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Abstract.  The present work is considered to study the two-dimensional problem in an orthotropic magneto-
thermoelastic media and examined the effect of thermal phase-lags and GN-theories on Rayleigh waves in the light of 
fractional order theory with combined effect of rotation and hall current. The boundary conditions are used to derive 
the secular equations of Rayleigh waves. The wave properties such as phase velocity, attenuation coefficient are 
computed numerically. The numerical simulated results are presented graphically to show the effect of phase-lags and 
GN-theories on the Rayleigh wave phase velocity, attenuation coefficient, stress components and temperature change. 
Some particular cases are also discussed in the present investigation. 
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1. Introduction 
 

The wave theory is one of the important branches in the solid mechanics and continuum 
dynamics. The study of elastic surface waves in different media along with the different interfaces 
has great importance in thermoelastic wave theory. The interface waves require at least one of the 
two mediums is solid while the other medium may be a vacuum, air, a liquid or a solid. In addition 
to longitudinal and transverse waves there are various types of surface waves. The surface waves 
which can transmit along the stress free surface of a solid are called Rayleigh waves. These elastic 
waves are helpful to examine the nature of earthquakes, damage of large buildings as these are much 
responsible than the other seismic waves. These waves are generally non-dispersive in nature. The 

magneto-thermoelastic theories are concerned with the interacting effects of an externally applied 
magnetic field on elastic and thermo-elastic deformations in the solids. When heat is supplied to the 
body then mechanical waves are produced with thermal expansion. It was observed that the 
interactions between the thermal and mechanical fields occurred through the Lorentz force, Ohm’s 
law and the electric field created by the velocity of a material particle moving in a magnetic field. 
When the magnetic field is strong, the influence of hall current and rotation cannot be ignored. The 
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interaction between the externally applied magnetic field and thermoelastic deformations give rise 

to the coupled field of magnetothermoelasticity. Moreover, the fractional order theory of generalized 

thermoelasticity is well known part of solid mechanics. Most of the practical problems which contain 

differential equations of fractional order are solved with the help of fractional order theory. The 

applications of Fractional calculus are used in diverse fields like in quantum mechanics, nuclear 

physics, biology, fluid mechanics, control theory etc. The most important advantage of using 

differential equation of fractional order is due to their non-localization property. It was Abel, who 

first introduced the fractional derivatives in the formulation of tautochrone problem. Oldham and 

Spainer (1974) gave some alternate definitions of fractional thermoelasticity. The Propagation of 

Rayleigh waves along with isothermal and insulated boundaries was discussed by Chadwick and 

Windle (1964). Rayleigh (1885) was the one who introduced first these waves to find the solution 

of a free vibration problem of an elastic half space. Marin (1999) obtained the existence and 

uniqueness solutions for the mixed initial-boundary value problems in thermoelasticity of dipolar 

bodies. Abbas (2011) studied the two-dimensional problem for a fibre-reinforced anisotropic 

thermoelastic half-space with energy dissipation. Ahmed and Abo-Dahab (2012) studied the 

influence of initial stress and gravity field on propagation of Rayleigh and Stoneley waves in a 

thermoelastic orthotropic granular medium. Abd-Alla et al. (2012) investigated the effect of rotation 

on propagation of Rayleigh waves in orthotropic elastic media under initial stress and gravity. 

Zakaria (2014) examined the effect of hall current in a micropolar magneto-thermoelastic solid due 

to ramp type heat. Abbas (2014) studied the interactions in a thermoelastic fibre reinforced 

anisotropic plate with fractional order theory of type GN-II. Deswal and Kalkal (2014) studied the 

plane wave problem in a micropolar magneto-thermoelastic half-space with fractional order. 

Mahmoud (2014) studied the effect of non-homogeneity, magnetic field and gravity field on 

Rayleigh waves in an initially stressed elastic half-space of orthotropic material subject to rotation. 

Das and Kanoria (2014) studied the finite thermal waves in a magneto-thermoelastic rotating 

medium. Abbas (2015) studied the vibrations in a thermoelastic hollow sphere in the context of 

generalized thermoelastic theory with one relaxation time with the help of eigen value approach. 

Abbas (2015) studied the effect of fractional parameter in an infinite isotropic thermoelastic body 

with spherical cavity. Marin et al. (2015) extended the domain of influence theorem for generalized 

thermoelasticity of anisotropic material with voids. Marin et al. (2015) studied the double porosity 

structure for micropolar bodies. Xiong and Tian (2017) investigated the transient thermo-piezo-

elastic responses of a functionally graded piezoelectric plate due to thermal shock. Kumar et al. 

(2017) studied the Rayleigh wave propagation problem in anisotropic magnetothermoelastic 

medium. Abd-Alla et al. (2017) studied the rotational effect on thermoelastic Stoneley, Love and 

Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order. Abbas 

and Marin (2017) examined the analytical solution of thermoelastic interaction in a half space due 

to pulsed laser heating. Hobiny and Abbas (2018) studied the thermal damages in skin tissues 

induced by moving heat source and examined the effects of heat source velocity on the temperature 

of skin tissue and thermal damages. Shahsavari et al. (2018) studied a higher-order gradient model 

for wave propagation of porous FG nanoplates. Shaw et al. (2018) studied the characteristics of 

Rayleigh wave propagation in orthotropic medium. Hobiny and Abbas (2018) studied the analytical 

solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material. Biswas and 

Mukhopadhyay (2018) studied the Rayleigh wave propagation problem in Orthotropic medium with 

three phase lags by using Eigen function expansion method. Biswas and Abo-Dahab (2018) studied 

the effect of phase lags on Rayleigh wave propagation in initially stressed magneto- thermoelastic 

orthotropic medium. Singh and Verma (2019) studied the Rayleigh wave propagation in isotropic 
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medium by using five different theories of thermoelasticity. Othman et al. (2019) studied the effect 

of gravity field on the fibre-reinforced thermoelastic medium with two temperature and three phase-

lag model of heat transfer by using GN-II and GN-III theory. Shaw and Othman (2019) studied the 

Rayleigh wave propagation problem in orthotropic medium with elastic half space and two 

temperature theory of generalized thermoelasticity. Horrigue and Abbas (2020) studied the 

propagation of plane waves in a fiber-reinforced anisotropic thermoelastic half space under the effect 

of magnetic field. Lata and Himanshi (2020, 2021a, 2021b) studied the various orthotropic 

thermoelastic problems of generalized thermoelasticity with fractional order heat transfer. 

Abouelregal et al. (2020) derived the fundamental equations in generalized thermoelastic diffusion 

with four lags and higher-order time-fractional derivatives. Ezzat (2020) studied the fractional 

thermo-viscoelastic response of biological tissue with variable thermal material properties. Lata and 

Kaur (2021) examined the interactions in a homogeneous isotropic modified couple stress 

thermoelastic solid with multi-dual-phase-lag heat transfer and two-temperature. Lata and Singh 

(2021) studied the Stoneley wave propagation problem in non-local isotropic magneto-thermoelastic 

solid with multi-dual-phase-lag heat transfer. Draiche et al. (2021) investigated the flexural response 

of laminated composite plates using a simple quasi-3D HSDT. Mudhaffar et al. (2021) studied the 

Hygro-thermo-mechanical bending behaviour of advanced functionally graded ceramic metal plate 

resting on a viscoelastic foundation. Bouafia et al. (2021) analyzed the bending and 
free vibration characteristics of various compositions of FG-plates on elastic foundation via quasi 

3D HSDT model.  Djilali et al. (2021) studied the original four-variable quasi-3D shear deformation 

theory for the static and free vibration analysis of new type of sandwich plates with both FG face 

sheets and FGM hard core. Zaitoun et al. (2022) studied the influence of the visco-Pasternak 

foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal 

plate in a hygrothermal environment. Hebali et al. (2022) studied the effect of the variable visco-

Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT 

model. Tahir et al. (2022) studied the effect of three-variable viscoelastic foundation on the wave 

propagation in functionally graded sandwich plates via a simple quasi-3D HSDT. Vinh and Tounsi 

studied the (2022) studied the free vibration analysis of functionally graded doubly curved 

nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters. 

Rachid et al. (2022) studied the mechanical behaviour and free vibration analysis of of FG doubly 

curved shells on elastic foundation by using new modified displacements field model of 2D and 

quasi-3D HSDTs. Including all the above work, we conclude that the Rayleigh wave problem in an 

orthotropic magneto-thermoelastic media with fractional order heat transfer with combined effect 

of rotation, hall current in generalized thermoelasticity has not been considered yet. So in the present 

study, we investigated the effect of phase-lags and GN-theories on Rayleigh wave phase velocity, 

attenuation coefficient, displacement components, stress components and thermodynamical 

temperature. The numerically produced results are depicted graphically to show the effect of phase-

lags and GN-theories. 

 

 

2. Basic equations 
 

Following Lata and Himanshi (2021a), the equation of motion for an orthotropic thermoelastic 

medium rotating uniformly with an angular velocity 𝛀 = Ω�⃗�  , where �⃗�  is unit vector representing 

the direction of axis of rotation and taking into account Lorentz force is given as 

𝜎𝑖𝑗,𝑗 + 𝐹𝑖 =  𝜌 [�̈�𝑖 + (𝛀 × (𝛀 × �⃗� ))𝑖 + (2 𝛀 × �⃗� ̇)𝑖],                              (1) 
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Lorentz force component is given by 

 𝐹𝑖 = 𝜇0   ( 𝐽 × �⃗⃗� 0 )𝑖  ,                                                        (2) 

Where, �⃗⃗� = (0, 𝐻0, 0) is the magnetic field strength, 𝐽  is the current density vector, 𝜇0  is 

magnetic permeability.  

The additional terms 𝛀 × (𝛀 × �⃗� ) and 2 𝛀 × �⃗� ̇ on the right side of above Eq. (2) are centripetal 

acceleration and Coriolis acceleration respectively.  

Following Lata and Zakhmi (2020), heat equation in anisotropic medium with three-phase-lags 

and fractional order heat transfer is given by 

 𝐾𝑖𝑗 (1 +
𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼) �̇�,𝑗𝑖 + 𝐾𝑖𝑗
∗ (1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼) 𝑇,𝑗𝑖 = [1 + 
𝜏𝑞 
𝛼

𝛼!
+ 

𝜏𝑞
2𝛼!

2𝛼!
 ] [ρ 𝐶𝐸�̈�  +  𝛽𝑖𝑗𝑇0�̈�𝑖𝑗],        (3) 

Where, 

𝛽𝑖𝑗 =  𝑐𝑖𝑗𝑘𝑙𝛼𝑖𝑗 , 𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗, 𝐾𝑖𝑗 = 𝐾𝑖 𝛿𝑖𝑗 , 𝐾𝑖𝑗
∗ = 𝐾𝑖

∗𝛿𝑖𝑗 , 

 𝑖 is not summed (𝑖, 𝑗 = 1,2,3) and 𝛿𝑖𝑗  is Kronecker delta. 

Following Kumar et al. (2016), the above equations are supplemented by generalized Ohm’s law 

for media with finite conductivity and including the hall current effect. 

 𝐽 ⃗⃗ =
𝜎0

1+𝑚2
[�⃗� + 𝜇0   ( �⃗� ̇  × �⃗⃗� − 

1

𝑒𝑛𝑒
𝐽 ⃗⃗ ×  𝐻0

⃗⃗ ⃗⃗  )],                                            (4) 

Also the strain displacement relations are 

  𝑒𝑖𝑗 =
1

2
 ( 𝑢𝑖,𝑗 +  𝑢𝑗,𝑖),   𝑖, 𝑗 = 1,2,3.                                                     (5) 

Here, dot (.) represents the partial derivative w.r.t time and (,) denote the partial derivative w.r.t 

spatial coordinate. 𝑐𝑖𝑗𝑘𝑙 = (𝑐𝑘𝑙𝑖𝑗 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘) is the tensor of elastic constant, ρ is the density, 

𝑇0  is the reference temperature such that |
𝑇

𝑇0
|≪ 1 , 𝑢𝑖 are the components of displacement vector �⃗� , 

𝐶𝐸  is the specific heat at constant strain, , 𝜎𝑖𝑗 = (𝜎𝑗𝑖) are the components of stress tensor. T is the 

temperature change, 𝛼𝑖𝑗 is the coefficient of linear thermal expansion, 𝛽𝑖𝑗 is the tensor of thermal 

moduli, Ω is the angular velocity of the solid, 𝐾𝑖𝑗  are the components of thermal conductivity and 

𝐾𝑖𝑗
∗  are the materialistic constants respectively. 𝜏𝑞  , 𝜏𝑡  and 𝜏𝑣 are respectively, the phase lag of the 

heat flux, the phase lag of the temperature gradient and the phase lag of the thermal displacement, 

H is the magnetic strength, 𝐽  is the current density vector, �⃗�  is the intensity vector of electric field, 

m is the hall parameter given by  𝑚 =  𝜔𝑒𝑡𝑒 =  
𝜎0𝜇0𝐻0

𝑒𝑛𝑒
,  where 𝑡𝑒  is the electron collision time. 

Where, 𝜔𝑒 = 
𝑒𝜇0𝐻0

𝑚𝑒
 is the electron frequency, 𝜎0 = 

𝑒2𝑡𝑒𝑛𝑒

𝑚𝑒
  is the electrical conductivity, e is the 

charge on electron, 𝑚𝑒 is the mass of electron and 𝑛𝑒 is the no of density of electrons.  

 

 

3. Formulation of the problem 
 

We consider a perfectly conducting homogeneous orthotropic magneto-thermoelastic medium 

rotating with an angular velocity 𝛀 =  Ω�⃗� ,  initially at uniform temperature 𝑇0 in the context of 

three-phase-lag fractional order model of thermoelasticity with an initial magnetic field �⃗⃗� =
(0, 𝐻0, 0), towards 𝑦-axis. The origin of the coordinate system (𝑥, 𝑦, 𝑧)  is taken on (𝑧 = 0) .We 
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choose x-axis in the direction of wave propagation in such a way that all the particles on a line 

parallel to the y-axis are equally displaced, so that 𝑣 = 0 and 𝑢,𝑤, 𝑇 are independent of y. The 

surface of half-space is subjected to thermomechanical sources. For the 2D problem in 𝑥𝑧-plane, we 

take 

 𝑢 = 𝑢(𝑥, 𝑧, 𝑡), 𝑣 = 0,𝑤 = 𝑤 (𝑥, 𝑧, 𝑡), 𝑇 = 𝑇( 𝑥, 𝑧, 𝑡),                                   (6) 

Let us assume that 

  𝐄 = 0, 𝛀 = ( 0, Ω, 0),                                                             (7) 

From the generalized ohm’s law 

      𝐽2 = 0,                                                                         (8) 

Also the current density components by using Eq. (4) are given by 

              𝐽1  =
𝜎0𝜇0𝐻0

1+𝑚2 (𝑚
𝜕𝑢

𝜕𝑡
− 

𝜕𝑤

𝜕𝑡
),                                                           (9) 

             𝐽3  =
𝜎0𝜇0𝐻0

1+𝑚2 (
𝜕𝑢

𝜕𝑡
+ 𝑚 

𝜕𝑤

𝜕𝑡
),                                                         (10) 

Following Kumar and Chawla (2014), the stress-strain relations in an orthotropic medium is 

given by 

 𝜎𝑥𝑥 = 𝐶11 𝑒𝑥𝑥 + 𝐶13 𝑒𝑧𝑧 − 𝛽1𝑇,                                                      (11) 

 𝜎𝑧𝑧 = 𝐶13 𝑒𝑥𝑥 + 𝐶33 𝑒𝑧𝑧 − 𝛽3 𝑇,                                                     (12) 

 𝜎𝑥𝑧 = 2𝐶55 𝑒𝑥𝑧,                                                             (13) 

where,                          

𝑒11 = 
𝜕𝑢

𝜕𝑥
 , 𝑒33 =  

𝜕𝑤

𝜕𝑧
 , 𝑒13 =  

1

2 
(
𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑥
),  

 𝛽1 = 𝐶11 𝛼1 + 𝐶13 𝛼3 , 𝛽3 = 𝐶13 𝛼1 + 𝐶33 𝛼3.                                    (14) 

Eqs. (1) and (3) with the aid of (2), (5), (6)-(14) reduce to the form   

𝐶11
𝜕2𝑢

𝜕𝑥2 + 𝐶55
𝜕2𝑢

𝜕𝑧2 + (𝐶13 + 𝐶55 )  
𝜕2𝑤

𝜕𝑥𝜕𝑧
− 𝛽1

𝜕𝑇

𝜕𝑥
− 𝜇0 𝑗3𝐻0 =  𝜌 (

𝜕2𝑢

𝜕𝑡2 − Ω2 𝑢 + 2Ω
𝜕𝑤

𝜕𝑡
),     (15) 

(𝐶13  + 𝐶55)
𝜕2𝑢

𝜕𝑥𝜕𝑧
 + 𝐶55

𝜕2𝑤

𝜕𝑥2 + 𝐶33
𝜕2𝑤

𝜕𝑧2 − 𝛽3
𝜕𝑇

𝜕𝑧
+ 𝜇0 𝑗1𝐻0 =  𝜌 ( 

𝜕2𝑤

𝜕𝑡2 − Ω2 𝑤 − 2Ω
𝜕𝑢

𝜕𝑡
 ),     (16) 

𝐾1 (1 +
𝜏𝑡
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
) �̇�,𝑥𝑥 + 𝐾3 (1 + 

𝜏𝑡
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
) �̇�,𝑧𝑧 + 𝐾1

∗ (1 + 
𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
) 𝑇,𝑥𝑥 +  𝐾3

∗  (1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 ) 𝑇,𝑧𝑧  = [1 + 
𝜏𝑞
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 +
𝜏𝑞
2𝛼!

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼 ] [ ρ 𝐶𝐸�̈�  +  𝑇0  
𝜕2

𝜕𝑡2  (𝛽1
𝜕𝑢

𝜕𝑥
 +  𝛽3  

𝜕𝑤

𝜕𝑧
)].  

(17) 

In the above equations, we use the contracting subscript notations  

( 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6) to relate 𝐶𝑖𝑗𝑘𝑙 to 𝐶𝑚𝑛  

Where  𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3 and 𝑚, 𝑛 = 1,2,3,4,5,6   
We assume that the medium is initially is at rest. Then the undisturbed state is maintained at 

reference temperature. Then the initial and regularity conditions are 

𝑢(𝑥, 𝑧, 0) = 0 =  �̇�(𝑥, 𝑧, 0), 
𝑤(𝑥, 𝑧, 0) = 0 =   �̇� (𝑥, 𝑧, 0), 

𝑇(𝑥, 𝑧, 0) = 0 =  �̇�(𝑥, 𝑧, 0),  For 𝑧 ≥ 0 , −∞ < 𝑥 < ∞; 
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𝑢(𝑥, 𝑧, 𝑡) = 𝑤 (𝑥, 𝑧, 𝑡) =  𝑇(𝑥, 𝑧, 𝑡) = 0, For 𝑡 > 0 𝑤ℎ𝑒𝑛 𝑧 → ∞ 

To facilitate the solution the following dimensionless quantities are used 

𝑥 , = 
𝑥

𝐿
 , 𝑧 , = 

𝑧

𝐿
, 𝑢, =

𝜌𝑐1
2

 𝐿𝑇0𝛽1
𝑢 , 𝑤 , = 

𝜌𝑐1
2

 𝐿𝑇0𝛽1
𝑤 , 𝑡 , = 

𝐶1

𝐿 
𝑡,  

𝜎𝑧𝑧 
, = 

𝜎𝑧𝑧

𝑇0𝛽1
, 𝜎𝑥𝑧

, =
𝜎𝑥𝑧

𝑇0𝛽1
, 𝑇 , =

𝑇

𝑇0
, Ω, = 

𝐿

𝐶1
Ω,  

where 

𝑐1
2 =

𝑐11

𝜌
 .                                                                          (18) 

Using dimensionless quantities given by (18) in Eqs. (15)-(17) and suppressing the primes for 

convenience yield 

(
  𝜕2𝑢

𝜕𝑥2 + 𝛿1
𝜕2𝑢

𝜕𝑧2  + 𝛿2
𝜕2𝑤

𝜕𝑥𝜕𝑧
 ) −  𝑀 (

𝜕𝑢

𝜕𝑡
+ 𝑚 

𝜕𝑤

𝜕𝑡
) − 

𝜕𝑇

𝜕𝑥
= (

𝜕2𝑢

𝜕𝑡2 − Ω2 𝑢 + 2Ω
𝜕𝑤

𝜕𝑡
) ,          (19) 

 (𝛿3
𝜕2𝑤

𝜕𝑧2 + 𝛿1
𝜕2𝑤

𝜕𝑥2 + 𝛿2
𝜕2𝑢

𝜕𝑥𝜕𝑧
) +  𝑀 ( 𝑚 

𝜕𝑢

𝜕𝑡
−

𝜕𝑤

𝜕𝑡
) − 𝜀 

𝜕𝑇

𝜕𝑧
= (

𝜕2𝑤

𝜕𝑡2 − Ω2 𝑤 − 2Ω
𝜕𝑢

𝜕𝑡
),      (20) 

𝜖1𝜏𝑡
1 𝜕

𝜕𝑡
(
𝜕2𝑇

𝜕𝑥2
) +  𝜖2 𝜏𝑡

1 𝜕

𝜕𝑡
(
𝜕2𝑇

𝜕𝑧2
) +  𝜖3𝜏𝑣

1 (
𝜕2𝑇

𝜕𝑥2
) + 𝜖4 𝜏𝑣

1 (
𝜕2𝑇

𝜕𝑧2
) = 𝜏𝑞

1  [
𝜕2𝑇

 𝜕𝑧2 + 𝜖5
𝜕2

𝜕𝑡2
(
𝜕𝑢

𝜕𝑥
+

 𝜀 
𝜕𝑤

𝜕𝑧
)],      

(21) 

Where, 

𝛿1 = 
𝑐55

𝑐11
, 𝛿2 = 

𝑐13+𝑐15

𝑐11
 , 𝛿3 = 

𝑐33

𝑐11
 , 𝜖1 =

𝐾1

𝜌 𝐿 𝐶1𝐶𝐸  
 , 𝜖2 =

𝐾3

𝜌 𝐿𝐶1𝐶𝐸  
 , 𝜖3 =

𝐾1
∗

𝜌𝑐1
2𝐶𝐸  

 , 𝜖4 = 
𝐾3

∗

𝜌𝑐1
2𝐶𝐸   

 ,  

𝜖5 = 
𝛽1

2𝑇0

𝜌2𝑐1
2𝐶𝐸  

 , 𝜀 =  
𝛽3

𝛽1
,    𝜏𝑡

1 = (1 +
𝜏𝑡
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼) ,  

𝜏𝑞
1 = (1 + 

𝜏𝑞
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 +
𝜏𝑞
2𝛼!

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼 ),  

𝜏𝑣
1 = (1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
) ,𝑀 =  

𝜎0𝜇0
2𝐻0

2𝐿

𝜌𝐶1(1+𝑚2)
 .  

 

 

4. Solution of the problem 
 

Following Biswas (2021), we take Rayleigh wave solution of the form 

 (𝑢, 𝑤, 𝑇) = (𝑢∗, 𝑤∗, 𝑇∗)(𝑧)𝑒𝑖𝜉(𝑥−𝑐𝑡),                                             (22) 

Here 𝑐 =  ω/𝜉  is the phase velocity of the wave. 𝜉 is a wave number and ω is the angular 

frequency of the wave. By using (22) in Eqs. (19)-(21), we obtain a system of homogeneous 

equations in  (𝑢∗, 𝑤∗, 𝑇∗) i.e. 

𝑢∗[ 𝑝1 + 𝛿1𝐷
2] + 𝑤∗[𝑝2 + 𝑖ξ𝛿2𝐷] − [𝑖ξ]𝑇∗ = 0,                               (23) 

 𝑢∗[𝑝3 + 𝑖ξ𝛿2𝐷] + 𝑤∗[𝑝4 + 𝛿3𝐷
2] − [𝜀𝐷]𝑇∗ = 0,                              (24) 

 𝑢∗[𝑝5𝜀5 𝜏𝑞
, ] + 𝑤∗[𝑝6𝜀𝜀5𝜏𝑞

, 𝐷] + [  𝑝7𝜀1𝜏𝑡
, + 𝑝8𝜀2𝜏𝑡

, 𝐷2 − 𝜉2𝜀3𝜏𝑣
,  +  𝜀4𝜏𝑣

, 𝐷2 + 𝑝6𝜏𝑞
, ]𝑇∗ = 0, (25) 

Where, 

𝐷 =
𝑑

𝑑𝑧
 ,  

𝑝1 = Ω2 + 𝜉2(𝑐2 − 1) + 𝑀𝑖𝜉𝑐 , 

216



 

 

 

 

 

 

Rayleigh waves in orthotropic magneto-thermoelastic media under three GN-theories 

𝑝2 =  𝑖𝜉𝑐 (𝑚𝑀 + 2 Ω), 
 𝑝3 = − 𝑝2, 

𝑝4 = Ω2 + 𝜉2(𝑐2 − 𝛿1) + 𝑀𝑖𝜉𝑐, 
𝑝5 =  𝑖𝜉3𝑐2, 
𝑝6 = 𝜉2𝑐2, 
𝑝7 = 𝑖𝜉3𝑐, 
𝑝8 = −𝑖𝜉𝑐, 

 𝜏𝑡
, = 1 + 

𝜏𝑡
𝛼

𝛼!
 (−𝑖𝜉𝑐)𝛼 ,  

 𝜏𝑣
, = 1 + 

𝜏𝑣
𝛼

𝛼!
 (−𝑖𝜉𝑐)𝛼 ,  

𝜏𝑞
, = 1 + 

𝜏𝑞
𝛼

𝛼!
 (−𝑖𝜉𝑐)𝛼 + 

𝜏𝑞
2𝛼

2𝛼!
 (−𝑖𝜉𝑐)2𝛼. 

The above resulting equations have non-trivial solution if the determinant of the coefficients 
(𝑢∗, 𝑤∗, 𝑇∗) vanishes and we obtain the following characteristic equation. 

(𝑃𝐷6 + 𝑄𝐷4 + 𝑅𝐷2 + 𝑆 ) (𝑢∗, 𝑤∗, 𝑇∗) = 0,                                      (26) 

Where, 

𝐷 =
𝑑

𝑑𝑧
 ,  

𝑃 = 𝜏𝑣
, [𝛿3𝛿1𝜀4] + 𝜏𝑡 

, [𝜀2𝛿1 𝛿3𝑝8], 

𝑄 = 𝜏𝑡
,  [ 𝑝1𝑝8𝜀2𝛿3 + 𝑝4𝑝8𝛿1𝜀2 + 𝜀1𝛿1𝛿3𝑝7 + 𝜉2𝛿2

2𝑝8𝜀2] + 𝜏𝑣
,  [  𝑝1𝛿3𝜀4 + 𝑝4𝜀4𝛿1 −

𝜉2𝛿1 𝛿3𝜀3 + 𝜀4𝜉
2𝛿2

 2 ] +  𝜏𝑞  
, [  𝑝6 𝛿1 𝛿3  +  𝑝6𝜀5𝛿1𝜀

2 ],  

𝑅 =  𝜏𝑡
, [ 𝑝1𝑝4 𝑝8𝜀2 + 𝜀1𝛿3𝑝1 𝑝7 + 𝜀1𝛿1𝑝4 𝑝7 −  𝑝2𝑝3 𝑝8𝜀2 + 𝜀1 𝑝7 𝜉

2𝛿2
 2] + 𝜏𝑣

, [ 𝑝1𝑝4𝜀4 −

 𝜉2𝑝1 𝛿3𝜀3 − 𝜉2𝑝4 𝛿1𝜀3 −  𝑝2𝑝3 𝜀4– 𝛿2
2 𝜉4𝜀3] + 𝜏𝑞 

, [ 𝑝1 𝑝6 𝛿3 +  𝑝1𝑝6 𝜀5𝜀
2 + 𝛿1 𝑝4𝑝6 +

 𝑝6𝜉
2𝛿2

 2 − 𝑖𝜉𝛿2𝜀𝜀5 𝑝5 +  𝜉2𝛿2 𝜀𝜀5 𝑝6 +  𝑖𝜉𝛿3 𝜀5 𝑝5 ],  
𝑆 = 𝜏𝑡

,  [ 𝑝1𝑝4 𝑝7𝜀1 −  𝑝2𝑝3 𝑝7𝜀1] + 𝜏𝑣 
, [ −𝑝1 𝑝4 𝜉

2𝜀3 +  𝑝2𝑝3𝜉
2𝜀3] + 𝜏𝑞  

, [ −𝑝2𝑝3 𝑝6 + 𝑝1𝑝4 𝑝6 +

 𝑖𝜉𝜀5 𝑝4 𝑝5].  
The Eq. (26) is cubic in   𝜆𝑗

2 ;  𝑗 = 1,2,3 . Therefore the solution which satisfy the radiation 

conditions  𝑢, 𝑤, 𝑇 → 0 as 𝑧 → ∞  is given by 

                              𝑢∗ = ∑ 𝐴𝑗
3
𝑗=1 𝑒−𝜆𝑗𝑧 ,                                                           (27) 

                             𝑤∗ = ∑ 𝑑𝑗𝐴𝑗𝑒
−𝜆𝑗𝑧3

𝑗=1 ,                                                         (28) 

                             𝑇∗ = ∑ 𝑙𝑗𝐴𝑗𝑒
−𝜆𝑗𝑧3

𝑗=1 ,                                                          (29) 

Here ± 𝜆𝑗  are the roots of Eq. (26) and 𝐴𝑗  are arbitrary constants and the coupling 

constants 𝑑𝑗  and 𝑙𝑗  ; ( 𝑗 = 1,2,3)are given by                   

𝑑𝑗 = 
𝜆𝑗
4𝐴∗+𝜆𝑗

2𝐵∗+ 𝐶∗

𝜆𝑗
4𝐴′+𝜆𝑗

2𝐵′+ 𝐶′  ,      j = 1, 2, 3.  

             𝑙𝑗 =
𝜆𝑗
4𝑃∗+𝜆𝑗

2𝑄∗+ 𝑅∗

𝜆𝑗
4𝐴′+𝜆𝑗

2𝐵′+ 𝐶′  , j = 1, 2, 3.                                                (30) 

where, 

𝐴∗ = 𝜏𝑡
,  [𝛿1  𝑝8𝜀2] + 𝜏𝑣

, [𝛿1  𝜀4 ], 
𝐵∗ = 𝜏𝑡

, [ 𝑝1𝑝8𝜀2 + 𝛿1  𝜀1𝑝7 ] + 𝜏𝑣
,  [𝑝1𝜀4 − 𝛿1𝜉

2𝜀3 ], 
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𝐶∗ = 𝜏𝑡
,  [ 𝑝1𝑝7 𝜀1]+ 𝜏𝑣

, [−𝑝1𝜉
2𝜀3 ] 𝜏𝑞

,  [ 𝑝1𝑝6  + 𝑖 𝜉𝜀5 𝑝5  𝜉
2], 

 𝐴′ = 𝜏𝑡 
, [𝑝8 𝜀2𝛿3 ] + 𝜏𝑣

, [ 𝜀4𝛿3 ], 
 𝐵′ = 𝜏𝑡

,  [   𝑝4𝑝8 𝜀2 + 𝑝7 𝜀1𝛿3 ] + 𝜏𝑣
, [ 𝑝4 𝜀4 − 𝛿3𝜀3𝜉

2] + 𝜏𝑞
, [ 𝛿3𝑝6  + 𝜀2𝜀5𝑝6  ], 

𝐶′ = 𝜏𝑡
, [ 𝑝7𝑝4 𝜀1] + 𝜏𝑣

, [ −𝜖3𝜉
2𝑝4 ] + 𝜏𝑞

, [ 𝑝4𝑝6], 

𝑃∗ = [𝛿1𝛿3], 

𝑄∗ = [ 𝑝1𝛿3 + 𝑝4𝛿1 + 𝜉2𝛿2
2], 

𝑅∗ =  [ 𝑝1𝑝4 −  𝑝2𝑝3 ]. 
 

 

4. Boundary conditions 
 

Following Kumar et al. (2017), we take the following boundary conditions at the interface z=0  

(1)   𝜎𝑧𝑧 = 0,                                                                          (31) 

(2)   𝜎𝑥𝑧 = 0,                                                                          (32) 

(3)
𝜕𝑇

𝜕𝑧
=  0   𝑎𝑡  𝑧 = 0.                                                                 (33) 

 

 

5. Derivations of the secular equations 
 

Making the use of (11)-(14), (18) and (27)-(29) in (30)-(32), we get three linear equations as 

    ∑ 𝜂𝑞𝑗𝐴𝑗 = 03
𝑗=1 , 𝑞 = 1,2,3                                                     (34) 

Where,   𝜂1𝑗 = 𝑖𝜉
𝑐13

𝜌𝑐1
2 −

𝑐33

𝜌𝑐1
2 𝑑𝑗𝑚𝑗 − 𝜀 𝑙𝑗 , 

𝜂2𝑗 = −
𝑐55

𝜌𝑐1
2 𝑚𝑗 +

𝑐55

𝜌𝑐1
2 𝑑𝑗𝑖𝜉,   𝜂3𝑗 = 𝑙𝑗 ,   j = 1, 2, 3                                  (35) 

The system of Eq. (33) has a non-trivial solution if the determinant of unknowns 𝐴𝑗; j=1, 2, 3 

vanishes i.e. 

                                         |𝜂𝑖𝑗|3×3
= 0,                                                                (36) 

These resulting secular equations have all the information about the phase velocity, attenuation 

coefficient depth and specific loss for a Rayleigh waves in an orthotropic magneto-thermoelastic 

medium with combined effect of rotation and hall current in the context of fractional order theory 

of generalized thermoelasticity. 

 

5.1 Phase velocity 
 

Phase velocity is defined as the speed at which waves propagating at a particular frequency and 

it depend on the real component of the wave number. The phase velocities is given by 

                                   𝐶 =  
𝜔

𝑅𝑒 (𝜉)
 ,                                                                 (37) 

Where, 𝜉 is a wave number and 𝜔 is a angular frequency of the wave. 
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5.2 Attenuation coefficient 
 

The attenuation coefficient is the gradual loss of flux intensity through a medium, and it depends 

on the imaginary component of the wavenumber. The attenuation coefficient is defined as 

                                   𝑄 = 𝑖𝑚𝑔 (𝜉),                                                                (38) 

where, 𝜉 is a wave number. 

 

 

6. Particular cases 
 

1. If we put 𝐾1 = 𝐾3 = 0 in Eq. (17), the problem reduces for the case Rayleigh wave 

propagation in orthotropic magneto-thermoelastic rotating medium without energy dissipation (GN-

II type) with three-phase-lag fractional order model. 

2. If  𝐶11 = 𝐶33, 2𝐶55 =  𝐶11 − 𝐶33, we get the expressions for Rayleigh wave propagation in 

transversely isotropic magneto-thermoelastic medium with combined effect of hall current and 

rotation with GN-III type fractional order model with three-phase-lags. 

3. If  𝐶11 = 𝐶33 = 𝜆 + 2𝜇, 𝐶13 = 𝜆, 𝐶55 = 𝜇, 𝛽1 = 𝛽3 = 𝛽, 𝐾1 = 𝐾3 = 𝐾,𝐾1
∗ = 𝐾3

∗ = 𝐾∗,  we 

get the expressions for Rayleigh wave propagation for isotropic solid with three-phase-lag fractional 

order theory of generalized thermoelasticity. 

4. If we put  𝜏𝑡 =  𝜏𝑣 =  𝜏𝑞 = 0, and 𝐾1
∗ = 𝐾3

∗ = 0,  in Eq. (17) then the resulting equation 

represents heat equation for coupled theory of thermoelasticity. 

5. If we put  𝐾1
∗ = 𝐾3

∗ = 0, in Eq. (17), then the problem reduces for the case GN-I type fractional 

order model in generalized thermoelasticity. 

6. If we put  𝜏𝑡 =  𝜏𝑣 =  𝜏𝑞 = 0, in Eq. (17), then the resulting equation reduces for the case 

GN-III type model of thermoelasticity.  

 

 

7. Numerical results and discussion 
 

Following Lata and Himanshi (2021a), cobalt material has been taken for the purpose of 

numerical computations with L=1, 

 

Quantity Value Unit 

 𝑐11  3.071 × 1011 Kgm−1s−2 

 𝑐13  1.650 × 1011 Kgm−1s−2 

𝑐33 3.581 × 1011 Kgm−1s−2 

𝑐55 1.510 × 1011 Kgm−1s−2 

𝑐𝐸 4.27 × 102 JKg−1K−1 

𝛽1 7.04 × 106 Nm2K−1 

 𝛽3 6.90 × 106 Nm2K−1 

𝑇0 298 K 

𝐾1 6.90 × 102 Wm−1K−1 

𝐾3 7.01 × 102 Wm−1K−1 

𝐾1
∗ 1.313 × 102 Ws−1 
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𝐾3
∗ 1.54 × 102 Ws−1 

𝜌 8.836 × 103 𝐾𝑔𝑚−3 

  𝜏𝑡 1.5 × 10−7 𝑆 

 𝜏𝑣 1.0 × 10−7 𝑆 

 𝜏𝑞 2.0 × 10−7 𝑆 

𝜇0 1.2571 × 10−6 𝐻𝑚−1 

𝐻0 1 𝐽𝑚−1𝑛𝑏−1 

𝜎0 9.36 × 105 𝑐𝑜𝑙2/ 𝑐𝑚. 𝑠𝑒𝑐 

 

  

Fig. 1 Variation of phase velocity C with wave 

number 𝜉 

Fig. 2 Variation of attenuation Q coefficient with 

wave number 𝜉 

 

 

With the help of the above parametric values, the numerical results are obtained with the help of 

octave programming language and presented graphically to show the impact of three theories (GN-

I, GN-II and GN-III) and phase-lags on the Rayleigh wave phase velocity, attenuation coefficient, 

stress components and temperature change with respect to wave number 𝜉  corresponding to fix 

value of rotation, hall current and fractional parameter. 

 

8.1 Effect of phase-lags with 𝛼 = 0.8, 𝛺 = 0.3,𝑚 = 0.5 
 

1. The red solid line with centre symbol (□)  relates to 𝜏𝑞 = 0 

2. The green solid line with centre symbol (∆) relates to 𝜏𝑞 = 1.5 

3. The blue solid line with centre symbol (◊) relates to 𝜏𝑡 = 0 

4. The black solid line with centre symbol (○) relates to 𝜏𝑡 = 1.5 

Figs. 1-2 give the variation of phase velocity and attenuation coefficient w.r.t wave number ′𝜉′ 
with and without phase-lag effects corresponding to two phase lags (phase lag of temperature 

gradient and phase-lag of heat flux) with two different values of each. From the graphs, it is clear 

that in the initial range near the boundary value of the phase velocity declines sharply for all the 

cases then oscillates little when there is no phase-lag effect (𝜏𝑞 = 0, 𝜏𝑡 = 0) after that exhibits 

steady state behaviour for (𝜏𝑞 = 1.5, 𝜏𝑡 = 1.5) in the remaining range with increasing value of 

wave number. The value of attenuation coefficient also decreases in the starting range 0 < 𝜉 <
5, then remains constant throughout for both the cases. The variation of normal and tangential stress 

has been shown in Figs. 3-4. We see that in the range 0 < 𝜉 < 7.5, the value of both the components  
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Fig. 3 Variation of normal stress 𝜎𝑧𝑧 with wave 

number 𝜉 

Fig. 4 Variation of tangential stress 𝜎𝑥𝑧  with 

wave number 𝜉 

 

 

Fig. 5 Variation of temperature change with wave number 𝜉 

 

 

oscillates with different amplitudes corresponding to two phase-lags (phase lag of heat and 

temperature gradient) afterwards they follow a similar behaviour i.e., remains constant in the rest of 

the range with increasing value of wave number. Normal stress attains its highest peak at 𝜉 = 5, 
when there is no effect of phase-lag of heat (𝜏𝑞 = 0), and tangential stress attains its maximum value 

at 𝜉 = 2.5, respectively. Fig. 5 illustrates the nature of temperature change w.r.t wave number 

corresponding to two different values of phase lags respectively. We observed that the value of 

temperature change decreases sharply in the range 0 < 𝜉 < 2.5,  then remains constant when wave 

number approaches to its maximum value. 

 

8.2 Effect of GN-theories with  𝛼 = 0.8, 𝛺 = 0.3,𝑚 = 0.5 
 

1. The red solid line with centre symbol (∆) with 𝐾𝑖𝑗
∗ = 0,  corresponds to GN-I theory. 

2.  The green solid line with centre symbol (◊) with 𝐾𝑖𝑗 = 0 corresponds to GN-II theory. 

3. The blue solid line with centre symbol (○) corresponds to GN-III theory. 

Here in this case, we discussed the effect of GN-theories on the Rayleigh wave characteristics 

with fix value of rotation, fractional parameter and hall current. Fig. 6 gives the variation of phase 

velocity w.r.t ′𝜉′ for GN-I, GN-II and GN-III types of theories respectively. We noticed that initially  
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Fig. 6 Variation of phase velocity C with wave 

number 𝜉 

Fig. 7 Variation of attenuation coefficient Q with 

wave number 𝜉 

 

  

Fig. 8 Variation of normal stress with wave 

number 𝜉 

Fig. 9 Variation of tangential stress with wave 

number 𝜉 

 

 

Fig. 10 Variation of temperature change with wave number 𝜉 

 

 

the value of the phase velocity increases for the case GN-I and attains a peak value at 𝜉 = 2.5 then 

decreases. While for the case GN-II and GN-III it declines in the range 0 < 𝜉 < 5 and all the curves 

intersect each other with similar value in the rest of the range. Fig. 7 gives the change in the value 

of attenuation coefficient corresponding to three different theories. The trends are similar but for the 

222



 

 

 

 

 

 

Rayleigh waves in orthotropic magneto-thermoelastic media under three GN-theories 

case GN-I the amplitude of the attenuation coefficient curve is less oscillatory as compared to phase-

velocity. The nature of normal stress is described in Fig. 8. We observed that in the range  0 < 𝜉 <
7.5 for GN-I there is a sharp decrease in the beginning is followed by smooth increase afterwards 

follow steady state behaviour. For GN-II and GN-III the value of normal stress increases in the 

starting then decreases and all the curves meet each other with constant value in the remaining range. 

Fig. 9 describes the variation in the tangential stress w.r.t ′𝜉′ for GN-I, GN-II and GN-III types of 

theories respectively. It is clear from the graphs that the trends are same as in case of normal stress 

with different magnitudes. The value of temperature change has been shown in Fig. 10 respectively. 

Here, we noticed that for all the three cases in the range 0 < 𝜉 < 5 its value declines sharply then 

remains same throughout. 

 

 

9. Conclusions 
 

From the above investigation, the following conclusions are made.   

• We conclude that the phase-lags and GN-theories has a significant impact on the Rayleigh 

waves in a two-dimensional magneto-thermoelastic orthotropic rotating media in the context of 

hall current and fractional order heat transfer. The properties of Rayleigh waves like phase 

velocity, attenuation coefficient, stress components and temperature change shows the variation 

under the effect of phase-lags and GN-theories.  

• From the graphs, we see that in both the cases (phase-lag and GN-theories effect) for small 

value of non-dimensional wave number in the initial range the amount of large variations 

(oscillatory) has been noticed in the value of phase velocity, attenuation coefficient, stress 

components and temperature change respectively.  

• However, with increasing value of wave number all the components follow steady state 

behaviour in the whole range.  

• The problem is theoretical but the results produced in this paper are helpful for those researchers 

which are working in the field of dynamics, magneto-thermoelasticity, earthquakes, seismology 

and geo-physics etc. 
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