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Abstract.  This paper is focused on the delamination analysis of a multilayered beam structure loaded in torsion 

under strain-path control. The beam under consideration has a rectangular cross-section. The layers of the beam are 

made of different viscoelastic materials which exhibit continuous inhomogeneity in longitudinal direction. Since the 

delamination is located inside the beam structure, the torsion moments in the two crack arms are obtained by modeling 

the beam as an internally static undetermined structure. The strain energy stored in the beam is analyzed in order to 

derive the strain energy release rate (SERR). Since the delamination is located inside the beam, the delamination has 

two tips. Thus, solutions of the SERR are obtained for both tips. The solutions are verified by analyzing the beam 

compliance. Delamination analysis with bending-torsion coupling is also performed. The solutions derived are time-

dependent due to two factors. First, the beam has viscoelastic behavior and, second, the angle of twist of the beam-free 

end induced by the external torsion moment changes with time according to a law that is fixed in advance. 
 

Keywords:  delamination; inhomogeneous material; multilayered beam structure; torsion; viscoelastic 
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1. Introduction 
 

The best choice of material for a given engineering structure depends largely on the loading 

conditions. If these conditions are different in different parts of the structure, a continuously 

inhomogeneous structural material is a very good candidate for replacement of the conventional 

homogeneous materials used traditionally in various areas of engineering. The continuously 

inhomogeneous materials are particularly attractive because of the fact that their material properties 

vary smoothly along one or more directions in the solid. A very popular type of continuously 

inhomogeneous material is the functionally graded material (FGM) (Akbulut and Sonmez 2008, 

Akbulut et al. 2020, Butcher et al. 1999, Gasik 2010, Hedia et al. 2014). As a matter of fact, FGM-

s can be defined as continuously inhomogeneous composites made of two or more constituent 

materials (Chen et al. 2020, Hirai and Chen 1999, Madan et al. 2020, Mahamood and Akinlabi 2017, 

Markworth et al. 1995, Miyamoto et al. 1999, Nikbakht et al. 2019, Nemat-Allal et al. 2011, Ridha 

et al. 2016, Saiyathibrahim et al. 2019). The FGM-s are fabricated by continuously mixing of their 
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constituent materials. The microstructure and the ratios of constituent materials change continuously 

along definite directions in the structural members (Radhika et al. 2020, Shrikantha Rao and 

Gangadharan 2014, Toudehdehghan et al. 2017, Uslu Uysal and Kremzer 2015, Uslu Uysal and 

Güven 2015, Uslu Uysal 2016). There are advanced technologies for production of FGM-s which 

allow for tailoring of material properties in order to meet varied exploitation requirements (Gasik 

2010, Mahamood and Akinlabi 2017, Markworth et al. 1995, Miyamoto et al. 1999). 

In principle, a multilayered inhomogeneous structure is defined as a structure consisting of 

adhesively bonded layers made of different inhomogeneous materials. The number and the thickness 

of layers may be arbitrary. Various kinds of multilayered structures (beams, plates, columns, panels, 

shells, etc.) are frequently used in different load-bearing constructions in contemporary engineering 

(Nguyen et al. 2015, Nguyen et al. 2020). Multilayered structures arouse great interest in the 

engineering community. One of the important advantages of multilayered structures is the high 

strength-to-weight and strength-to-thickness ratio. Therefore, one of the ways for weight savings is 

to use multilayered materials for the manufacturing of various engineering structures and facilities. 

Multilayered structures are very useful for engineering applications which are highly sensitive with 

respect to weight. 

The delamination phenomenon is of specific importance for the safety of inhomogeneous 

structures (Dolgov 2002, 2005, 2016, Uslu Uysal and Güven 2016, Rizov 2022, Rizov and 

Altenbach 2023, Rizov 2023). In fact, delamination is a failure mode representing the separation of 

layers which may have a significant effect on structural integrity, reliability and durability. The 

presence of delamination in multilayered structural members and components causes a reduction of 

strength and stiffness and exhausts the load-carrying capacity. Also, the delamination increases the 

risk of collapse of the entire structure. 

This paper analyzes delamination of a multilayered inhomogeneous beam structure of a 

rectangular cross-section subjected to torsion under strain-path control. The need for carrying-out of 

such analysis is because multilayered beams loaded in torsion are used in many load-caring 

structural applications. However, the delamination analyses of multilayered systems under torsion 

are dealing chiefly with beams of circular cross-section (Rizov 2018, 2020, 2021). It should be 

underlined further that the existing research work in the field of delamination fracture considers 

beam structures of rectangular cross-section usually subjected to bending. For instance, Hutchinson 

and Suo (1992) have developed a huge number of analyses of various delamination cases assuming 

linear-elastic behavior. Solutions of the SERR have been found-out (Hutchinson and Suo 1992). 

These solutions have been used to investigate the influence of different factors on the delamination 

behavior (Hutchinson and Suo 1992). Analyses of delamination fracture in multilayered beams of 

rectangular cross-section under bending have been carried-out by Hsueh et al. (2009). The SERR 

has been derived again for the case of linear-elastic behavior of the multilayered material (Hsueh et 

al. 2009). The existing research work on fracture in continuously inhomogeneous beam structures 

(like, for instance, functionally graded beams) also deal mainly with beams of rectangular cross-

section for the most part subjected to bending. Cracks in functionally graded beams under three-

point bending have been analyzed by Carpinteri and Pugno (2006). The beams considered have 

linear-elastic behavior (Carpinteri and Pugno 2006). Works dealing with fracture of functionally 

graded materials and structures have been reviewed by Tilbrok et al. (2005). The functionally graded 

structures considered are usually under bending and exhibit linear-elastic mechanical behavior 

(Tilbrok et al. 2005). 

Apparently, delamination in multilayered inhomogeneous viscoelastic beams of rectangular 
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Fig. 1. Viscoelastic mechanical model 

 

 

cross-section subjected to torsion under strain-path control has been feebly studied up to now. The 

present paper bridges this gap in the existing research work. The layers of the rectangular 

viscoelastic beam analyzed in the present paper are continuously inhomogeneous along the length 

of the beam. Delamination is located between layers inside the beam. The left-hand and right-hand 

delamination crack arms have different widths. The main purpose of the paper is to obtain the SERR 

under strain-path control. The present paper is organized in the following way. 

1. Describing the viscoelastic model applied for analyzing the mechanical behavior of the beam 

with a delamination subjected to torsion under strain-path control. 

2. Modeling the beam as an internally static undetermined structure. 

3. Determining the SERR under strain-path control for both delamination tips. 

4. Performing a parametric analysis of the SERR. 

5. Determining the SERR with taking into account the bending-torsion coupling. 

6. Comparing the outcome of the delamination analysis with bending-torsion coupling with the 

torsion case alone. 

7. Formulating the main conclusions. 

One of the major limitations of the theoretical model used in the present delamination study 

ensues from the fact that the beam structure has to be loaded in torsion (or in torsion and bending) 

under strain-path control. 

 

 

2. Beam with delamination loaded in torsion under strain-path control 
 

The viscoelastic mechanical model displayed in Fig. 1 is under strain-path control. 

The variation of the shear strain, 𝛾𝑗, with time, 𝑡, is set as 

tv jj =  (1) 

where 𝑣𝑗 is a parameter that controls the variation. The constitutive law of the model in Fig. 1 is 

written as (Zubchaninov 1990) 
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Fig. 2 Multilayered viscoelastic beam structure with a delamination 
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In Eqs. (2), (3) and (4), 𝜏𝑗 is the shear stress, 𝜂𝑗 is the coefficient of viscosity of the dashpot 

(Fig. 1), 𝐺1𝑗 and 𝐺2𝑗 are the shear moduli of the two springs in the model. 

The time-dependent shear modulus of the model in Fig. 1 is found as 

j
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By substituting of Eqs. (1) and (2) in (5), one determines 
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The time-dependent shear modulus Eq. (6) is used for modeling the viscoelastic behavior of the 

beam structure displayed in Fig. 2. The beam is rectangular with width, b, and thickness, h. The 

length of the beam is l. The beam is with longitudinal viscoelastic layers of different widths. The 

materials of the layers are different. There is a delamination crack between layers as displayed in 

Fig. 2. The length of the crack is denoted by 𝑎1+𝑎2. The widths of crack arms are 𝑏1 and 𝑏2 (Fig. 

2). The beam is clamped in section, B. The beam is loaded in torsion at its free end so as the angle 

of twist, 𝜑, varies with time according to the following law (Fig. 2) 

tv =  (7) 

where 𝜈𝜑 is a parameter that controls the variation. 

The layers of the beam exhibit continuous material inhomogeneity along the beam length. The 

following laws are used for describing the variation of the shear moduli and the coefficient of the 

viscosity of the jth layer in the longitudinal direction 
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where 

11 llxl −−  (11) 

In Eqs. (8), (9), (10) and (11), 𝐺1𝐻𝑗, 𝐺2𝐻𝑗, 𝜂𝐻𝑗, 𝐺1𝐿𝑗, 𝐺2𝐿𝑗 and Lj  the values of 𝐺1𝑗, 𝐺2𝑗 

and 𝜂𝑗 j  at the ends of the beam, 𝛽𝑗, 𝛿𝑗 and 𝜓𝑗 are parameters which control the variation of 

material properties, the abscissa, x, is displayed in Fig. 2. 

In order to derive the SERR for the delamination crack in the beam under consideration (Fig. 2), 

the torsion moments in the two crack arms have to be determined first. In fact, the beam represents 

a structure with one degree of internal static indeterminacy. The moment, 𝑇1, in the left crack arm 

is treated as internal redundant unknown. The static indeterminacy is resolved by applying the 

theorem of Menabrea 

0
1

=




T

U
 (12) 

Where U is the strain energy cumulated in the beam. This strain energy is found as 

4321 UUUUU +++=  (13) 

where 𝑈1 is the strain energy in portion, 𝑅1𝑅2 (Fig. 2), 𝑈2 and 𝑈3 are the strain energies in the 

crack arms, 𝑈4 is the strain energy in portion, 𝑅4𝑅5. 
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The strain energy in portion, 𝑅1𝑅2, is determined as 

dxdAuU j
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Where n is the number of layers, 𝐴𝑗 is the area of the j-th layer, 𝑢01𝑗 is the density of strain 

energy in the j-th layer. 𝑢01𝑗 is found as 
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From Eqs. (5) and (15), one derives 
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where 𝜏𝑗 is obtained by applying the following formula for shear stresses in multilayered beam 

loaded in torsion (Chobanian 1997) 
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where S is the stiffness in torsion of the beam, T is the torsion moment (T is unknown quantity). The 

quantity, 𝛼𝑘, is found as 

h

k
k


 =  (18) 

The axes, y and z, are displayed in Fig. 2. The quantities, 𝑃𝑘,𝑗 and 𝑄𝑘,𝑗, are determined by using 

the following recurrent formulae (Chobanian 1997) 
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In Eqs. (19), (20), (21) and (22), j=1, 2, …, n, n-1. The quantities, 𝑏𝑗, are displayed in Fig. 2. 

Besides (Chobanian 1997), 
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All unknown quantities, 𝑃𝑘,𝑗 and 𝑄𝑘,𝑗, with the same index, k, are determined consecutively by 

using Eqs. (19), (20), (23) and (24). 

The stiffness, S, that is involved in Eq. (17), is found as (Chobanian 1997) 
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By substituting of Eqs. (17) in (16), one obtains 
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The strain energy, 𝑈2, is found as 
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where 𝑛1 is the number of layers in this crack arm, 𝐴𝑗 is the area of the j-th layer, 𝑢02𝑗 is the 

strain energy density in the j-th layer. 𝑢02𝑗 is derived as 
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where 𝜆2𝑗 is obtained by replacing of S with 𝑆1 in Eq. (27). The stiffness in torsion, 𝑆1, of the 

left-hand crack arm is determined by replacing of n with 𝑛1 in Eq. (25). 

The strain energy stored in the right-hand crack arm is calculated as 
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where 𝑛2 is the number of layers, 𝑢03𝑗 is the strain energy density in the j-th layer. 𝑢03𝑗 is found 

as 
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where 𝑇2 is the torsion moment in the right-hand crack arm, 𝜆3𝑗 is obtained by replacing of S with 

𝑆2 in Eq. (27). In order to determine the stiffness in torsion, 𝑆2, of the right-hand crack arm, n is 

replaced with 𝑛2 in Eq. (25). The torsion moment, 𝑇2, is expressed as a function of 𝑇1. For this 

purpose, the following equation of equilibrium of the torsion moments is used 
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By using Eq. (32), Eq. (31) is re-written as 
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Finally, the strain energy in the un-cracked beam portion, 𝑅4𝑅5, is derived as 
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where 𝑢04𝑗 is obtained by using Eq. (26). 

There are two unknowns, 𝑇1  and T, in Eq. (12). Therefore, a further equation with these 

unknowns is needed. To constitute such an equation, the angle of twist is found by applying the 

theorem of Castigliano 

=




T

U
 (35) 

After substituting of the strain energy in Eqs. (12) and (35), the two equations are solved with 

respect to 𝑇1 and T. 

First, the SERR, G, is derived at increase of the delamination length at the delamination tip 

located in section, 𝑅2, of the beam (Fig. 2). The SERR is written as 
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U
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By substituting of Eqs. (13), (14), (28), (30) and (34) in (36), one obtains 

94



 

 

 

 

 

 

Multilayered viscoelastic beam loaded in torsion under strain-path control: A delamination… 





−








= 

=

=

dAu
h

G j

A

nj

j
j

01

)(1

1








+ 

=

=

dAu j

A

nj

j
j

02

)(1

1













+ 

=

=

dAu j

A

nj

j
j

03

)(1

2

 (37) 

The integration in Eq. (37) is carried-out by the MatLab. Eq. (37) is applied to obtain the SERR 

at various values of time. It should be mentioned that the material properties involved in Eq. (37) 

are determined at x=−𝑎1. 

The SERR at increase of the delamination length at the delamination tip located in section, 𝑅4, 

of the beam (Fig. 2) is derived as 
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By combining of Eqs. (13), (14), (28), (30), (34) and (36), one obtains 
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The MatLab is used to solve the integrals in Eq. (39). The material properties involved in Eq. 

(39) are found at x=𝑎2. The SERR can be derived at various values of time by Eq. (39). 

The compliance of the beam is analyzed in order to determine an alternative solution of the SERR 

for verification of Eqs. (37) and (39). The compliance, C, is derived as 
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Eq. (41) is found by using the integrals of Maxwell-Mohr. The quantities, 𝑇1 𝑇⁄  and (𝑇1 𝑇⁄ ) 𝑇⁄ , 

in Eq. (41) are the moments generated by the unit loading for determination of 𝜑. 

The SERR at increase of the delamination length at the delamination tip located in section, 𝑅2, 

of the beam is written as 
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By combining of Eqs. (41) and (42), one obtains 
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where the material properties are found at x=−𝑎1 . The SERR derived by Eq. (43) match these 

determined by Eq. (37). This confirms the correctness of the solution of the SERR at increase of 
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Fig. 3 The SERR presented as a function of 𝐺1𝐿1 𝐺1𝐻1⁄  ratio (curve 1 - at 𝜈𝜑=0.05×10-8 rad/sec, curve 2 - at 

𝜈𝜑=0.10×10-8 rad/sec and curve 3 - at 𝜈𝜑=0.15×10-8 rad/sec) 

 

 

delamination length at the delamination tip located in section, 𝑅2, of the beam. 

The SERR at increase of the delamination length at the delamination tip located in section, 𝑅4, 

of the beam is found as 
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By substituting of Eqs. (41) in (44), one derives 
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Here, the material properties are obtained at x=𝑎2. The fact that the SERR found by Eq. (45) 

match these determined by using Eq. (39) verifies the solution of G at increase of delamination 

length at the delamination tip located in section, 𝑅4, of the beam. 

 
 
3. Parametric analysis 
 

This section of the paper contains results of a parametric analysis. The results are derived by 

applying the solutions of the SERR obtained in section 2 of the paper. It is assumed that b=0.030 m, 

h=0.045 m, l=0.800 m, 𝑙1 =0.400 m, n=4, 𝑛1 =2, 𝑣𝜑 =0.15×10-8, rad/sec, 𝛽𝑗 =0.7, 𝛿𝑗 =0.7 and 

𝜓𝑗=0.7. 

The effect of the variation of 𝐺11 in layer 1 along the beam length on the SERR is analyzed. For 

this purpose, the SERR is presented as a function of 𝐺1𝐿1 𝐺1𝐻1⁄  ratio in Fig. 3 at three values of 

parameter, 𝑣𝜑. It should be specified that the SERR in Fig. 3 is expressed in non-dimensional form 

as 𝐺𝑁 = 𝐺 (𝐺1𝐻1ℎ)⁄  . It is evident from Fig. 3 that when 𝐺1𝐿1 𝐺1𝐻1⁄   ratio increases, the SERR 

decreases. One can observe also in Fig. 3 that increase of parameter, 𝑣𝜑, causes increase of the 

SERR. 
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Fig. 4 The SERR presented as a function of time 

 

 
Fig. 5 The SERR presented as a function of 𝜂𝐿1 𝜂𝐻1⁄   ratio (curve 1 - at 𝐺2𝐿1 𝐺2𝐻1⁄  =0.5, curve 2 - at 

𝐺2𝐿1 𝐺2𝐻1⁄ =1.0 and curve 3 - at 𝐺2𝐿1 𝐺2𝐻1⁄ =2.0) 

 

 

The evolution of the SERR with time is presented in Fig. 4. Time in Fig. 4 is expressed in non-

dimensional form as 𝑡𝑁 = 𝑡𝐺1𝐻1 𝜂𝐻1⁄ . 

The influence of variations of 𝜂1  and 𝐺21  in longitudinal direction of beam layer 1 on the 

SERR is analyzed too. The results of the analysis are illustrated in Fig. 5 where the SERR is 

presented as a function of 𝜂𝐿1 𝜂𝐻1⁄  at three 𝐺2𝐿1 𝐺2𝐻1⁄  ratios. Fig. 5 shows that the SERR reduces 

when 𝜂𝐿1 𝜂𝐻1⁄  ratio increases. The inspection of Fig. 5 indicates that increase of 𝐺2𝐿1 𝐺2𝐻1⁄  ratio 

induces also reduction of the SERR. 

One can examine the effect of the ratios of the properties in layer 2 and layer 1 in Fig. 6 where 

the variation of the SERR with increase of 𝐺1𝐻2 𝐺1𝐻1⁄   ratio is presented at three 𝐺2𝐻2 𝐺2𝐻1⁄  

ratios. The curves in Fig. 6 indicate that the SERR reduces with increasing of 𝐺1𝐻2 𝐺1𝐻1⁄   and 

𝐺2𝐻2 𝐺2𝐻1⁄  ratios. 

The effect of the ratio of the coefficients of viscosity in layer 3 and layer 1 on the SERR is also 

analyzed. The dependency obtained is plotted in Fig. 7. One can observe in Fig. 7 that increase of 

𝜂𝐻3 𝜂𝐻1⁄  ratio generates reduction of the SERR. It can also be observed in Fig. 7 that the SERR 

derived at increase of the delamination length at delamination tip located in beam section, 𝑅4, is 
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Fig. 6 The SERR presented as a function of 𝐺1𝐻2 𝐺1𝐻1⁄  ratio (curve 1 - at 𝐺2𝐻2 𝐺2𝐻1⁄ =0.5, curve 2 - at 

𝐺2𝐻2 𝐺2𝐻1⁄ =1.0 and curve 3 - at 𝐺2𝐻2 𝐺2𝐻1⁄ =2.0) 

 

 
Fig. 7 The SERR presented as a function of 𝜂𝐻3 𝜂𝐻1⁄  ratio (curve 1 - at increase of the delamination length 

at delamination tip located in beam section, 𝑅3 , and curve 2 - at increase of the delamination length at 

delamination tip located in beam section, 𝑅4) 

 

 
Fig. 8 The SERR presented as a function of 𝐺2𝐻4 𝐺2𝐻1⁄   ratio (curve 1 - at 𝑎1 𝑙1⁄  =0.3, curve 2 - at 

𝑎1 𝑙1⁄ =0.5 and curve 3 - at 𝑎1 𝑙1⁄ =0.7) 
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Fig. 9 The SERR presented as a function of 𝜂𝐻4 𝜂𝐻1⁄   ratio (curve 1 - at 𝑎2 (𝑙 − 𝑙1)⁄  =0.3, curve 2 - at 

𝑎2 (𝑙 − 𝑙1)⁄ =0.5 and curve 3 - at 𝑎2 (𝑙 − 𝑙1)⁄ =0.7) 

 

 
Fig. 10 The SERR presented as a function of h/b ratio (curve 1 - under pure torsion and curve 2 - under torsion 

and bending) 

 

 

lower than that found at increase at the delamination tip located in beam section, 𝑅3 (this caused 

by the fact that the material properties in section, 𝑅4, of the beam have higher values than in the 

beam section, 𝑅3 , since the material properties values increase from the free end of the beam 

towards the clamped end. 

The influence of the 𝑎1 𝑙1⁄  ratio on the SERR is investigated. The dependency of the SERR on 

𝑎1 𝑙1⁄  and 𝐺2𝐻4 𝐺2𝐻1⁄  ratios is displayed in Fig. 8. One can observe in Fig. 8 that when 𝑎1 𝑙1⁄  

ratio increases, the SERR increases too. The increase of 𝐺2𝐻4 𝐺2𝐻1⁄  ratio generates reduction of 

the SERR (Fig. 8). 

The variation of the SERR with increase of 𝑎2 (𝑙 − 𝑙1)⁄  and 𝜂𝐻4 𝜂𝐻1⁄  ratios is displayed in 

Fig. 9. The analysis of the curves in Fig. 9 reveals that the SERR reduces with increase of 

𝑎2 (𝑙 − 𝑙1)⁄   and 𝜂𝐻4 𝜂𝐻1⁄   ratios. In this case, the reduction of the SERR with increase of 

𝑎2 (𝑙 − 𝑙1)⁄  ratio is due to the fact that the delamination tip, 𝑅4, changes its position in direction of 

increase of the values of material properties (the material properties and the beam stiffness increase 

from the free end towards the clamped end of the beam). 
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Delamination analysis with bending-torsion coupling is also performed. The bending response 

of the multilayered inhomogeneous beam under strain-path control is treated through a viscoelastic 

model that has the same schematic as this depicted in Fig. 1 by replacing of 𝛾𝑗, 𝜂𝑗, 𝐺1𝑗 and 𝐺2𝑗 

with 𝜀𝑗, 𝜂𝐿𝑗, 𝐸1𝑗 and 𝐸2𝑗, respectively (here, 𝜀𝑗 is the linear strain induced by the bending, 𝜂𝐿𝑗 

is the coefficient of viscosity, 𝐸1𝑗 and 𝐸2𝑗 are the moduli of elasticity of the two springs in the 

model). The same replacements are carried-out in Eqs. (3), (4) and (6) for obtaining of the time-

dependent modulus of elasticity, 𝐸𝐷𝑗 , that is applied in the delamination analysis under bending. 

Analogical replacements are performed in Eqs. (8), (9) and (10) for describing the distributions of 

𝐸1𝑗, 𝐸2𝑗 and 𝜂𝐿𝑗 along the length of the beam. The static indeterminacy of the beam loaded in 

bending is resolved by applying the theorem of Menabrea. The SERR, 𝐺𝐿, due to bending of the 

beam under strain-path control is found-out by using Eq. (37) for the delamination tip in section, 

𝑅2, where the strain energy densities are determined through replacement of 𝜏𝑗 and 𝐺𝐷𝑗 with 𝜎𝑗 

and 𝐸𝐷𝑗  in Eq. (16). Here, 𝜎𝑗  is the normal stress induced by bending of the beam. Similar 

replacements are conducted in Eq. (39) to derive the SERR (due to bending of the beam under strain-

path control) for the delamination tip located in section, 𝑅2. The solutions of the SERR are verified 

by analyzing the beam compliance under bending. The total SERR, 𝐺𝐿𝑇, due to bending-torsion 

coupling is determined by addition of G and 𝐺𝐿, i.e., 𝐺𝐿𝑇=G+𝐺𝐿. 

The outcome of the delamination analysis with bending-torsion coupling is compared with the 

torsion case alone in Fig. 10. One can see that bending-torsion coupling causes a substantial growth 

of the SERR in comparison with the torsion alone (Fig. 10). 

 

 

5. Conclusions 
 

Delamination in a multilayered inhomogeneous beam configuration with rectangular cross-

section loaded in torsion under strain-path control is analyzed with taking into account the 

viscoelastic behavior of the material. Solution of the SERR is obtained. The main findings are 

formulated as: 

- the SERR increases with increasing of the parameter, 𝜈𝜑, 

- the increase of 𝐺1𝐿1 𝐺1𝐻1⁄  , 𝜂𝐿1 𝜂𝐻1⁄  , 𝐺2𝐿1 𝐺2𝐻1⁄  , 𝐺1𝐻2 𝐺1𝐻1⁄  , 𝐺2𝐻2 𝐺2𝐻1⁄  , 𝜂𝐻3 𝜂𝐻1⁄  , 

𝐺2𝐻4 𝐺2𝐻1⁄  and 𝜂𝐻4 𝜂𝐻1⁄  ratios causes reduction of the SERR, 

- the SERR obtained at increase of the delamination length at delamination tip located in beam 

cross-section, 𝑅4, is lower than that determined at increase at the delamination tip located in 

beam cross-section, 𝑅3, 

- the SERR reduces with increase of 𝑎2 (𝑙 − 𝑙1)⁄  ratio, 

- the SERR grows with increase of 𝑎1 𝑙1⁄  ratio, 

- bending-torsion coupling causes a substantial growth of the SERR in comparison with the 

torsion case alone. 
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