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Abstract.  This paper aims to analyze the dynamic response of a double nanobeam system with a medium 
viscoelastic layer under a moving load. The governing equations are based on the Eringen nonlocal theory. A thin 
viscoelastic layer has coupled two nanobeams together. An exact solution is derived for each nanobeam, and the 
dynamic deflection is achieved. The effect of parameters such as nonlocal parameter, velocity of moving load, spring 
coefficient and the viscoelastic layer damping ratio was studied. The results showed that the effect of the nonlocal 
parameter is significantly important and the classical theories are not suitable for nano and microstructures. 
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1. Introduction 
 

Recently nanostructures have gained the interest of researchers in numerous disciplines such as 
physics, chemistry and engineering due to their special properties that are resulted by their 
nanoscale dimension (Murmu and Adhikari 2010). They are in the forms of various nanoscale 
structures such as nanoparticles, nanowires and nanotubes, which show promising mechanical, 

chemical, electrical, optical and electronic properties (Dai et al. 1996, Kim and Lieber 1999). 
Nano-resonators, nano-actuators, nano-machines and nano-optomechanical systems are some of 
the commonest categories of nanostructures (Eichenfield et al. 2009, Frank et al. 2010). 

According to the former studies, it can be observed that the material properties at the nano-
scale are size dependent and successively the small length scale effect should be considered for a 
precise modeling of nano-structure (Pirmohammadi et al. 2014, Rahmani and Pedram 2014). To 

 

Corresponding author, Assistant Professor, E-mail: hosseini@bzte.ac.ir 
aPh.D., E-mail: omid.rahmani@znu.ac.ir 
bPh.D., E-mail: Hasti.Hayati@uts.edu.au 
cPh.D., E-mail: keshtkarmahdi@gmail.com 



 

 

 

 

 

 

S.A.H. Hosseini, O. Rahmani, H. Hayati and M. Keshtkar 

overcome this limitation, several modifications of the classical continuum mechanics have been 

presented to admit the size effect in the nanostructures modeling. One broadly used size-dependent 

theory is the nonlocal elasticity theory (Pourseifi et al. 2015, Rahmani et al. 2015, Rahmani et al. 

2015, Hayati et al. 2016, Hosseini and Rahmani 2016, Hosseini and Rahmani 2016, Rahmani et al. 

2016, Al-Huniti and Alahmad 2017, Bensaid et al. 2017, Ebrahimi and Barati 2017, Ebrahimi et 

al. 2017, Kunbar et al. 2020). Following that, Hosseini et al. (2019) modeled the clamped-clamped 

and clamped-free single-walled carbon nanotubes subjected to the moving longitudinal force based 

on Eringen’s nonlocal elasticity theory along with two different nonlocal parameters, namely 

nonlocal Rayleigh and nonlocal bishop theories. Khosravi et al. (2020) surveyed the time-

dependent forced and free torsional vibrations of elastic single-walled carbon nanotube exposed to 

both exponential and harmonic external torques. Moreover, the effects of resonance behavior, 

elastic medium, some geometrical dimensions on the angular displacement was studied. 

Furthermore, Khosravi et al. (2020) illustrated the effect of the viscoelastic medium, torsional 

boundary spring, thickness on the forced torsional vibration and the size dependency on the natural 

responses, the results were compared with the Rayleigh-Ritz method. Hossein et al. (2020) carried 

out the nano scale torsional vibration behavior of the carbon nanotubes when it affected by a 

moving external torque and when the moving term removed from the structure, the effects of 

aspect ratio and mode number on the natural frequency and influences of the nonlocal parameter, 

excitation frequency along with some geometrical parameters were evaluated. Hosseini et al. 

(2020) worked on the dynamic behavior of the CNTs subjected to the linear and harmonic loadings 

to analyze the effect of the size-dependency, thickness and excitation frequency on the forced 

behavior. Also, the effect of the nonlocal parameter on the multiple number of the natural 

frequency were examined. Khosravi et al. (2020) utilized a triangular nanowire model to study on 

the natural responses of the modeled for clamped-clamped along with clamped-torsional spring 

boundary condition. The effects of the triangle edge and nonlocal parametric on the natural 

frequencies were examined. However, there exist some other works around different size-

dependent theories (Bastanfar et al. 2019, Hamidi et al. 2019, Hamidi et al. 2020). Zhang et al. 

presented predictive models of the free vibration of Euler-Bernoulli beams subjected to a 

uniformly thermal environment using two-phase local/nonlocal mixture theory of strain- and 

stress-driven types (Zhang et al. 2022). Fernández-Sáez and Zaera studied in-plane free vibrations 

(axial and bending) of a Bernoulli–Euler nanobeam using the mixed local/nonlocal Eringen 

elasticity theory (Fernández-Sáez and Zaera 2017). Khaniki explored the flapwise vibrational 

behavior of rotating size-dependent beams by using Eringen’s two-phase local/nonlocal model as a 

reliable theory (Khaniki 2018). Zhang and Qing studied both the well-posed strain-driven and 

stress-driven two-phase local/nonlocal integral models are used to study the size effect in the free 

vibration of  

EulerBernoulli curved beams (Zhang and Qing 2022). In another study, Zhang and Qing 

explored the well-posedness of several common nonlocal models for higher-order refined shear 

deformation beams (Zhang and Qing 2022). Wang et al. studied on exact solutions for the static 

bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. The results 

appeared that the integral model considered here had some advantages as compared with 

differential model. it was a consistent softening effect for bending, and there was no paradox when 

solving a cantilever beam problem (Wang et al. 2016). Romano et al. showed that existence of a 

solution of nonlocal beam elasto-static problems is an exception, the rule being non-existence for 

problems of applicative interest (Romano et al. 2017). Zhang and Qing investigated static bending 

behavior of functionally graded (FG) Timoshenko beams via both strain- and stress-driven two-
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phase local/nonlocal mixed integral models based on the bi-Helmholtz kernel (Zhang and Qing 

2021). 

Various investigations are conducted to study nano sandwich structures. Liew et al. studied the 

vibration behavior of Multi-Layered Graphene Sheets that were embedded in an elastic matrix 

using a continuum-based plate model. They derived an explicit formula to predict the natural 

frequencies and associated vibration modes of double-layered and triple-layered graphene sheets 

(2006). Murmu et al. developed an analytical method to determine the natural frequencies of the 

nonlocal double beam, which are used in nano-optomechanical system and sensor applications. It 

was revealed that the small scale effect has a significant effect on the transverse vibration of 

double nano-beam system (2010). In the other study, which was made by Murmu et al. the 

nonlocal vibration of double-nano-plate system, was considered. It was assumed that two nano-

plates are bounded by an enclosing elastic medium. They established expression for bending 

vibration of double nano-plate system using the nonlocal elasticity and also introduced an 

analytical model to derive the natural frequencies of Nonlocal Double-Nano-plate System (2011). 

Pouresmaeeli et al. presented an analytical approach for free vibration analysis of all edges simply 

supported double orthotropic nano-plates. It was assumed that the two nano-plates are bonded by 

an internal elastic medium and surrounded by an external elastic foundation. They derived the 

governing equations according to the nonlocal theory (2012). Murmu et al. analyzed the vibration 

of coupled nano-beam system under initial compressive pre-stressed condition. Using the nonlocal 

theory expressions for bending-vibration of pre-stressed double nano-beam system is formulated. 

They also proposed an analytical method to obtain natural frequencies of the Nonlocal Double 

Nano-Beam System (Murmu and Adhikari 2012). Radic et al. (2014). analyzed buckling of double 

orthotropic nano-plates using the nonlocal elasticity theory. They assumed that two nano-plates are 

bounded by an internal elastic medium and are surrounded by external elastic foundation.  

In the present paper, the dynamic response of a double nanobeam system with a medium 

viscoelastic layer, under a moving load is analyzed. The governing equations are based on the 

nonlocal elasticity theory. It is assumed that a viscoelastic layer has coupled two nanobeams 

together. An exact solution is presented for each nanobeam and the dynamic deflection is 

accomplished.  

 

 

2. Nonlocal double-nanobeam system equation 
 

According to nonlocal continuum theory of Eringen (1972), the stress field at a point 𝑥 in an 

elastic continuum not only depends on the strain field at the same point but also on strains at all 

other points of the body. The constitutive equation of the nonlocal stress tensor 𝜎𝑖𝑗(𝑥) that is 

related to the local stress tensor at point 𝑥, 𝑡𝑖𝑗(𝑥) becomes 

                                              (1)  (1 − (𝑒0𝑎)
2∇2)𝜎𝑖𝑗(𝑥) = 𝑡𝑖𝑗(𝑥) 

where ∇2 is a Laplacian operator, 𝑒0 is a material constant and 𝑎 is an internal characteristic length 

(e.g., lattice parameter) of the nanobeam structure. Therefore, the only nonzero nonlocal stress 

within the nanobeam structure is outlined as 

                                               (2)  𝜎𝑥𝑥 − (𝑒0𝑎)
2𝜎𝑥𝑥,𝑥𝑥 = 𝐸𝜀𝑥𝑥 

where 𝐸 is the young’s module of elasticity. According to the linear vibration with only small 

deformation, the dynamic equation of motion for the transversely vibration nanobeam can be  
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Fig. 1 The physical model of the nonlocal viscoelastic double-nanobeam system 

 

 

obtained as 

                                                          (3)  𝑀,𝑥𝑥 + 𝑞 = 𝜌𝐴𝑤,𝑡𝑡 

where 𝐴 is the cross-section of the nanobeam, 𝜌 is the density, 𝑞 is the distributed transverse load 

along x-axis and 𝑀 is the resultant bending moment which is defined by 

                                                  (4)  𝑀 − (𝑒0𝑎)
2𝑀,𝑥𝑥 = −𝐸𝐼𝑤,𝑥𝑥 

The explicit term of the nonlocal bending moment can be derived by substituting Eq. (4) into 

Eq. (3) 

                                         (5) 𝑀 = −𝐸𝐼𝑤,𝑥𝑥 + (𝑒0𝑎)
2𝜌𝐴𝑤,𝑡𝑡 − (𝑒0𝑎)

2𝑞 

The equation of motion for a nanobeam which is modeled as a Euler-Bernoulli beam and is in 

terms of the transverse deflection can be obtained by using Eqs. (3) and (5) 

𝐸𝐼𝑤,𝑥𝑥𝑥𝑥 − 𝑞 + (𝑒0𝑎)
2𝑞,𝑥𝑥 + 𝜌𝐴𝑤,𝑡𝑡 − (𝑒0𝑎)

2𝜌𝐴𝑤,𝑡𝑡 = 0                          (6)   

Fig. 1, shows a nonlocal double- nanobeam system bounded by a viscoelastic medium. The two 

nanobeams are assumed to be coupled by a viscoelastic medium. This medium is modeled by a 

vertical spring and vertical damper where, 𝑘𝑣 and 𝑐𝑣 are spring constant and damper coefficient, 

respectively. In this study, it is assumed that the two nanobeams have a same flexural rigidity (𝐸𝐼) 
and mass per unit length (𝜌𝐴). 

                                  (7)  (𝐸𝐼)1 = (𝐸𝐼)2 = 𝐸𝐼,    (𝜌𝐴)1 = (𝜌𝐴)2 = 𝜌𝐴 

The transverse load for nanobeam 1 and 2 can be written as 

𝑞1 = 𝑘𝑣(𝑤2 −𝑤1) + 𝑐𝑣(𝑤2,𝑡 − 𝑤1,𝑡) + 𝑃 

𝑞2 = 𝑘𝑣(𝑤1 −𝑤2) + 𝑐𝑣(𝑤1,𝑡 − 𝑤2,𝑡) 
(8) 

In the above equations, 𝑤1  and 𝑤2  represent transverse deflection for nanobeam 1 and 2, 

respectively. By substituting Eqs. (7) and (8) into Eq. (6), the equation of motion for nanobeam 1 

and 2 expressed as: 

Nanobeam 1 

𝐸𝐼𝑤1,𝑥𝑥𝑥𝑥 + 𝑘𝑣(𝑤1 − 𝑤2) + 𝑐𝑣(𝑤1,𝑡 −𝑤2,𝑡) − 𝑃 + (𝑒0𝑎)
2𝑘𝑣(𝑤2,𝑥𝑥 −𝑤1,𝑥𝑥) 

+(𝑒0𝑎)
2𝑐𝑣(𝑤2,𝑡𝑥𝑥 −𝑤1,𝑡𝑥𝑥) + (𝑒0𝑎)

2𝑃,𝑥𝑥 + 𝜌𝐴𝑤1,𝑡𝑡 − (𝑒0𝑎)
2𝜌𝐴𝑤1,𝑡𝑡𝑥𝑥 = 0 

(9) 
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Nanobeam 2 

𝐸𝐼𝑤2,𝑥𝑥𝑥𝑥 + 𝑘𝑣(𝑤2 − 𝑤1) + 𝑐𝑣(𝑤2,𝑡 −𝑤1,𝑡) − 𝑃 + (𝑒0𝑎)
2𝑘𝑣(𝑤1,𝑥𝑥 − 𝑤2,𝑥𝑥) 

+(𝑒0𝑎)
2𝑐𝑣(𝑤1,𝑡𝑥𝑥 −𝑤2,𝑡𝑥𝑥) + (𝑒0𝑎)

2𝑃,𝑥𝑥 + 𝜌𝐴𝑤2,𝑡𝑡 − (𝑒0𝑎)
2𝜌𝐴𝑤2,𝑡𝑡𝑥𝑥 = 0 

(10) 

It should be noted that 𝑃 parameter in Eq. (9) represents a moving load that moves in axial 

direction of the primary nanobeam with constant velocity 𝑣0. 

                                                        (11)  𝑃 = 𝑃0𝛿(𝑥 − 𝑣0𝑡) 

where 𝑃0  is the magnitude of the moving load and 𝛿(⋅) is the delta function. For the sake of 

simplicity in solving Eqs. (9) and (10), we introduce the change of variable. 

                                                           (12) 𝑤 = 𝑤1 + 𝑤2 

So that 

                                                           (13) 𝑤1 = 𝑤 − 𝑤2 

By adding Eq. (9) to Eq. (10) and using Eq. (12), 

                     (14)  𝐸𝐼𝑤,𝑥𝑥𝑥𝑥 + 𝜌𝐴𝑤,𝑡𝑡 − 𝜌𝐴(𝑒0𝑎)
2𝑤,𝑡𝑡𝑥𝑥 = 𝑃 − (𝑒0𝑎)

2𝑃,𝑥𝑥 

Substituting Eq. (13) into Eq. (10) and employing Eq. (12) leads to 

𝐸𝐼𝑤2,𝑥𝑥𝑥𝑥 + 2𝑘𝑣𝑤2 + 2𝑐𝑣𝑤(𝑒0𝑎)
2
𝑣2,𝑥𝑥𝑣

(𝑒0𝑎)
2
2,𝑡𝑥𝑥

2,𝑡

 

(𝜌𝐴)𝑤2,𝑡𝑡 − 𝜌𝐴(𝑒0𝑎)
2𝑤2,𝑡𝑡𝑥𝑥 = 𝑘𝑣𝑤 − 𝑘𝑣(𝑒0𝑎)

2𝑤,𝑥𝑥 + 𝑐𝑣𝑤,𝑡 − 𝑐𝑣(𝑒0𝑎)
2𝑤,𝑡𝑥𝑥 

(15) 

At this stage, differential equation should be decoupled. It is assumed that nanobeams are 

simply supported and at each ends, the nonlocal bending moment and deflection are assumed to be 

zero 

𝑤1(0, 𝑡) = 𝑤1(𝐿, 𝑡) = 𝑤2(0, 𝑡) = 𝑤2(𝐿, 𝑡) = 0 
𝑀1(0, 𝑡) = 𝑀1(𝐿, 𝑡) = 𝑀2(0, 𝑡) = 𝑀2(𝐿, 𝑡) = 0 

(16) 

By applying Eq. (12) in Eq. (16) leads to 

𝑤(0, 𝑡) = 𝑤(𝐿, 𝑡) = 0 
𝑀(0, 𝑡) = 𝑀(𝐿, 𝑡) = 0 

(17) 

 

 

3. Analytical solution  
 

In order to solve Eqs. (14) and (15), w (total deflection) must be derived by using the solution 

of differential Eq. (14). Then by substituting total deflection into right hand side of Eq. (15), the 

dynamic response of the secondary nanobeam will be obtained: 

 

3.1 Solution of undamped differential equation 
 

Using the normal mode method, the solution of Eq. (14) is assumed to be a linear combination 

of the normal mode of the nanobeam as follows 

                                             (18)  𝑤(𝑥, 𝑡) = ∑ 𝑊𝑛(𝑥)𝜂𝑛(𝑡)
∞
𝑛=1 
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Where 𝜂𝑛(𝑡) are the generalized coordinate and 𝑊𝑛(𝑥) are the normal mode of the simply 

supported nanobeam, which can be defined as 

                                                    (19)  𝑊𝑛(𝑥) = sin(
𝑛𝜋

𝐿
𝑥) 

Substituting Eq. (18) into Eq. (14) and multiplying by 𝑊𝑗(𝑥) and then integrating from 0 to L, 

results in           

                                             (20)  𝜂𝑛,𝑡𝑡(𝑡) + 𝜔𝑛
2𝜂𝑛(𝑡) = 𝑄𝑛(𝑡) 

Where 

                                                   (21)  𝜔 = √
𝐸𝐼(

𝑛𝜋

𝐿
)
4

𝜌𝐴(1+(𝑒0𝑎)
2(
𝑛𝜋

𝐿
)
2
)

 

In Eq. (20), 𝑄𝑛(𝑡) is the generalized force corresponding to the n th mode and is given by 

                       (22)  𝑄𝑛(𝑡) =
1

𝑔𝑛
∫ 𝑊𝑛(𝑥) 𝑃0𝛿(𝑥 −𝑣0 𝑡) 𝑑𝑥 =

𝑃0

𝑔𝑛
𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑣0 𝑡)

𝐿

0
 

Where 

                                              (23)  𝑔𝑛 = ∫ 𝜌𝐴𝑊𝑛
2(𝑥)𝑑𝑥 =

𝜌𝐴𝐿

2

𝐿

0
 

In this study, the initial conditions are assumed to be zero 

                           (24)  𝑤1(𝑥, 0) = 𝑤2(𝑥, 0) = 𝑤1,𝑡(𝑥, 0) = 𝑤2,𝑡(𝑥, 0) = 0 

Substituting initial equation into Eq. (12) leads to 

                                             (25)  𝑤(𝑥, 0) = 𝑤,𝑡(𝑥, 0) = 0 

Therefore, 𝜂𝑛(𝑡) can be expressed as 

                                         (26)  𝜂𝑛(𝑡) = ∫ 𝑄𝑛(𝜏)
𝑡

0
ℎ(𝑡 − 𝜏) 𝑑 𝜏 

With 

                                               (27)  ℎ(𝑡) =
1

𝜔𝑛
sin(𝜔𝑛𝑡) 

Substituting Eq. (24) into Eq. (26) and considering Eq. (27), leads to 

                              (28)  𝜂𝑛(𝑡) =
2𝑃0

𝜌𝐴𝐿𝜔𝑛
∫ sin( 𝑡 − 𝜏) sin (

𝑛𝜋𝑣0

𝐿
𝜏) 𝑑𝜏

𝑡

0
 

Thus, the solution of Eq. (14) is given by (19) and (28) 

                   (29)  𝑤(𝑥, 𝑡) =
2𝑃0

𝜌𝐴𝐿
∑

𝑠𝑖𝑛(
𝑛𝜋

𝐿
𝑥)

(
𝑛𝜋𝑣0
𝐿
)
2
−𝜔𝑛

2
[
𝑛𝜋

𝐿
𝑣0

𝜔𝑛
sin(𝜔𝑛 𝑡) − sin(

𝑛𝜋

𝐿
𝑣0 𝑡)]

∞
𝑛=1 

 

3.2 Solution of damping differential equation 
 

Now 𝑤2(𝑥, 𝑡) can be derived from Eq. (15) by substituting Eq. (29) into Eq. (15) yields 
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𝐸𝐼𝑤2,𝑥𝑥𝑥𝑥 + 2𝑘𝑣𝑤2 − 2𝑐𝑣𝑤2,𝑡 − 2(𝑒0𝑎)
2 𝑘𝑣𝑤2,𝑥𝑥 − 2(𝑒0𝑎)

2 𝑐𝑣𝑤2,𝑡𝑥𝑥 + 

𝜌𝐴𝑤2,𝑡𝑡 − 𝜌𝐴(𝑒0𝑎)
2𝑤2,𝑡𝑡𝑥𝑥 =

2𝑃0(1+(𝑒0𝑎)
2(
𝑛𝜋

𝐿
))

𝜌𝐴𝐿
∑ sin (

𝑛𝜋𝑥

𝐿
)∞

𝑛=1 𝑈𝑛(𝑡)  
(30) 

where 

                            (31)  𝑈𝑛(𝑡) =
𝑘𝑣[

𝑛𝜋
𝐿
𝑣0

𝜔𝑛
𝑠𝑖𝑛(𝜔𝑛𝑡)−𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑣0𝑡)]+𝑐𝑣

𝑛𝜋

𝐿
𝑣0[𝑐𝑜𝑠(𝜔𝑛𝑡)−𝑐𝑜𝑠(

𝑛𝜋

𝐿
𝑣0𝑡)]

((
𝑛𝜋

𝐿
𝑣0)

2
−𝜔𝑛

2)
 

Once again modal analysis is employed to solve Eq. (30) 

                                                 (32)  𝑤2 = ∑ 𝑊2𝑛(𝑥)𝜂2𝑛(𝑡)
∞
𝑛=1 

where 𝑊2𝑛 is the n th normalized normal mode, 𝜂2𝑛(𝑡) is the n th generalized coordinate. 𝑊2𝑛 is 

expressed as 

                                                    (33)  𝑊2𝑛(𝑥) = sin (
𝑛𝜋

𝐿
𝑥) 

Similarly, substituting Eq. (32) into Eq. (30) and multiplying both side of the Eq.(30) by 

𝑊2𝑖(𝑥) and then integrating it from 𝑥 = 0 to 𝐿 leads to, 

                                  (34)  𝜂2𝑛,𝑡𝑡(𝑡) + 2Ω𝑛𝜉𝑛𝜂2𝑛,𝑡 + Ω𝑛
2𝜂2𝑛(𝑡) = 𝑄𝑛

* (𝑡) 

where Ω𝑛 and 𝜉𝑛 denote the undamped natural frequency and damping ratio, respectively and are 

defined as 

𝜉𝑛 =
𝑐𝑣

𝜌𝐴Ω𝑛
,  

Ω𝑛 = √
𝐸𝐼(

𝑛𝜋

𝐿
)
4
+2𝑘𝑣(1+(𝑒0𝑎)

2(
𝑛𝜋

𝐿
)
2
)

𝜌𝐴(1+(𝑒0𝑎)
2(
𝑛𝜋

𝐿
)
2
)

  
(35) 

Now, the generalized force related to the n th mode is obtained as 

                               (36)  𝑄𝑛
* (𝑡) =

1

𝑔𝑛
∫ 𝑊2𝑛(𝑥)

2𝑃0

𝜌𝐴𝐿
∑ sin (

𝑛𝜋

𝐿
𝑥)𝑈𝑛(𝑡)𝑑𝑥

∞
𝑛=1

𝐿

0
 

Substituting Eq. (33) into Eq. (36) and using orthogonality property 

                                                         (37)  ∫ 𝑊𝑖(𝑥)𝑊𝑗(𝑥)𝑑𝑥
𝐿∫𝑖𝑗
0

 

where 𝛿𝑖𝑗 is the Kronecker delta, leads to 

𝑄𝑛
* (𝑡) =

2𝑃0

𝜌2𝐴2𝐿
𝑈𝑛(𝑡)  (38) 

For zero initial condition, the generalized coordinate in the n th modes becomes as follows 

                            (39)  𝜂2𝑛(𝑡) = ∫
1

Ω𝑑𝑛
𝑒−𝜉𝑛Ω𝑛(𝑡−𝜏) sin(Ω𝑛(𝑡 − 𝜏))𝑄𝑛

* (𝑡 − 𝜏)𝑑𝜏
𝑡

0
 

where Ω𝑑𝑛 is the frequency of the damped vibration and is given by 

 Ω𝑑𝑛 = Ω𝑛√1 − 𝜉
2 (40) 
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Substituting Eq. (38) into Eq. (39) and applying the integration leads to 

 𝜂2𝑛(𝑡) =
2𝑒−𝜉Ω𝑛𝑡𝑃0

𝑎8
(
𝑎1 cos (

𝑛𝜋𝑣0

𝐿
𝑡) + 𝑎2 sin (

𝑛𝜋𝑣0

𝐿
𝑡) +

𝑣0𝑛𝜋(𝑎3 cos( Ω𝑑𝑡) + 𝑎4(𝑎5 cos(𝜔𝑛𝑡) + 𝑎6 sin(𝜔𝑛𝑡)) + 𝑎7 sin(Ω𝑑𝑡))
) (41) 

where 

𝑎1 = −𝑣0𝑛𝜋𝐿
2𝑒𝜉Ω𝑛𝑡𝜔𝑛Ω𝑑 (

𝜔𝑛
4 + 2𝜔𝑛

2(𝜉2Ω𝑛
2 − Ω𝑑

2)

+(𝜉2Ω𝑛
2 + Ω𝑑

2)
2 )(

𝑣0
2(𝑛𝜋)2𝑐𝑣 +

𝐿2(𝜉Ω𝑛(2𝑘𝑣 − 𝑐𝑣𝜉Ω𝑛) − 𝑐𝑣Ω𝑑
2)
)  

𝑎2 = 𝑒
𝜉Ω𝑛𝑡𝐿3𝜔𝑛Ω𝑑 (

−𝑣0
2(𝑛𝜋)2(𝑘𝑣 − 2𝑐𝑣𝜉Ω𝑛) +

𝑘𝐿2(𝜉2Ω𝑛
2 + Ω𝑑

2)
)(
𝜔𝑛
4 + 2𝜔𝑛

2(𝜉2Ω𝑛
2 − Ω𝑑

2)

+(𝜉2Ω𝑛
2 + Ω𝑑

2)
2 )  

𝑎3 = 𝜔𝑛Ω𝑑(−𝑣0
2(𝑛𝜋)2 + 𝐿2𝜔𝑛

2)

(

 
 
𝑣0
2(𝑛𝜋)2 (2𝑘𝑣𝜉Ω𝑛 + 𝑐𝑣 (𝜔𝑛

2 − (𝜉2Ω𝑛
2 + Ω𝑑

2))) +

𝐿2 (
2𝑘𝑣𝜉Ω𝑛(𝜔𝑛

2 + 2𝜉2Ω𝑛
2 − 2Ω𝑑

2) −

𝑐𝑣(𝜔𝑛
2 + 3𝜉2Ω𝑛

2 − Ω𝑑
2)(𝜉2Ω𝑛

2 + Ω𝑑
2)
)

)

 
 

 

𝑎4 = 𝑒
𝜉Ω𝑛𝑡Ω𝑑 ((𝑣0𝑛𝜋)

4 + 2𝐿2(𝑣0𝑛𝜋)
2(𝜉2Ω𝑛

2 − Ω𝑑
2) + 𝐿4(𝜉2Ω𝑛

2 + Ω𝑑
2)
2
) 

𝑎5 = 𝜔𝑛 (−2𝑘𝑣𝜉Ω𝑛 + 𝑐𝑣(−𝜔𝑛
2 + 𝜉2Ω𝑛

2 + Ω𝑑
2)) 

𝑎6 = (2𝑐𝑣𝜔𝑛
2𝜉Ω𝑛 + 𝑘𝑣(−𝜔𝑛

2 + 𝜉2Ω𝑛
2 + Ω𝑑

2)) 

𝑎7 = 𝜔𝑛((𝑣0𝑛𝜋)
2 −

(𝐿𝜔𝑛)
2)

(

 
 

−(𝑘𝑣 − 𝑐𝑣𝜉Ω𝑛)(𝜔𝑛
2 + 𝜉2Ω𝑛

2)((𝑣0𝑛𝜋)
2 + (𝐿𝜔𝑛)

2) +

(
(𝑣0𝑛𝜋)

2(𝑘𝑣 + 𝑐𝑣𝜉Ω𝑛)

+𝐿2(𝑘𝑣𝜔𝑛
2 + 𝑐𝑣𝜔𝑛

2𝜉Ω𝑛 + 6𝑘𝑣𝜉
2Ω𝑛

2 − 2𝑐𝑣𝜉
3Ω𝑛

3)
)Ω𝑑

2

−𝐿2Ω𝑑
4(𝑘𝑣 + 3𝑐𝑣𝜉Ω𝑛) )

 
 

  

𝑎8 = {
𝜔𝑛Ω𝑑(𝜌𝐴)

2((𝜔𝑛 − Ω𝑑)
2 + (𝜉Ω𝑛)

2)((𝜔𝑛 + Ω𝑑)
2 + (𝜉Ω𝑛)

2)(−(𝑣0𝑛𝜋)
2 + (𝐿𝜔𝑛)

2)

((𝑣0𝑛𝜋 − 𝐿Ω𝑑)
2 + (𝐿𝜉Ω𝑛)

2)((𝑣0𝑛𝜋 + 𝐿Ω𝑑)
2 + (𝐿𝜉Ω𝑛)

2)
} 

(42) 

After substituting the normalized normal mode into Eq. (33) and generalized coordinate Eq. 

(41) into Eq. (32), the response of the secondary nanobeam is determined, finally the response of 

the primary nanobeam is achieved by Eq. (13). 

 

 

4. Results and discussion 
 

For the sake of validation, our results are compared to a condition with no moving load and 

damping. Thus the free vibration of a double nanobeam with medium elastic layer is analyzed and 

the results are compared to Murmo and Adhikar paper. It worth nothing to mention that 

nanobeams vibrate in three different phases, out-phase, a fixed nanobeam and in-phase. It should 

be noted that the amount of 𝑘 is equal to 1 and μ changes from 0 to 1. As it can be seen from Fig. 

2, there is a good agreement between the results of this study and ref (Murmu and Adhikari 2010).  

In this part, some numerical examples for a double nanobeam system that is under the moving 

load are presented. This nanobeam system consists of a viscoelastic medium layer which is 

modeled as a spring-damper system. For the sake of convenience, the following  
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Fig. 2 Variation in the frequency parameter versus nonlocal parameter 

 

 

nondimensionalization are used 
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(43) 

 

𝑊1 =
𝑤1

𝑤𝑠
,   𝑊2 =

𝑤2

𝑤𝑠
 ,   𝜇 =

𝑒0𝑎

𝐿
 ,   𝜏 =

𝑣0𝑡

𝐿
,𝑠 =

𝑣0

𝑣𝑐𝑟
 and   𝑘 =

𝑘𝑣𝐿
4

𝐸𝐼
 

Where 𝑊1 and 𝑊2 are the dimensionless deflection of the primary and secondary nanobeam in 

relation with 𝑤𝑠, respectively. 𝑤𝑠 represents the maximum static deflection of the nanobeam which 

is simply supported at 𝑥 =
1

2
 and is equal to 𝑤𝑠 =

𝑃0𝐿
3

48𝐸𝐼
. 𝑘  denotes the dimensionless stiffness 

parameter and 𝑠represents the dimensionless velocity parameter which is nandimensinolizated in 

relation to 𝑣𝑐𝑟. 𝑣𝑐𝑟 is a critical velocity and is equal to 𝑣𝑐𝑟 =
𝜔𝐿

𝜋
. 𝜇 and 𝜏 indicates a dimensionless 

nonlocal parameter and dimensionless time, respectively. Prior to dealing with some numerical 

examples, it worth nothing to mention that the value of 𝜏 is between 0 and 1 which means that 

where 𝜏 is equal to 0, the 𝑃0 load is at the start point and on the left side of the nanobeam and 

when 𝜏 is equal to 1 the 𝑃0 load is at the end point and on the right side of the nanobeam.  

Fig. 3 shows the variation of dynamic deflection 𝑊1 for different values of 𝜉 =
0, 0.25, 0.5 and 0.75 with respect to the dimensionless time, different values of nonlocal parameter 

and the dimensionless stiffness. It should be mentioned that Fig. 2 (a1)-(a4) are related to 𝑘 = 0.1 

and the nonlocal parameters which are equal 𝜇 = 0, 0.25, 0.5 and 0.75 respectively. Similarly, Fig. 

3(b1)-(b4), 3(c1)-(c4) and 3(d1)-(d4) represent the nanobeam system with the dimensionless 

stiffness of 1, 10 and 100 respectively. It should be noted that when there is no damping (𝜉 = 0) 

and the dimensionless stiffness has low value, the weak elastic medium occurs and when the 

dimensionless parameter has high value the rigid coupling occurs. According to Fig. 3, it is clear  
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Fig. 3 The variation of dynamic deflection 𝑊1 for different values of 𝜉 = 0, 0.25, 0.5 and 0.75 with respect 

to the dimensionless time, different values of nonlocal parameter and the dimensionless stiffness 

 

 

that the maximum dynamic deflection of the primary nanobeam increases when the stiffness and 

nonlocal parameters decreases and increases, respectively. It should be said that the difference in 

the maximum dynamic deflections of the primary nanobeam that is with respect to different values 

of 𝜉 in a condition with low dimensionless stiffness is more than a condition with high 

dimensionless stiffness. In Fig. 3(d4) all the four values of 𝜉are coincident with each other. Also it 

can be seen from Fig. 3 that when the moving load has passed along 65% of the whole path of 

nanotube. the maximum of dynamic deflection occurs. 

Fig. 4 shows the variation of dynamic deflection of the secondary nanobeam with respect to the 

dimensionless time and for different values of 𝜉 = 0, 0.25, 0.5 and 0.75. As it is clear, Fig. 4(a1)- 
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Fig. 4 The variation of dynamic deflection of the secondary nanobeam with respect to the dimensionless 

time and for different values of 𝜉 = 0, 0.25, 0.5 and 0.75 

 

 

(a4) show the value of W3 for the dimensionless stiffness and nonlocal parameters of 𝜇 =
0, 0.25, 0.5 and 0.75 respectively. Fig. 4(b1)-(b4), (c1)-(c4) and (d1)-(d4) are illustrated for the 

nanobeam system with the dimensionless stiffness of 1, 10 and 100 respectively. 

According to Figs. 4(a1)-(a4) it is clear that when 𝜉 is equal to zero and the dimensionless 

stiffness has low values (𝑘 = 0.1) (weak coupling elastic condition), the dynamic deflection of the 

secondary nanobeam is zero. In this condition, as 𝜉 increases, the maximum dynamic deflection 

increases.  

According to Fig. 3, increasing in dimensionless stiffness and nonlocal parameter, tends to 

increase of the maximum dynamic deflection Clearly, by increasing the dimensionless stiffness,  
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Fig. 5 The variation of the maximum dynamic deflection 𝑊𝑖,max in terms of the dimensionless stiffness 

parameter 𝑘 

 

 

the difference between the maximum dynamic deflection with respect to different values of 𝜉, 

decreases, same as Fig. 3. 

In this section, the variation of the maximum dynamic deflection in terms of different 

parameters is analyzed. It should be mentioned that, the maximum dynamic deflection is 

represented by 𝑊𝑖,max, 𝑖 = 0,1,2 and 𝑊0,max, 𝑊1,max and 𝑊2,max indicate the relative maximum 

dynamic deflection of the primary and the secondary nanobeam, the maximum dynamic deflection 

of the primary nanobeam and the maximum dynamic deflection of the secondary nanobeam, 

respectively. 

Fig. 5 shows the variation of the maximum dynamic deflection 𝑊𝑖,max in terms of the 

dimensionless stiffness parameter 𝑘 which changes from 0 to 1000. Fig. 5(a1)-(a4) indicate the 

dimensionless velocity 𝑠 = 0.25  in terms of the nonlocal parameters 𝜇 = 0, 0.25, 0.5 and 0.75, 

respectively and similarly Fig. 5(b1)-(b4) show the dimensionless velocity 𝑠 = 0.75 in terms of 

𝜇 = 0, 0.25, 0.5 and 0.75 respectively. As it is clear, the maximum dynamic deflection does not 

change as the dimensionless stiffness increases. This reason was described in Eq. (29) which is 

independent of stiffness. Also as 𝑘  increases, 𝑊1,max  and 𝑊2,max  decreases and increases, 

respectively and their diagrams are symmetric. Clearly, as 𝑘  increases, 𝑊1,max  and 𝑊2,max  are 

converged to each other and as the nonlocal parameter and dimensionless velocity increases their 

convergence rate increases. 

The variation of  𝑊𝑖,max with respect to the nonlocal parameter that changes from 0 to 1, is 

illustrated in Fig. 6. 𝑊𝑖,max for 𝑠 = 0.25 and 𝑘 = 1, 10 and 100 are depicted in Fig. 6(a1)-(a3), 

respectively. Similarly, 𝑊𝑖,max  for 𝑠 = 0.75 and 𝑘 = 1, 10 and 100 are illustrated in Fig. 6(b1)-

(b3), respectively. It can be seen that, increasing in the nonlocal parameters, tends to increase 

𝑊0,max, 𝑊1,max and 𝑊2,max. 
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Fig. 6 The variation of 𝑊𝑖,max with respect to the nonlocal parameter 

 

 
Fig. 7 The variation of  𝑊𝑖,max with respect to dimensionless velocity 

 

 

Fig. 7 shows the variation of  𝑊𝑖,max with respect to dimensionless velocity that changes from 

0 to 2. The maximum dynamic deflection for 𝜉 = 0.25 and nonlocal parameter μ=0, 0.25, 0.5 and 

0.75 is depicted in Fig. 7(a1)-(a4), respectively. Similarly, the maximum dynamic deflection for 

𝜉 = 0.75 and nonlocal parameter 0, 0.25 and 0.75 is illustrated in Fig. 6(b1)-(b4), respectively.  

As it is clear, as the dimensionless velocity increases, firstly the 𝑊𝑖,max increases and then 

when 0.5 < 𝑠 < 0.65 decreases. As the nonlocal parameter increases, 𝑊1,max and 𝑊2,max are  
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Fig. 7 Continued 

 

 

converged to each other. 

The variation of 𝑊𝑖,max in terms of the damping ratio 𝜉 is shown in Fig. 8. Clearly, the diagram 

of 𝑊0,max is a straight line which denotes that it is not dependent on 𝜉. 

It is clear that as the damping ratio increases, the 𝑊1,max increases and is converged to 𝑊0,max 

and symmetrically the 𝑊2,max decreases and is converged to zero. Also it can be concluded that, 

by increasing the dimensionless stiffness in the initial values of 𝜉, 𝑊1,max and 𝑊2,max come closer  
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Fig. 8 The variation of 𝑊𝑖,max in terms of the damping ratio 𝜉 

 

 

to each other but as 𝜉 increases they are diverged from each other. 

 

 

5. Conclusions 
 

A dynamic behavior of a double nanobeam system, with a medium viscoelastic layer, under a 

moving load, using an Eringen nonlocal theory, was analyzed in this paper. The nonlocal equations 

were based on the Euler–Bernoulli model, the simply supported boundary condition was 

considered, and the viscoelastic medium layer was modeled which was based on a spring-damper 

system. An exact solution was resulted for the primary and secondary nanobeams. By 

nondimensionalization of the parameters, a wide range of examples and diagrams were achieved 

which made the nonlocal parameters, the velocity of the moving load, the stiffness parameter and 

the damping ratio to be accurately analyzed. It was determined that 

• As the nonlocal parameter increases, the maximum dynamic deflection increases, which the 

importance of the nonclassic theories. 

• By increasing the stiffness parameter, the maximum dynamic deflection and damping ratio of 

the primary nanobeam decreases and increases respectively. 
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• by increasing the dimensionless stiffness in the initial values of 𝜉, 𝑊1,max and 𝑊2,max come 

closer to each other but as 𝜉 increases they are diverged from each other. 

• Increasing in the stiffness parameters of the secondary nanobeam, results in increasing and 

decreasing of its maximum dynamic deflection and damping ratio, respectively. 

• When the value of dimensionless velocity is between 0.5 to 0.75, the maximum dynamic 

deflection occurs 
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