.6217 0.5744

10 3.7308 15.3374 1.3719 0.4816 0.6867 1.5109

o 4 4.6704 6.6490 0.5657 0.4935 0.6508 0.5670

10 3.7962 15.8030 1.3063 0.4762 0.5830 1.5153

10 4 4.6959 5.0397 0.5147 0.3694 0.8498 0.5655

10 3.8548 14.3419 1.2419 0.4293 0.6689 1.5278

Metal 4 7.2051 2.5108 0.7341 0.4723 0.6946 0.7103

10 6.1967 6.1293 1.8510 0.4822 0.7086 1.8362

nondimentional deflexion w

45

4,0

15 2,0

T
25 3,0

gradient index k

35

40 45

50

Fig. 2 Nondimensional central deflection across power law index &
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Fig. 3 Nondimensional central deflection across
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Fig. 7 In plane shear stresses 7., across the thickness
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Fig. 8 Transverse shear stresses z,, across the Fig. 9 Transverse shear stresses 7,, across the
thickness thickness

5. Conclusions

In this work, an efficient new refined shear deformation theory based on the neutral surface
concept was effectively used to study extensively the static analysis of an FG simply-supported
plate under distributed transverse loads using analytical procedure. The theory gives a parabolic
distribution of the transverse shear strains and satisfies the zero traction boundary conditions on
the surfaces of the plate without using shear correction factors. Poisson’s ratio is assumed to be a
constant, and Young’s modulus is assumed to vary in power law fashion through the thickness.
Non-dimensional stresses and displacements are computed for plates with ceramic-metal mixture.
The results presented here clearly demonstrate that the present theory agreed well with the finite
element solutions
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