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Abstract. Flexural bending analysis of perfect and imperfect functionally graded materials plates under
hygro-thermo-mechanical loading are investigated in this present paper. Due to technical problems during
FGM fabrication, porosities and micro-voids can be created inside FGM samples which may lead to the
reduction in density and strength of materials. In this investigation, the FGM plates are assumed to have
even and uneven distributions of porosities over the plate cross-section. The modified rule of mixture is used
to approximate material properties of the FGM plates including the porosity volume fraction. In order the
elastic coefficients, thermal coefficient and moisture expansion coefficient of the plate are assumed to be
graded in the thickness direction. The elastic foundation is modeled as two-parameter Pasternak foundation.
The equilibrium equations are given and a number of examples are solved to illustrate bending response of
Metal-Ceramic plates subjected to hygro-thermo-mechanical effects and resting on elastic foundations. The
influences played by many parameters are investigated.

Keywords: FGM plate; moisture concentration; thermal field; elastic foundations; higher-order shear
deformation theory

1. Introduction

Functionally graded materials(FGMSs), possessing spatially varying properties, have been
developed for special components such as rocket engine components, aerospace structures, etc.
The earliest FGMs were introduced by Japanese scientists in the mid 1980 as ultra-high
temperature resistant materials for aerospace applications. Recently, these materials have found
other uses in electrical devices, energy transformation, biomedical engineering, optics, etc (Suresh
,1998). However, in FGM fabrication, micro voids or porosities can occur within the materials
during the process of sintering. This is because of the large difference in solidification
temperatures between material constituents (Zhu 2001). Wattanasakulpong (2012) also gave the
discussion on porosities happening inside FGM samples fabricated by a multi-step sequential
infiltration technique. Therefore, it is important to take into account the porosity effect when
designing FGM structures subjected to dynamic loadings. The degradation in performance of the
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structure due to moisture concentration and high temperature has become increasingly more
important with the prolonged use of functionally graded materials (FGMs) in many structural
applications. As a result, hygrothermal internal stresses are generated with the change of
environment. These stresses generally induce large deformation and could even contribute to the
failure of the structure. The deformation and stress analysis of different plate structures subjected
to moisture and temperature has been the subject of research interest of many investigators (Patel
et al. 2002, Bahrami et al. 2007, Benkhedda et al. 2008, Ait amar et al. 2014, Benoun et al. 2016
and Bourada et al. 2015). The plates supported by an elastic foundation are very common in
structural engineering. Many linear bending studies for thick plates subjected to transverse loads
with elastic foundations are available in the literature (Voyiadjis et al. 1986). In some of the
analyses of plates on elastic foundation, a single parameter is used to describe the foundation
behavior according to Winkler’s model (Liu 2000).

Based on the open literature, it is found that many researchers have paid their attention on
investigating the mechanical or the thermal or the thermo-mechanical responses of FG plates and
shells. A comprehensive review is done by Tanigawa (1995). Reddy (2000) has analyzed the static
behavior of functionally graded rectangular plates based on his third-order shear deformation plate
theory. The static response of FG plate has been investigated by Zenkour (2006) using a
generalized shear deformation theory. In a recent study, a new four variable refined plate theory
which involves only four unknown functions and yet takes into account shear deformations has
been developed (Benachour et al. 2011, Hassaine Daouadji 2012 and 2013, Tlidji et al. 2014,
Benferhat et al. 2014, Abdelhak et al. 2015, Bouderba et al. 2013, Habali et al. 2014, Mahi et al.
2015, Ait yahia et al. 2015, Tounsi 2013, Bellifa 2015, Belabed 2014, Hamidi 2015 and Zidi et al.
2014). This four variable refined plate theory is based on the assumption that the in-plane and
transverse displacements consist of bending and shear components in which the bending
components do not contribute toward shear forces and, likewise, the shear components do not
contribute toward bending moments. The most interesting feature of this theory is that it accounts
for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero
traction boundary conditions on the top and bottom surfaces of the plate without using shear
correction factors. In addition, it has strong similarities with the classical plate theory in some
aspects including the structure of the governing equation, boundary conditions and moment
expressions.

In this study, is to extend the four variable refined plate theory to the hygro-thermo-mechanical
bending behavior of perfect and imperfect FGM plate resting on elastic foundations, motivated by
rocket-launch pad structural foundations under thermal propulsion loads. Some other researchers
have modeled the foundation with two parameters according to Pasternak’s model. This
two-parameter model takes into account the effect of shear interaction among the points in the
foundation (Shen 1999, zenkour 2009). The objective of this investigation is to present a general
hygrothermal formulation for imperfect FGM plates resting on an elastic foundation using the
sinusoidal shear deformation theory.

2. Mathematical model and governing equations
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Fig. 1 Geometry of FGM rectangular plate

Consider a plate of total thickness h and composed of imperfect functionally graded material
through the thickness (Fig. 1). It is assumed that the material is isotropic and grading is assumed to
be only through the thickness. The xy plane is taken to be the undeformed mid plane of the plate
with the z axis positive upward from the mid plane.

2.1 Displacement fields and strains

The assumed displacement field is as follows

nz@w

u(x, y,2) = Ug(x, y)—z
7rz aw (1a)

V(X y,2) = Vo (X, y)—z —(Z—

w(x,y,2) :Wn(x y)+W (x, y)
where u, and v, are the mid-plane displacements of the plate in the x and y direction, respectively;
w, and ws are the bending and shear components of transverse displacement, respectively, while

f(z) represents shape functions determining the distribution of the transverse shear strains and
stresses along the thickness (Benferhat et al. 2014) and is given as

f(z) = z - sin( ”hi) (1b)

It should be noted that unlike the first-order shear deformation theory, this theory does not
require shear correction factors. The kinematic relations can be obtained as follows

=gl +zk)+ f(z2)k;
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02w %w ow ow df (2)
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2.2 Constitutive equations

Consider a rectangular plate of length a, width b and thickness h made of imperfect
functionally graded material. The plate is graded from metal to ceramic. The plate is subjected to a
sinusoidal distributed load q(x,y) and a temperature field T(x, y, z) as well as a moisture
concentration C(x, y, z). The material properties V(z) of the FGM plate, such as Young’s modulus
E , Poisson’s ratio v, and thermal « and moisture expansion S coefficients are given according to
the modified rule of mixture as

_ RV E A ¢
V(Z)_Vm+(vc Vm)(2+hj (Vc+vm)2 (4)
Where V. and V,, are the corresponding properties of the ceramic and metal, respectively, and p
is the volume fraction exponent which takes values greater than or equal to zero, and { is the
porosity volume fraction of the imperfect FGM plate ({ <<1) sited in (Wattanasakulpong 2012),
perfect FGM plate can be obtained by setting =0. The linear constitutive relations are

Oy

Qy Qn 0 |j&,—aAT - BAC
Xy 0 0 QGG Y xy (5)

Tyz _ |:Q44 0 :| }/Yz
sz 0 Q55 yzx
Where (77w TuiTu) and (£4:6,:7 w72 75 ) are the stress and strain components,

respectively. Using the material properties defined in Eq. (4), stiffness coefficients, Qj, can be
expressed as

o, {Q“ Q. 0 ] g, —aAT — BAC

T

-0 -0 - _E@
T Q12=1_v2 QM_QSS_Q66_2(1+V) (6)

Where AT=T-T, and AC=C-C, inwhichT, is the reference temperature and C, is the
reference moisture concentration. Now, let us consider a temperature distribution field T(x,y,z) and
the moisture concentration C(x,y,z) in the plate domain V (plate volume) in the form

T (Xv Y, Z) = Tz(Z)TQ(X1 y) , C(x,y,2)= Cz(Z)CQ(X’ y) (7a)

Where T, (z) and C, (z) represent the temperature and the moisture concentration profile across
the plate thickness coordinate z, respectively, where as T, (X, y) and Cq, (x, ¥) are the temperature
and the moisture concentration distributions, respectively, over the reference surface domain Q. In
the most general case, the form of T, (z) is a result of the solution of a heat conduction problem.
This calculated T, (z) turns out to be a nonlinear polynomial of z, often of a transcendental form
(Zenkour 2009). In the case of a thick multi-layered structure, T, (z) would may be require a
layerwise description (Tlidji et al. 2014), that is: plate theories with higher-order (or layerwise)
displacement fields are required to capture a temperature profile obtained from the solution of a
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heat-conduction problem. In the present study, the moisture concentration C(x,y,z) and the
temperature distribution field T(x,y,z) are given as (Tlidji et al. 2014)

z 1. (nz
T (X! Y, Z) = Tl(X, y) + HTZ(X! y) + ﬁsm(hJTa(X’ y) (7b)

_ z Lgn(m
C(x,y,z)=C,(x,y) + H C,(x,y)+ . sm( - )Cz(x, y) (7¢)

2.3 Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual
displacements. The principle of virtual work in the present case yields

hi2
[ ] lo.06,+0,88,+1,07, +7,07, +7,67,]dQdz - [(q- f,)owdz =0 (8)
Q

-h/2Q

Where Q is the top surface and f; is the density of reaction force of foundation. For the
Pasternak foundation model

fe:KWW—Jl%—JZ% 9)
where K, is the modulus of subgrade reaction (elastic coefficient of the foundation) and J; and J,
are the shear moduli of the subgrade (shear layer foundation stiffness). If the foundation is
homogeneous and isotropic, this implies that J; = J, = J,. If the shear layer foundation stiffness is
neglected, Pasternak foundation becomes a Winkler foundation.
Substituting Egs. (2) and (5) into Eq. (8) and integrating through the thickness of the plate, Eq. (8)
can be rewritten as

y

? S S S S S S (10)
M OSSkE + S5 s +SLey L HO - [ (0 - f)(6w, + sw,)dQ =0
Q
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The stress resultants N, M, and S are defined by

N, N, N,, " 1
be M by bey =J.?E(O-X’O-y'r><y z dz (11a)
M M5y My ? f(z)
h
(S:Z’S;Z) = leﬂ(fxz’ryz)g(z)dz (11b)
2

Substituting Eq. (5) into Eq. (11) and integrating through the thickness of the plate, the stress

resultants are given as
N A B B'lfe NT N©
Mb — B D Ds kb _ MbT _ MbC (12a)
M S BS DS H N kS M sT M sC
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Where A;j, Bjj, Djj etc., are the plate stiffness, defined by

A, B, D, B D Hj hi2
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The stress and moment resultants,
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due to thermal and hygroscopic loading are defined respectively by

NS 1 N ¢ n 1
M- j%(m 7 tdz! Mo - le_(Z)ﬁ(z)c 7 \dz (15)
VIR B f(2) M| eV f(2)

The governing equations of equilibrium can be derived from Eq. (10) by integrating the
displacement gradients by parts and setting the coefficients dug, dvo, owp, and ows zero
separately. Thus one can obtain the equilibrium equations associated with the present shear
deformation theory,

oN
Su, Ny Ny _y
oX oy
oN oN
5\/0 TXYJ’_ a y :O
X
S s (16)
M ? 0°M,, 0°M
Sw, -+ 2 L+ ——r-f,+q=0
oX oxoy oy
M 9 M, 9*M s 0S;
Sw, 6M2X+2 Y+ 2y+88“+ Z _f,+q=0
0X oxoy oy oX oy
Substituting from Eq. (12) into Eq. (16), we obtain the following equation,
Andnuo + A66d22u0 + (Alz + AGG)dIZVO - Blldlllwb - (BIZ + ZBGG)dIZZWb (17a)
- (BISZ + ZBese)dqus - Blsldlllws =P
A22d22V0 + AGGdllvo + (Alz + AGG)d].ZuO - BZZdZZZWb - (B].Z + 2866)d112 Wb (17b)
- (Blsz + ZBsss)dnst - BZSZd222Ws =P,
Blldllluo + (812 + 2BGG)d122uO + (812 + 2866 )d112V0 + BZZdZZZ VO - Dlldllll Wb
- 2(D12 + 2D66 )dnzz Wy — Dzzdzzzz Wy — Dlsldllll Wy — Z(Dlsz + 2D656)d1122 W (170)

S
- Dzzdzzzz W, = P;

Bls1d111U0 + (B1sz + ZBese)duzuo + (Blsz + ZBese)dnzVo + stzdzzzvo - Dlsldllll Wy,
- 2(D152 + ZDese)duzz Wy — Dzszdzzzz Wy — H151d1111Ws - Z(Hlsz +2H ese)dnzz Wy (17d)
- stzdzzzz W + Asssduws + AjAdZZWs = Py

Where {p}={p1, p2, ps, pa} is a generalized force vector, d;, dj and di, are the following
differential operators

A A oty 29 (ijlm=12) (18a)

d, = . d,. - |
Tox,0x, " ax,0x,0x, I ax,0% 0%, 0%, ox

The components of the generalized force vector {p} are given by
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T c
plzaNeraNix, . _62(M5T+M;’C)_62(M§T+M§C)
Ox Ox Pa= Te ax? oy’ (18b)
o Ny Ny C L M M) MY M)
= 1] = + — —
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3. Exact solutions

Following Navier procedure, the uniform external force as well as the transverse uniform
temperature and moisture concentration loads are presented in the form of a double trigonometric
series. We are here concerned with the exact solution of Egs. (17) for a simply supported FGM
plate. To solve this problem, Navier assumed that the transverse mechanical, temperature and
moisture loads, g, T; and C; in the form of a in the double Fourier series as

q q,
T, p =1t ¢sin( Ax)sin( uy) (i=1,2,3) (19)
C C.

Where A=n/a, u=nxlb, 0o t andc;areconstants and T; and C; are defined in Eq. (7).
Following the Navier procedure, we assume the following solution form for ug, Vo, W, and w
that satisfies the boundary conditions,

u, U cos( Ax)sin( uy)
Vo | ]V sin( Ax)cos( uy)
w, [ |w,sin( Ax)sin( uy) (20)
W W sin( Ax)sin( uy)

Where U, V, W, and W, are arbitrary parameters to be determined subjected to the condition that
the solution in Eq. (20) satisfies governing equation (17). One obtains the following operator
equation,

[k {a}={P} (21)
Where {A}={U, V, W, , W}' and [K] is the symmetric matrix given by
kll k12 k13 k14
k k k k
K — 12 22 23 24 22
A (22)
k k k k

14 24 34 44

In which
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Kiy = ~(Au2* + Agit®) Koy = (A + Ay pt®) Koy =Dy’ + 2Dy + 2D ) Xar” + Dyt + K, + 37+ 3,18°)
kip = =2 1 (Ay + Ag) Kig = 2 [ByA% + (B, + 2Bg) ,uz], Ky = A [B3A% + (B, +2Bg) ,uz];
Ky = u[(By + 2By ) A% + Byu?]l ky = u[(BS + 2Bg) A7+ BLu'l (23)
Koy = —(DSA* +2(DS +2DS)A2 u 2+ D5, w* + K, + 3,47 + J,u?)
= —(H A+ 2(HS + 2H ) A 2 + Hu + ASA + AL u’ + D5, n* + K, + 3,27+ J,u?)
The components of the generalized force vector {P}= {P., P,, Ps, P,}' are given by

P, =2[(ATt, + BTt,+*BTt,) + (ASc, + BCc,+B c,)]
= u[(ATt, + BTt,+*B"t,) + (A°c, + BCc,+*BCc,)]

P, =0, - h(A? + u?)|[(B"t, + D"t,+°Dt,) + (BSc, + D¢, +°DCc;)] (24)
P, =0, - h(A%+ u?)[*BTt,+°D " t,+°F "t,) + (*BCc,+°D °c, +°F °cy) |
Where
h/2
{AT,BT.DT )= | f(z) ()7, 2% jaz (25a)
-hil2
L N I QL B (25)
{*B7,°D 7 }= j E(Z) =)y (y(2), 7z (25¢)
{rgc,D°}- j 285 () Ther (25d)
S T s T s T "2 E(Z) 3 N
BT DR = | ﬁa(z)f(z){l,z,u/(z)}dz (25¢)
-h/2
{SBC’SDC,SF J' B(z) f(2){, 7,7 (z)}dz (25f)
In which

z=z/h, f(2)=f(2)Ih, g(2)= Lsin (”TZ)
T
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Table 1 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless
deflection and stresses of an FGM rectangular plate with and without porosities (a = 10h, b = 3a, g, =100,

T=C=0).

p Ko J, Theory ¢ W o, Ty Ty
0.85885 0.51364 0.72787 -0.44328
0.85891 0.51545 0.72797 -0.42956
0.85892 0.51065 0.72949 -0.34377
0.46203 0.27632 0.39157 -0.23847
0.46206 0.27620 0.39162 -0.23109

0.46206  0.27471  0.39246 -0.18493

Present Model

0 0 Reddy model
FSDT model

Present Model

100 O Reddy model
FSDT model

N T A K AT TN VN AP N P N TN
I
Ol O O Ol ©O O/l o ojlo o o

0 Present Model 0.08964  0.05361  0.07597 -0.04627
0 100 Reddy model = 0.08965  0.05358  0.07599 -0.04485

FSDT model = 0.08965  0.05330 0.07616 -0.03588

Present Model = 0.08227  0.04920  0.06972 -0.04246

100 100 Reddy model = 0.08228  0.04919  0.06972 -0.04116
FSDT model = 0.08228  0.04890  0.06986 -0.03293

= 0.08364  0.04671  0.05812 -0.03609

Present Model =0.1 0.08430  0.04308  0.05290 -0.03291

0.5 100 100 ¢ =0.2 0.08496  0.03938  0.04758 -0.02968
Reddy model ¢ =0 0.08366 ~ 0.04671  0.05812 -0.03498

FSDT model ¢ =0 0.08366 ~ 0.04643  0.05824  -0.02828

¢ =0 0.08456  0.04541  0.04769 -0.03049

Present Model ¢ =01 0.08523  0.04162  0.04222 -0.02715

2 100 100 ¢ =0.2 0.08590 0.03768  0.03661 -0.02378
Reddy model ¢ =0 0.08457  0.04539  0.04770 -0.02951

FSDT model ¢ =0 0.08457  0.04515  0.04781 -0.02303

¢ =0 0.08584  0.02905  0.04116 -0.02507

Present Model ¢ =01 0.08651  0.02522  0.03574  -0.02177

Metal 100 100 ¢ =0.2 0.08720  0.02134  0.03024  -0.01842
Reddy model ¢ =0 0.08584  0.02905  0.04115 -0.02428

FSDT model ¢ =0 0.08584  0.02888  0.04126 -0.01943

4. Numerical results

To illustrate the proposed approach, the Titanium/Zerconia of perfect and imperfect FG plate is
considered. Young’s modulus, Poisson’s ratio, coefficient of thermal expansion, and moisture
concentration expansion for

Titanium, Ti-6Al-4V : E,=66.2GPa » v =1/3; 1 f, = 0.33

Zirconia, ZrO;: g, —117 .0GPa » v =1/3; . = 7.11 x (10 °/°C )3 B, =0
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Table 2 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless
deflection and stresses of an FGM rectangular plate (a = 10h, b = 3a, q,=100; t;=t3 =0, t,=10, ¢;=¢3=0,
c,=100).

p K Jo Theory 4 w o, Ty Ty,
Present Model £ =0 180707 047204 155974 -0.44328
0 0  Reddymodel =0 180712 047187 155982  -0.42955
FSDT model =0 180713 046900 156139 -0.34377
Present Model =0 0.97214  -0.02729 0.85215 -0.01235
100 0  Reddy model =0 097216 -0.02740 085211 -0.01197
_ FSDT model =0 097216 -0.02750 0.85216  -0.00957
Ceramic Present Model -0 018861 -049588 0.18810  0.39206
0 100  Reddy model =0 018861 -049570 018806  0.37990
FSDT model =0 018860 -049322 0.18667  0.30404
Present Model g =0 0.17309 -0.50516  0.17495 0.40007
100 100  Reddy model =0 017309 -0.50498 017490  0.38766
ESDT model =0 017309 -050245 017351 031024
-0 018411 -051999 018301 045727
Present Model ¢ =0.1 0.16549  -0.42187 0.15147 0.36625
05 100 100 c-o02 014872 -0.33279 012405  0.28426
Reddy model ¢ = 0.18410 -0.51975 0.18299  0.44334
FSDT model =0 018408 -051623 018190 0.35898
-0 018504 -051475 015636  0.45986
Present Model ¢ = 0.1 016621 -0.41652 0.12578  0.36814
1 100 100 r-o02 014925 -0.32731 009924  0.28549
Reddy model £ =0 018504 -051450 0.15631 0.44545
FSDT model =0 018505 -051084 015494  0.35542
-0 018559 -050363 013461  0.45337
Present Model ~ ¢ = 0.1 016659 -0.40543 0.10501  0.36169
2 100 100 £ -o02 014945 -0.31618 079451  0.27908

Reddy model ¢ =0 0.18560  -0.50336  0.13451  0.43831
FSDT model ¢ =0 0.18567  -0.49980 0.13244  0.33958
Present Model ¢ =0 0.18840  -0.43117 0.12092  0.47465
¢ =0
¢ =0

Metal 100 100 Reddy model 0.18840  -0.43095 0.12087  0.45993
FSDT model 0.18840 -0.42794 0.11921  0.36808

In this section, numerical examples are presented and discussed for verifying the accuracy of
the present theory in predicting the hygro-thermo-mechanical bending responses of perfect and
imperfect FGM plates. Comparisons are made with various plate theories available in the scientific
literature. The reference temperature and moisture concentration are taken by To=25°C (room
temperature) and C,=0%, numerical results are presented in terms of non-dimensional stresses and
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Table 3 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless
deflection and stresses of an FGM rectangular plate with and without porosities (a=10h, b=3a, g,=100,
t1:0, t2:t3:10 , C]_:O , 02:C3:100).

p Ko Jo Theory ¢ W o Ty Ty
0 0 Present Model ¢ =0 2.54067 0.52554 2.20366  -0.43753
Reddy model ¢ =0 2.54076 0.52522 2.20374  -0.42454
100 0 Present Model ¢ =10 1.36680 -0.17649  1.20881 0.16834
Ceramic Reddy model ¢ =0 1.36682 -0.17643  1.20877 0.16257
0 100 Present Model ¢ =10 0.26517 -0.83532 0.27518 0.73692
Reddy model ¢ =0 0.26518 -0.83500 0.27507 0.71354
100 100 Present Model ¢ =0 0.24336  -0.84837 0.25669 0.74817
Reddy model ¢ =0 0.24336  -0.84804 0.25658  0.72442
¢ =0 0.26196  -0.87282 0.28041  0.84587
Present Model ¢ =0.1  0.22844 -0.71238 0.22844  0.68075

0.5 100 100 ¢ =02 019820 -056627 0.18386  0.53174

0.26195 -0.87239 0.28034  0.81947
0.26330 -0.86250 0.23772  0.84866

=0.1 022940 -0.70179 0.18756  0.68224
¢ =0.2 019878 -0.55537 0.14466  0.53196

Reddy model

1 100 100 Present Model

Reddy model ¢ =0 0.26330 -0.86205 0.23762  0.82148

¢ =0 0.26394  -0.84183 0.20154  0.83481

5 100 100 Present Model ¢ =0.1  0.22972 -0.68110 0.15319  0.66835
¢ =0.2 019878 -0.53449 0.11213  0.51806

Reddy model ¢ =0 0.26396  -0.84138 0.20133  0.80652

¢ =0 0.26599  -0.81790 0.18486  0.83228

5 100 100 Present Model ¢ =0.1  0.23148 -0.65816 0.13785  0.66489
¢ =0.2 020025 -0.51226 0.09805 0.51369

Reddy model ¢ =0 0.26601 -0.81745 0.18459  0.80297
Present Model ¢ =0 0.26775 -0.71694  0.18299 0.86749
Reddy model ¢ =0 0.26774 -0.71656 0.18286  0.84003

Metal 100 100

deflection. The various non-dimensional parameters used are

. 10%D a b)- _ 1 a b hj). _ 1 —h
W= — W(—,—j’ G, =750, =52 |’ Ty = Tyl 0,0,—
a‘q, 22 10°q, 2 2 2 10q, 3

* 10q, “\ "2’ °" D ° D D 12(1-v?)

Numerical results are presented in tabulated in Tables 1-4 and graphically plotted in Figs. 2-10
using the present model . It is assumed, unless otherwise stated, that q,=100 GPa,a/h =10 |,
b/a=3, p=2, t,=t,=0, ¢c,=c¢,=0.

The correlation between the present model and the higher-order theory Reddy model (2000)
and first-order shear deformation theories FSDT is illustrated in Tables 1-3. These tables give also
the effects of the volume fraction exponent ratio P and elastic foundation parameters on the
dimensionless deflection and stresses of perfect and imperfect FGM rectangular plate. Table 1
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Table 4 Effects of side-to-thickness ratio and elastic foundation parameters on the dimensionless deflection
of an FGM square plate (b =a, g, =100 , t, =0, t,=t, =10, ¢, =0, ¢, = ¢, = 100 )

a/h
p K J
0 ’ 5 5 10 20 50 100
¢ =0 5.29023 1.55628 0.62189  0.36020 032281

0 0 ¢ =01 4.77653 1.45251 0.62069 0.38772 0.35444
¢ =0.2 4.26990 1.35652 0.62744 0.42324 0.39407
¢ =0 3.83159 1.17192 0.47301 0.27474 0.24632
100 0 ¢ =01 3.36205 1.06588 0.46039 0.28846 0.26381
¢ =0.2 2.90407 0.96489 0.45148 0.30554 28462

0 ¢ =0 0.62132 0.20823 0.08622 0.05045 0.04529
0 100 ¢ =01 0.51335 0.17800 0.07884 0.04975 0.04555

¢ =0.2 0.41521 0.15053 0.07218 0.04919 0.04587

¢ =0 0.59473 0.19948 0.08261 0.04834 0.04339

100 100 ¢ =01 0.49114 0.17043 0.07550 0.04765 0.04362

¢ =0.2 0.39705 0.14404 0.06908 0.04709 0.04391

¢ =0 6.07957 1.79155 0.71642 0.41516 0.37211

0 0 ¢ =01 5.57581 1.69972 0.72762 0.45521 0.41629

¢ =0.2 5.08437 1.62145 0.75267 0.50920 0.47441

¢ =0 4.20771 1.29862 0.52553 0.30557 0.27402

100 0 ¢ =01 3.71360 1.19036 0.51624 0.32416 0.29660

) ¢ =0.2 3.22777 1.08752 0.51207 0.34783 0.32425
¢ =0 0.62155 0.21095 0.08769 0.05139 0.04613

0 100 ¢ =01 0.51162 0.17993 0.08011 0.05069 0.04643

¢ =0.2 0.41156 0.15166 0.07326 0.05013 0.04678

¢ =0 0.59451 0.20193 0.08396 0.04920 0.04417

100 100 ¢ =01 0.48911 0.17213 0.07666 0.04851 0.04443

¢ =0.2 0.39325 0.14500 0.07005 0.04794 0.04474

¢ =0 6.81971 2.00812 0.80056 0.46210 0.41374

0 0 ¢ =01 6.32870 1.92700 0.82192 0.51216 0.46790

¢ =0.2 5.85622 1.86429 0.86163 0.58054 0.54038

¢ =0 4.54370 1.41069 0.57016 0.33039 0.29598

100 0 ¢ =01 4.02487 1.29937 0.56272 0.35216 0.32192

10 ¢ =0.2 3.51079 1.19327 0.56102 0.37984 0.35380

¢ =0 0.62637 0.21455 0.89184 0.52102 0.04673
0 100 ¢ =01 0.51458 0.18292 0.81441 0.51379 0.04702
¢ =0.2 0.41279 0.15407 0.74427 0.50790 0.04736
¢ =0 0.59882 0.20526 0.08534 0.04986 0.04472
100 100 ¢ =01 0.49170 0.17490 0.07789 0.04914 0.04497
¢ =0.2 0.39422 0.14723 0.07113 0.04855 0.04527
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gives the effects of the volume fraction exponent ratio P and elastic foundation parameters on the
dimensionless displacements and stresses of perfect and imperfect FGM plate subjected to a
mechanical load. It can be shown that the deflection and stresses are decreasing with the existence
of the elastic foundations. The inclusion of the Winkler foundation parameter yields higher
magnitude results than those with the inclusion of Pasternak foundation parameters. As the volume
fraction exponent increases for perfect and imperfect FGM plates, the deflection will increase. The
stresses are also sensitive to the variation of p. A table 2 and 3 presents similar results as those
given in Table 1 including the effect of the temperature and moisture fields. The obtained results
are compared with those predicted by FSDT, Reddy (2000). An excellent agreement is obtained
between the present theory and Reddy theory for all values of power law index p and with or
without the presence of the elastic foundation. It is important to observe that the stresses for a fully
ceramic plate are not the same as that for a fully metal plate with elastic foundations. This is
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Fig. 2 Dimensionless center deflection W versus side-to-thickness ratio a/h for imperfect and perfect FGM
rectangular plates on elastic foundations
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Fig. 3 Dimensionless center deflection W versus plate aspect ratio b/a for imperfect and perfect FGM plates
on elastic foundations
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Fig. 4 Dimensionless center deflection W of imperfect and perfect FGM plates on elastic foundations
versus side-to-thickness ratio a/h for different values of temperatures
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Fig. 5 Dimensionless center deflection W of imperfect and perfect FGM plates on elastic foundations
versus side-to-thickness ratio a/h for different values of moistures
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Fig. 6 Effect of elastic modulus of Winkler foundation K, on dimensionless center deflection W of
imperfect and perfect FGM plates
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Fig. 7 Effect of Pasternak shear modulus parameter J, on dimensionless center deflection W of FGM plates
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Fig. 8 Dimensionless axial stress z, through-the-thickness of imperfect and perfect FGM plates on elastic
foundations for different values of moistures and temperatures.

because the plate here is affected with the inclusion of the temperature field. This has an important
bearing in rocket-launch foundation structures as via judicious selection of the spatial structure of
FGM, one can effectively prolong the serviceability life of the structure. In considering the results
presented in tables 1 to 3, it should be noted that the quantity of unknown variables in the present
formulation is four, whereas the number unknown function in FSDT and Reddy is five. It can be
concluded that the present theory is not only accurate but also comparatively simple and quite
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elegant in predicting the hygro-thermo-mechanical bending response of perfect and imperfect
FGM plates resting on Winkler’s or Pasternak’s elastic foundations. Table 4 documents the effects
of side-to-thickness ratio and elastic foundation parameters on the dimensionless deflection of
imperfect FGM square plate under hygro-thermo-mechanical loads using the present model. It can
be seen from Table 4 (and also Fig. 2) that the deflection decreases as the side-to-thickness ratio
a/h increases and this, is due to the considerable effect of temperature and moisture on the
extensional behavior of the plate comparatively the flexural behavior. This observation is also
confirmed by Benferhat et al..(2014). In addition, all displacements observed to decrease with the
presence of the elastic foundations. The inclusion of the Winkler foundation parameter effectively
generates greater magnitudes in solutions compared with solutions yielded from the inclusion of
Pasternak foundation parameters.

A Figs. 2 and 3 shows the variation of the center deflection with aspect ratio for different types
of imperfect FGM plates. The deflection of the metallic plate is found to be of the largest
magnitude and that of the ceramic plate, of the smallest magnitude irrespective of the values of
temperature, moisture, and elastic foundation parameters. All the plates with intermediate
properties undergo corresponding intermediate values of center deflection. In addition, the
deflection is increasing in the absence of the foundations and the effect of moisture parameter may
be less than that of the temperature one. Figs. 4 and 5 shows the variation of the center deflection
with side-to-thickness ratio for imperfect FG plates subjected to different parameters. The
deflection increases as the moisture parameter increases, and the plate is very sensitive to the
variation of elastic foundation parameters. In Figs. 6 and 7 show the effect of foundation
parameters ko and Jo on the variation of non-dimensional center deflection W of imperfect FGM
plate. The results show that the non-dimensional center deflection decreases with the increase of
foundation parameters ko and Jo, and the Winkler parameter k, has more effect on decreasing the
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Fig. 9 Dimensionless axial stress o, through-the-thickness of perfect FGM plate for different values of
elastic foundations parameters.
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Fig. 10 Dimensionless shear stress 7,, through-the-thickness of FGM plates on elastic foundations
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non-dimensional center deflection W than the shear Pasternak parameter Jo. Decreases of
deflections indicate that increasing the foundation stiffness will certainly enhance the deformation
rigidity of the plate. It is observed from the results; that effects of k, and Jo on the non-dimensional
center deflection W of imperfect FGM plates are more significant for thicker plates. The
longitudinal stress ox and the transverse shear stress z,, are plotted in Figs. 8, 9 and 10
through-the-thicknesses of FGM plates. Under the application of the uniform loading and elastic
foundations, the longitudinal stress is tensile through the plate thickness and very sensitive to the
variation of temperature and moisture parameters.

Figs. 8 and 9 depict the through-the-thickness distributions of the non-dimensional axial stress

in the imperfect FGM rectangular plates. The effect of moisture and temperature fields on

O-X
o, Is shown in Fig. 8, while the effect of elastic foundations parameters is shown Fig. 9. As
exhibited in these figures, the maximum compressive stresses occur at a point on the top surface
and the maximum tensile stresses occur, of course, at a point on the bottom surface of the

imperfect FGM plates. As illustrated in Fig. 9 the elastic foundation has a significant effect on the
maximum values of the non-dimensional axial stressc .

Fig. 10 show that the maximum value occurs at a point above the mid-plane of the imperfect
FGM plate and its magnitude increases with the inclusion of the temperature, moisture, and

foundation parameters. The non-dimensional transverse shear stress 7., is plotted

Xz

through-the-thickness of imperfect FGM plates. It is evident that the maximum value of 7,

arises at a point above the mid-plane of the imperfect FGM plate and its magnitude increases with
the inclusion of the foundation parameters.

5. Conclusion

In this paper, the hygro-thermo-mechanical bending response of perfect and imperfect FGM
plates resting on elastic foundations by using the sinusoidal higher order shear deformation theory
to plate is studied. The stress and displacement response of the plates have been analyzed under
uniform loading. Dimensionless stresses and deflection are computed for perfect and imperfect FG
plates subjected to the hygrothermal effects. Illustrating examples are carried out, with the most
important conclusions that the effect of moisture concentration parameter on thermo- mechanical
responses of the imperfect FGM plates is considerably different. The influence of moisture
concentration as well as other parameter is highly significant. The influence of moisture
concentration as well as other parameters is demonstrated to be significant. The bending response
of the perfect and imperfect FG plate deteriorates considerably with the increase in temperature
and moisture concentration. The results are verified with available results in the literature. It can be
concluded that the proposed theory is accurate and simple in solving the hygro-thermo-mechanical
bending behavior of perfect and imperfect functionally graded plates.
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