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Abstract.  In this paper, a size-dependent dynamic investigation of a porous metal foams microbeams is presented. 
The novelty of this study is to use a metal foam microbeam that contain porosities based on the refined high order 
shear deformation beam model, with sinusoidal shear strain function, and the modified strain gradient theory 
(MSGT) for the first time. The Lagrange’s principle combined with differential quadrature hierarchical finite element 
method (DQHFEM) are used to obtain the porous microbeam governing equations. The solutions are presented for 
the natural frequencies of the porous and homogeneous type microbeam. The obtained results are validated with the 
analytical methods found in the literature, in order to confirm the accuracy of the presented resolution method. The 
influences of the shape of porosity distribution, slenderness ratio, microbeam thickness, and porosity coefficient on 
the free vibration of the porous microbeams are explored in detail. The results of this paper can be used in various 
design for metallic foam micro-structures in engineering. 
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1. Introduction 
 

Recently, materials with a porous structure have attracted the attention of several researchers, 

because of their special mechanical characteristics, among these porous materials we find metal 

foams which have a great advantage like low masse density, good protection from temperature, 

good insulation of sound and a very good absorption of energy and electromagnetic waves. In the 

literature, one can find various researches on porous structures. Among the first works in this field, 

we find the works of (Wattanasakulpong et al. 2012), who worked on the impact of the presence of 

porosities in functionally graded materials realized by a process of sequential infiltration in several 

stages. They determined that it is important to consider the porosity effect when designing and 
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studying the behaviour of FGM structures. In another study, (Wattanasakulpong and Ungbhakorn 
2014) investigated the nonlinear and linear dynamic responses of FGM beams made of porous 
materials and taking in consideration the fixed boundary supports. (Jabbari et al. 2014) presented 
an analysis on the buckling of a circular shaped plate made of porous metallic foam material. 
(Chen et al. 2015) made a study on the elastic buckling and the static bending of porous beams 
made of metal foam via the theory of Timoshenko’s beam. In their work (Chen et al. 2016), they 

also studied the non-linear free vibrations of a porous foam metal sandwich beam. (Rezaei and 
Saidi 2016) did a work on the free vibration of thick rectangular plates made of porous metal foam 
using the unified Carrera formulation. (Barati and Zenkour 2017) examined the post-buckling 
behaviour of metal foam nanobeams with imperfect geometry. (Bensaid and Guenanou 2017) 
investigated the static deflection and buckling of functionally graded (FG) nanoscale beams in 
porous material and are made based on the nonlocal Timoshenko beam model that captures small-
scale influences. (Thang et al. 2018) investigated the stability and dynamic behaviour of porous 

cell plates with uniform and non-uniform porosity variations using first-order shear deformation 
theory. (Ebrahimi and Jafari 2018) investigated the thermomechanical performance of porous FG 
beams subjected to various thermal loads with two distinct porosity distributions using the 
improved four-variable shear-strain beam theory. Using the generalized differential quadrature 
approach (GDQM), (Bensaid and Saimi 2022) investigated the dynamic analysis of a viscoelastic 
beam made of functionally graded porous materials (FGM). With new technological 
advancements, extreme requirements based on the use of micro/nano electromechanical systems 
(MEMS/NEMS) such as actuators, thin films, sensors, probes, etc. have been raised by different 

industries (Stölken and Evans 1998). However, experiments indicate that the mechanical 
behaviour of micro/nano elements cannot be studied by classical continuum theories (CCT), due to 
their limitations in capturing the scaling effect. More reliable prediction can be obtained using 
higher order continuum theories (HOCT) in which additional hardware parameters and scales are 
required (Fleck et al. 1994). In order to study the size effect in micro and nano structures, in the 
literature, several have proposed non-classical theories of continuum mechanics. Among these 
theories is the work of  (Lim et al. 2015) who presented a high order non-local strain-gradient and 

elasticity theory that take in to account high order stress gradients and the non -locality of the 
deformation gradient. The theory of strain gradient elasticity was introduced by the work of 
(Mindlin 1965), hence the density of potential energy depends on the first and second gradients of 
the deformation. (Lam et al. 2003) made an observation on the effect of the size of the structure 
when it is reduced to the micro/nano scale, from the experimental results, which allowed the 
application of the order equilibrium conditions to strain gradient elasticity theory and the number 
of independent elastic length scale parameters is reduced from five to three, (Lam et al. 2003) 

suggested a Modified Stress Gradient Theory (MSGT), from which a new upper-order 
measurements were used to characterise stress gradient behaviours. This theory proposes that the 
strain energy density is dependent on the symmetric strain, deviatoric stretch gradient and 
symmetric rotation gradient tensors, and also the dilation gradient vector. Within the framework of 
the modified deformation gradient theory, several researchers have studied the behaviours of 
vibration, buckling and bending of micro-structures, such as (Akgöz and Civalek 2013, Mirsalehi 
et al. 2017, Li et al. 2014, Thai et al. 2017. In the scientific research literature, some researchers 
have studied the mechanical characteristics of microbeams. For example, (Şimşek and Reddy 

2013) analysed free vibration and static bending of microbeams with functional gradient material 
using modified torque stress theory and the theory of higher order beam. Based on theory of 
amended torque stress, the effect of temperature on the free vibrations and the buckling of 
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microbeams has been treated by (Ke et al. 2011). Using the theory of non-local elasticity and the 
theory of Timoshenko’s beam, (Wang et al. 2008) have investigated the bending of isotropic 
microbeams. And (Wang et al. 2018) analysed a porous microbeam model for vibration analysis 
based on modified stress gradient theory and sinusoidal beam theory, via the method Analytics 
from Navier’s. Most of the above works have used analytical or experimental methods in their 
studies. And also, some have used numerical methods such as the generalized differential 

quadrature method (Bensaid and  Saimi 2022). There is also the work of (Karamanli and Aydogdu 
2020) who investigate free vibration analysis of functionally graded porous microplates with shear 
and normal deformation via the classical finite element method. Recently a new combination 
between the hierarchical finite element method and the generalized differential quadrature method 
was applied for the study of the dynamic response of an onboard rotor (Ahmed et al. 2020), this 
method was used for the first time in the work of (Liu et al. 2017) for the applications to vibrations 
and bending of Mindlin plates with curvilinear domains. (Abdelrahman et al. 2021) presented a 

dynamic finite elements procedure capable of analysing the dynamic behaviour of perforated 
Timoshenko microbeams in thermal environment and subjected to moving mass for the first time. 
(Ebrahimi et al. 2017) investigated Thermo-mechanical vibration characteristics of in 
homogeneous porous functionally graded (FG) micro/nanobeam subjected to various types of 
thermal loadings based on modified couple stress theory with consideration of the exact position of 
neutral axis. For the first time, (Chai and  Wang 2022) explores the traveling wave vibration 
characteristics of spinning graphene platelets reinforced metal foam (GPLRMF) connected 
conical-cylindrical shells (JCCSs). (Wang et al. 2019) employs an updated Donnell nonlinear shell 

theory to analyse the nonlinear vibrations of metal foam circular cylindrical shells supplemented 
with graphene platelets. (Ye and  Wang 2021) investigated the nonlinear forced vibration of thin-
walled metal foam cylindrical shells reinforced with functionally graded graphene platelets, hence, 
three kinds of porosity distribution and different kinds of graphene platelet distribution are 
considered. (Teng and Wang 2021) studied nonlinear forced vibration of graphene platelet 
reinforced porous metal foam (GPLRMF) rectangular plates. A spinning functionally graded 
graphene platelet-reinforced metal foam (FG-GPLRMF) beam’s free vibration is investigated by 

(Xu et al. 2021). For the first time, the differential transformation approach is extended to study 
flap-wise bending vibration and chord-wise bending vibration with Coriolis force effect. In the 
work done by (Wang and Zu 2017)  the vibrations of functionally graded material (FGM) 
rectangular plates with porosities moving in a thermal environment are studied for the first time. 
Because of technical issues during the production of FGMs, the FGM plates have porosities. 
Electro-mechanical vibrations of functionally graded piezoelectric material (FGPM) plates 
carrying porosities in the translation state are explored in work done by (Wang 2018) as a 

reference for aeronautical structural design. (Jalaei et al. 2022) explored the transient response of 
porosity-dependent viscoelastic functionally graded nanobeams and subjected to the dynamic 
loads and external magnetic fields. (Karamanli et al. 2022) analysed the size-dependent 
performance of metal foam microbeams considering three distinct porosity distribution models. 
(Karamanli et al. 2021) researched by a thorough investigation by finite element method the 
bending, vibration, and buckling behaviours of multi-directional FG microplates. The material 
characteristics change in both the in-plane and through-thickness directions. Based on the 
modified strain gradient theory and a quasi-3D shear and normal deformation plate theory. 

(Nguyen et al. 2022) proposed a basic two-variable shear deformation theory for functionally 
graded porous (FGP) beam bucking, bending, and vibration behaviour. The displacement field of 
beams is created by separating variables. A finite element model for the structural behaviours of  
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Fig. 1 Porous microbeam with simple supports and its straight section 

 
 

bi-directional (2D) FG porous microbeams is proposed in (Karamanli and Vo 2021a), which is 
based on a quasi-3D theory and the modified strain gradient theory (MSGT). A generalized 

nonlocal beam theory is developed in the paper (Aydogdu 2009) to analyse the bending, buckling, 
and free vibration of nanobeams. The size-dependent responses of functionally graded (FG) porous 
microbeams are explored in (Karamanli and Vo 2021b) utilizing a quasi-3D theory and the 
modified strain gradient theory. The eigenfrequencies of rotating laminated composite (LC) and 
sandwich microbeams with various boundary conditions (BCs) are investigated in (Karamanli and 
Aydogdu 2019). 

To the authors’ knowledge, and by searching in the literature, we found that no study has been 
conducted on the free vibration analysis of the porous metal foam microbeams by combining the 

differential quadrature hierarchical finite elements method (DQHFEM) and the refined high order 
shear deformation beam theory, considering the sinusoidal type shear deformation function, in 
conjunction with the modified strain gradient theory, which takes into account the scale effect. In 
this context, the present article tries to give a robust numerical investigation on this case and 
studying this topic comprehensively. Three models of porosity distribution namely uniform (UDP), 
symmetric (NUDP1) and asymmetric (NUDP2) distributions are considered. This study 
incorporates three material length scale parameters that can capture the size effect of porous 

microbeams with high accuracy. Then, the obtained solutions by the current method are validated 
with existing analytical methods in the literature. Subsequently, the impact of many important 
parameters on the free vibration of porous metal foam microbeams are explored. 

 
 

2. Formulation and theories 
 

2.1 Model of porous microbeam  
 
In this work, we consider a micro-beam of porous metal foam, with the following geometric 

properties: a length L, a width b, and a thickness h, as shown in Fig. 1. 
The distribution of porosity in the microbeam is assumed through the direction of the thickness, 

according to three models of distribution of porosity such as: (a) the uniform distribution of 
porosity (UDP), (b) the non-uniform distribution of porosity 1 (NUDP1) which is symmetrical, 
and (c) the non-uniform distribution of porosity 2 (NUDP2) which is asymmetrical, as shown in 

Fig. 2. 
The properties of the material, such as the Young E module and the density ρ, change according 

to the type of porosity distribution. For UDP, the young’s module 𝐸 and the masse density 𝜌 have 
constants value according to the thickness of the micro beam direction, as shown in Fig. 2.  
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Fig. 2 Uniform distribution of porosity in thickness direction (UDP) 

 

 

Fig. 3 Non-uniform distribution of porosity 1 in thickness direction (NUDP1) 

 

 

Fig. 4 Non-uniform distribution of porosity 2 in thickness direction (NUDP2) 

 
 

However, for case of NUDP1, the young’s module 𝐸 and the masse density 𝜌, have maximum 
values in the extreme high and extreme low surfaces, and the smallest values are in the middle axis 

of the micro beam, see Fig. 3. For the case NUDP2, the young’s module 𝐸 and the masse density 

𝜌 , have maximum values in the low extreme surface area, and minimum values in the high 
extreme surface area of the micro beam. See Fig. 4. 

The distribution of the material properties of the porous microbeam, takes the form according 
to the following equations (Chen et al. 2016, Chen et al. 2015) 

𝑈𝐷𝑃: {
𝐸 = 𝐸1(1 − 𝑒0휁)

𝜌 = 𝜌1√(1− 𝑒0휁)
 (1) 

𝑁𝑈𝐷𝑃1: {

𝐸(𝑧) = 𝐸1 (1− 𝑒0 cos (
𝜋𝑧

ℎ
))

𝜌(𝑧) = 𝜌1√(1− 𝑒𝑚 cos (
𝜋𝑧

ℎ
))

 (2) 
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𝑁𝑈𝐷𝑃2: {

𝐸(𝑧) = 𝐸1 (1− 𝑒0 cos (
𝜋𝑧

2ℎ
+
𝜋

4
))

𝜌(𝑧) = 𝜌1√(1− 𝑒𝑚 cos(
𝜋𝑧

2ℎ
+
𝜋

4
))

 (3) 

With 

{
 
 

 
 𝑒0 = 1 −

𝐸2

𝐸1

𝑒𝑚 = 1 −
𝜌2

𝜌1

휁 =
1

𝑒0
−

1

𝑒0
(
2

𝜋
√1− 𝑒0 −

2

𝜋
+ 1)

2

  (4) 

Hence, 𝜌1  and 𝐸1  are minimum values of masse density and young’s module respectively. 𝐸2 

and 𝜌2 are maximum young module values and density respectively. 𝑒0 and 𝑒𝑚  are the porosity 
and mass porosity coefficients respectively. 

𝑒0  is the primary variable used to characterize porosity, and 𝑒𝑚  is determined by their 
relationship, which is obtained from the normal mechanical properties of an open-cell metal foam. 

Due to the increasing size and density of interior pores, a larger value of 𝑒0 corresponds to lower 
elastic modulus and mass density. It should be noticed that 𝑒0 = 𝑒𝑚 = 0  denotes a particular 

circumstance in which no pore occurs in the core, but 𝑒0 = 𝑒𝑚 = 1 is not possible because all 
material property values are lowered to zero in this instance. The porosity coefficient value is 

limited between 0 ≤ 𝑒0 < 1. 
 

2.2 Strain gradient elasticity theory 
 

According to the Modified Couple Strain Theory (MCST) of (Yang et al. 2002), in addition to 
the rotationally symmetrical gradient tensor, (Lam et al. 2003) incorporated an extra dilatation 
gradient tensor and the tensor of deviatoric stretch gradient, resulting in the Modified Strain 
Gradient Theory of Elasticity (MSGT). These tensors are separated by two standard material 
constants for isotropic linear elastic materials and three different material length scale parameters. 
The formula for strain energy, according to these theories, is as follows 

𝑈 =
1

2
∫ ∫ (𝜎𝑖𝑗휀𝑖𝑗 + 𝑝𝑖𝛾𝑖 + 𝜏𝑖𝑗𝑘

(1)
휂𝑖𝑗𝑘
(1)
+𝑚𝑖𝑗

𝑠 𝜒𝑖𝑗
𝑠 )

𝐴
𝑑𝐴𝑑𝑥

𝐿

0
  (5) 

Hence  휀𝑖𝑗, 𝛾𝑖 , 휂𝑖𝑗𝑘
(1)
, and 𝜒𝑖𝑗

𝑠  represents respectively the strain tensor, the deviatoric stretching 

gradient tensor, the dilatation gradient tensor, and the rotationally symmetric gradient tensor which 
are defined by the following equations, a subscripted comma is used to denote the derivative with 
respect to the followed variable. 

휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)  (6) 

𝛾𝑖 = 휀𝑚𝑚,𝑖 (7) 

휂𝑖𝑗𝑘
(1)
=

1

3
(휀𝑗𝑘,𝑖 + 휀𝑘𝑖,𝑗 + 휀𝑖𝑗,𝑘) −

1

15
[𝛿𝑖𝑗(휀𝑚𝑚,𝑘 + 2휀𝑚𝑘,𝑚) + 𝛿𝑗𝑘(휀𝑚𝑚,𝑖 + 2휀𝑚𝑖,𝑚) +

𝛿𝑘𝑖(휀𝑚𝑚,𝑗 +2휀𝑚𝑗,𝑚)]  
(8) 
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𝜒𝑖𝑗
𝑠 =

1

2
(휃𝑖,𝑗 + 휃𝑗,𝑖)  (9) 

휃𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗  (10) 

Where 𝑢𝑖, 휃𝑖 , 𝛿𝑖𝑗 and 𝑒𝑖𝑗𝑘  are the components of displacement vector, the components of rotation 

vectors, the Kronecker delta and the permutation symbols, respectively. 

𝜎𝑖𝑗 = 𝜆휀𝑚𝑚𝛿𝑖𝑗 + 2𝜇휀𝑖𝑗 (11) 

𝑝𝑖 = 2𝜇𝑙0
2𝛾𝑖 (12) 

𝜏𝑖𝑗𝑘
(1)
= 2𝜇𝑙1

2휂𝑖𝑗𝑘
(1)

 (13) 

𝑚𝑖𝑗
𝑠 = 2𝜇𝑙2

2𝜒𝑖𝑗
𝑠  (14) 

𝜎 is the classical stress tensor. 𝑝, 𝜏(1) and 𝑚𝑠 are the higher order strain tensors. 
The independent parameters of the dilatation, deviatory stretching, and symmetrical rotational 

gradients-related material length scale, respectively, are represented by 𝑙0, 𝑙1 and 𝑙2. 

𝜇 =
𝐸

2(1+𝜈)
  (15) 

𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
  (16) 

Hence 𝜇 and 𝜆 are the Lame constants, and 𝜈 is the Poisson’s ratio. 
 

2.3 Kinematics formulation 
 
Based on a refined beam strain gradient theory, the displacement field at any arbitrary location 

on the microbeam is assumed to be stated as follows in the current work (Thai and Vo 2012) 

{
𝑢1(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧

𝑑𝑤𝑏
𝑑𝑥

+ 𝑓(𝑧)
𝑑𝑤𝑠
𝑑𝑥

𝑢2(𝑥, 𝑧, 𝑡) = 0
𝑢3(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡)

 (17) 

According to this theory, the transverse displacement is divided into two parts bending 𝑤𝑏 and 

shear 𝑤𝑠.  
Where 𝑢0, 𝑤𝑏 and 𝑤𝑠 are respectively, the displacement in the plane in the directions 𝑥 −, the 

bending and shear components of the transverse displacement of the points on the neutral axis of 
the beam.  

In this work, our choice of functions is determined on the basis of the given sinusoidal shear 
function (Touratier 1991) 

𝑓(𝑧) = (
ℎ

𝜋
) ∗ sin(𝜋

𝑧

ℎ
 ) (18) 

By introducing Eqs. (17) and (18) into Eq. (6), we obtain the non-zero deformation torsor 
components 
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{
휀11 =

𝑑𝑢

𝑑𝑥
− 𝑧

𝑑2𝑤𝑏

𝑑𝑥2
+ 𝑓

𝑑2𝑤𝑠

𝑑𝑥2

휀13 =
1

2
((

𝑑𝑓

𝑑𝑧
+ 1)

𝑑𝑤𝑠

𝑑𝑥
)

  (19) 

By replacing Eq. (19) in (11) we obtain the strain tensor 

{
 
 

 
 𝜎11 = (

𝐸(1−𝜈)

(1−2𝜈)(1+𝜈)
)휀11 = (

𝜆

𝜈
− 𝜆) 휀11

𝜎22 = 𝜎33 =
𝐸𝜈

(1−2𝜈)(1+𝜈)
휀11 = 𝜆휀11

𝜎13 =
𝐸

(1+𝜈)
휀𝑥𝑧 = 2𝜇휀13

  (20) 

Based on Eqs. (19) and (7), the non-zeros components of the dilatation gradient vector are 
inscribed as follows 

{
𝛾1 =

𝑑2𝑢

𝑑𝑥2
− 𝑧

𝑑3𝑤𝑏

𝑑𝑥3
+ 𝑓

𝑑3𝑤𝑠

𝑑𝑥3

𝛾3 = −
𝑑2𝑤𝑏

𝑑𝑥2
+

𝑑𝑓

𝑑𝑧

𝑑2𝑤𝑠

𝑑𝑥2

  (21) 

By replacing Eqs. (21) in (12) we obtain the non-zero higher order constraints 𝑝𝑖 are expressed 
by 

{
𝑝1 = 2𝜇𝑙0

2 (
𝑑2𝑢

𝑑𝑥2
− 𝑧

𝑑3𝑤𝑏

𝑑𝑥3
+ 𝑓

𝑑3𝑤𝑠

𝑑𝑥3
)

𝑝3 = −2𝜇𝑙0
2
(
𝑑2𝑤𝑏

𝑑𝑥2
−

𝑑𝑓

𝑑𝑧

𝑑2𝑤𝑠

𝑑𝑥2
)

  (22) 

Applying Eq. (19) in (8), we will have the components non-zero of the deviatoric stretching 

gradient tensor 휂
(1)

, such as 

{
 
 
 
 
 

 
 
 
 
 휂111 =

1

5
[2 (

𝑑2𝑢

𝑑𝑥2
− 𝑧

𝑑3𝑤𝑏

𝑑𝑥3
+ 𝑓

𝑑3𝑤𝑠

𝑑𝑥3
) − (

𝑑𝑓

𝑑𝑧
+ 1)

𝑑2𝑤𝑠

𝑑𝑥2
]

휂113 = 휂131 = 휂113 = −
4

15
[
𝑑2𝑤𝑏

𝑑𝑥2
−

𝑑𝑓

𝑑𝑧

𝑑2𝑤𝑠

𝑑𝑥2
−

𝑑2𝑓

𝑑𝑧2

𝑑𝑤𝑠

𝑑𝑥
]

휂122 = 휂212 = 휂221 = −
1

15
[3 (

𝑑2𝑢

𝑑𝑥2
− 𝑧

𝑑3𝑤𝑏

𝑑𝑥3
+ 𝑓

𝑑3𝑤𝑠

𝑑𝑥3
) +

𝑑2𝑓

𝑑𝑧2

𝑑𝑤𝑠

𝑑𝑥
]

휂133 = 휂313 = 휂331 = −
4

15
[ 
3

4
 (
𝑑2𝑢

𝑑𝑥2
− 𝑧

𝑑3𝑤𝑏

𝑑𝑥3
+ 𝑓

𝑑3𝑤𝑠

𝑑𝑥3
) −

𝑑2𝑓

𝑑𝑧2

𝑑𝑤𝑠

𝑑𝑥
]

휂223 = 휂232 = 휂322 =
1

15
[
𝑑2𝑤𝑏

𝑑𝑥2
− (2

𝑑𝑓

𝑑𝑧
+ 1)

𝑑2𝑤𝑠

𝑑𝑥2
]

휂333 =
1

5
[ 
𝑑2𝑤𝑏

𝑑𝑥2
− (2

𝑑𝑓

𝑑𝑧
+ 1)

𝑑2𝑤𝑠

𝑑𝑥2
]

  (23) 

The substitution of Eq. (23) in Eq. (13), leads to give the non-zero higher order constraints 𝜏
(1)
  

{
 
 
 
 
 

 
 
 
 
 𝜏111

(1) =
2

5
𝜇𝑙1

2 [2 (
𝑑2𝑢

𝑑𝑥2
− 𝑧

𝑑3𝑤𝑏

𝑑𝑥3
+ 𝑓

𝑑3𝑤𝑠

𝑑𝑥3
) − (

𝑑𝑓

𝑑𝑧
+ 1)

𝑑2𝑤𝑠

𝑑𝑥2
]

𝜏113
(1)

= 𝜏131
(1)

= 𝜏311
(1)

= −
8

15
𝜇𝑙1

2
[
𝑑2𝑤𝑏

𝑑𝑥2
−

𝑑𝑓

𝑑𝑧

𝑑2𝑤𝑠

𝑑𝑥2
−

𝑑2𝑓

𝑑𝑧2

𝑑𝑤𝑠

𝑑𝑥
]

𝜏122
(1)

= 𝜏212
(1)

= 𝜏221
(1)

= −
2

15
𝜇𝑙1

2
[3 (

𝑑2𝑢

𝑑𝑥2
− 𝑧

𝑑3𝑤𝑏

𝑑𝑥3
+ 𝑓

𝑑3𝑤𝑠

𝑑𝑥3
) +

𝑑2𝑓

𝑑𝑧2

𝑑𝑤𝑠

𝑑𝑥
]

𝜏133
(1)

= 𝜏313
(1)

= 𝜏331
(1)

= −
8

15
𝜇𝑙1

2
[ 
3

4
 (
𝑑2𝑢

𝑑𝑥2
− 𝑧

𝑑3𝑤𝑏

𝑑𝑥3
+𝑓

𝑑3𝑤𝑠

𝑑𝑥3
) −

𝑑2𝑓

𝑑𝑧2

𝑑𝑤𝑠

𝑑𝑥
]

𝜏223
(1) = 𝜏232

(1) = 𝜏322
(1) =

2

15
𝜇𝑙1

2 [
𝑑2𝑤𝑏

𝑑𝑥2
− (2

𝑑𝑓

𝑑𝑧
+ 1)

𝑑2𝑤𝑠

𝑑𝑥2
]

𝜏333
(1)

=
2

5
𝜇𝑙1

2
[ 
𝑑2𝑤𝑏

𝑑𝑥2
− (2

𝑑𝑓

𝑑𝑧
+ 1)

𝑑2𝑤𝑠

𝑑𝑥2
]

  (24) 
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Introducing Eq. (17) into (10) gives 

{

휃1 = 0

휃2 = −(
𝑑𝑤𝑏

𝑑𝑥
−
1

2
(
𝑑𝑓

𝑑𝑧
− 1)

𝑑𝑤𝑠

𝑑𝑥
)

휃3 = 0

   (25) 

The non-zero components of rotationally symmetrical gradient tensor 𝜒𝑠  are obtained by 

replacing Eq. (25) in Eq. (9) 

{
𝜒23
𝑠 = 𝜒32

𝑠 =
1

4
(
𝑑2𝑓

𝑑𝑧2
)
𝑑𝑤𝑠

𝑑𝑥

𝜒12
𝑠 = 𝜒21

𝑠 = −
1

2
(
𝑑2𝑤𝑏

𝑑𝑥2
−
1

2
(
𝑑𝑓

𝑑𝑧
−1)

𝑑2𝑤𝑠

𝑑𝑥2
)
  (26) 

Replacing Eq. (26) in Eq. (14) gives the non-zero higher order constraints 𝑚𝑖𝑗
𝑠  such as 

{
𝑚23
𝑠 = 𝑚32

𝑠 =
𝜇𝑙2

2

2
(
𝑑2𝑓

𝑑𝑧2
)
𝑑𝑤𝑠

𝑑𝑥

𝑚12
𝑠 = 𝑚21

𝑠 = −𝜇𝑙2
2 (

𝑑2𝑤𝑏

𝑑𝑥2
−
1

2
(
𝑑𝑓

𝑑𝑧
− 1)

𝑑2𝑤𝑠

𝑑𝑥2
)
  (27) 

The substitution of Eqs. (19)-(27) in Eq. (5) 

𝑈 = 𝑈𝑒
1 + 𝑈𝑒

2 +𝑈𝑒
3 + 𝑈𝑒

4 (28) 

Such as 

𝑈𝑒
1 =

1

2
∫ [𝐼1 (

𝑑𝑢

𝑑𝑥
)
2
−2𝐼2

𝑑𝑢

𝑑𝑥

𝑑2𝑤𝑏

𝑑𝑥2
+ 2𝐼3

𝑑𝑢

𝑑𝑥

𝑑2𝑤𝑠

𝑑𝑥2
− 2𝐼4

𝑑2𝑤𝑏

𝑑𝑥2
𝑑2𝑤𝑠

𝑑𝑥2
+ 𝐼5 (

𝑑2𝑤𝑏

𝑑𝑥2
)
2

+ 𝐼6 (
𝑑2𝑤𝑠

𝑑𝑥2
)
2

+
𝑙

0

𝐼7 (
𝑑𝑤𝑠

𝑑𝑥
)
2
]𝑑𝑥  

(29) 

𝑈𝑒
2 =

1

2
∫ (𝐵1 ((

𝑑2𝑢

𝑑𝑥2
)
2

+ (
𝑑2𝑤𝑏

𝑑𝑥2
)
2

) − 2𝐵2
𝑑2𝑢

𝑑𝑥2
𝑑3𝑤𝑏

𝑑𝑥3
+ 2𝐵3

𝑑2𝑢

𝑑𝑥2
𝑑3𝑤𝑠

𝑑𝑥3
− 2𝐵4

𝑑3𝑤𝑏

𝑑𝑥3
𝑑3𝑤𝑠

𝑑𝑥3
+

𝑙

0

𝐵5 (
𝑑3𝑤𝑏

𝑑𝑥3
)
2

+ 𝐵6 (
𝑑3𝑤𝑠

𝑑𝑥3
)
2

−2𝐵7
𝑑2𝑤𝑏

𝑑𝑥2
𝑑2𝑤𝑠

𝑑𝑥2
+ 𝐵8 (

𝑑2𝑤𝑠

𝑑𝑥2
)
2

)𝑑𝑥  

(30) 

𝑈𝑒
3 =

1

2
∫ [𝑅1 ((

𝑑2𝑢

𝑑𝑥2
)
2

+
2

3
(
𝑑2𝑤𝑏

𝑑𝑥2
)
2

) − 2𝑅2
𝑑2𝑢

𝑑𝑥2
𝑑3𝑤𝑏

𝑑𝑥3
+ 2𝑅3

𝑑2𝑢

𝑑𝑥2
𝑑3𝑤𝑠

𝑑𝑥3
− 2𝑅4

𝑑3𝑤𝑏

𝑑𝑥3
𝑑3𝑤𝑠

𝑑𝑥3
+

𝑙

0

𝑅5 (
𝑑3𝑤𝑏

𝑑𝑥3
)
2

+ 𝑅6 (
𝑑3𝑤𝑠

𝑑𝑥3
)
2

+
2

3
𝑅7 (

𝑑𝑤𝑠

𝑑𝑥
)
2
− 𝑅8

𝑑2𝑢

𝑑𝑥2
𝑑𝑤𝑠

𝑑𝑥
+𝑅9

𝑑3𝑤𝑏

𝑑𝑥3
𝑑𝑤𝑠

𝑑𝑥
− 𝑅10

𝑑3𝑤𝑠

𝑑𝑥3
𝑑𝑤𝑠

𝑑𝑥
−

4

3
𝑅11

𝑑2𝑤𝑏

𝑑𝑥2
𝑑2𝑤𝑠

𝑑𝑥2
+
2

3
𝑅12 (

𝑑2𝑤𝑠

𝑑𝑥2
)
2

]𝑑𝑥  

(31) 

𝑈𝑒
4 =

1

2
∫ (𝐷1 (

𝑑2𝑤𝑏

𝑑𝑥2
)
2

+
1

4
𝐷2 (

𝑑𝑤𝑠

𝑑𝑥
)
2
− 𝐷3

𝑑2𝑤𝑏

𝑑𝑥2
𝑑2𝑤𝑠

𝑑𝑥2
+
1

4
𝐷4 (

𝑑2𝑤𝑠

𝑑𝑥2
)
2

)𝑑𝑥
𝑙

0
  (32) 

With 

{𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6} = 𝑏∫ (
𝜆

𝜈
−𝜆) (1, 𝑧, 𝑓, 𝑧𝑓, 𝑧2, 𝑓2)𝑑𝑧

ℎ

2

−
ℎ

2

   , {𝐼7} = 𝑏 ∫ 𝜇 (
𝑑𝑓

𝑑𝑧
+ 1)

2
𝑑𝑧

ℎ

2

−
ℎ

2

  (33) 
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{𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7, 𝐵8} = 𝑏∫ 2𝜇𝑙0
2 (1, 𝑧, 𝑓, 𝑧𝑓, 𝑧2, 𝑓2,

𝑑𝑓

𝑑𝑧
, (
𝑑𝑓

𝑑𝑧
)
2
)𝑑𝑧

ℎ

2

−
ℎ

2

  (34) 

{𝑅1:12} = 𝑏 ∫
4

5
𝜇𝑙1

2 (1, 𝑧, 𝑓, 𝑧𝑓, 𝑧2, 𝑓2, (
𝑑2𝑓

𝑑𝑧2
)
2

,
𝑑2𝑓

𝑑𝑧2
, 𝑧

𝑑2𝑓

𝑑𝑧2
, 𝑓

𝑑2𝑓

𝑑𝑧2
, (2

𝑑𝑓

𝑑𝑧
+ 1) , (2

𝑑𝑓

𝑑𝑧
+

ℎ

2

−
ℎ

2

1)
2
)𝑑𝑧  

(35) 

{𝐷1 , 𝐷2, 𝐷3, 𝐷4} = 𝑏∫ 𝜇𝑙2
2 (1, (

𝑑2𝑓

𝑑𝑧2
)
2

, (
𝑑𝑓

𝑑𝑧
− 1) , (

𝑑𝑓

𝑑𝑧
− 1)

2
)𝑑𝑧

ℎ

2

−
ℎ

2

  (36) 

The Kinetic Energy can be written as 

𝑇 =
1

2
∫ ∫ [�̇�1

2 + �̇�2
2 + �̇�3

2]
𝐴

𝑑𝐴𝑑𝑥
𝑙

0
  (37) 

By replacing Eq. (17) in Eq. (37) we obtain the final form of the kinetic energy 

𝑇 =
1

2
∫ [𝐽1(�̇�

2 + �̇�𝑏
2 + �̇�𝑠

2 + 2�̇�𝑏�̇�𝑠) − 2𝐽2�̇�
𝑑�̇�𝑏

𝑑𝑥
+ 2𝐽3�̇�

𝑑�̇�𝑠

𝑑𝑥
− 2𝐽4

𝑑�̇�𝑏

𝑑𝑥

𝑑�̇�𝑠

𝑑𝑥
+ 𝐽5 (

𝑑�̇�𝑏

𝑑𝑥
)
2
+

𝑙

0

𝐽6 (
𝑑�̇�𝑠

𝑑𝑥
)
2
]𝑑𝑥  

(38) 

Hence the mass moments of inertia 

{𝐽1, 𝐽2, 𝐽3, 𝐽4, 𝐽5, 𝐽6} = 𝑏∫ 𝜌(1,𝑧, 𝑓, 𝑧𝑓, 𝑧2, 𝑓2)𝑑𝑧
ℎ

2

−
ℎ

2

  (39) 

 

2.4 Differential quadrature hierarchical finite element formulation 
 
The derivative of a function at a point is approximated by a weighted linear sum of field 

variables along a line through the spot using established DQ criteria. Any other complete basis, in 
addition to Lagrange functions, can be utilized to formulate DQ rules. ((Liu et al. 2017, Xing and 
Liu 2009, Bensaid et al. 2022, Ihab Eddine et al. 2023). 

As a result, the order n derivative of a field variable 𝑔(𝑥) at a discrete location 𝑥𝑖  can be 
represented as 

𝜕𝑛𝑔(𝑥,𝑡)

𝜕𝑥𝑛
|
𝑥𝑖
= ∑ 𝐴𝑖𝑗

(𝑛)
𝑔(𝑥𝑗, 𝑡)

𝑁
𝑗=1 (𝑖 = 1,2,3,… . . , 𝑁)  (40) 

With 𝐴𝑖𝑗
(𝑛)

 is the weighting coefficient related to the derivative of order n, and the weighting 

coefficient is obtained by the following. 

If 𝑛 = 1, then 

𝐴𝑖𝑗
(1)
=

𝑀(𝑥𝑖)

(𝑥𝑖−𝑥𝑗)𝑀(𝑥𝑗)
𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,… ,𝑁

𝐴𝑖𝑖
(1)
= −∑ 𝐴𝑖𝑗

(1)𝑛
𝑗=1,𝑗≠𝑖 𝑖 = 1,2,… ,𝑁

  (41) 

With  
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𝑀(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑘)
𝑁
𝑘=1,𝑘≠𝑖   

𝑀(𝑥𝑗) = ∏ (𝑥𝑗 − 𝑥𝑘)
𝑁
𝑘=1,𝑘≠𝑖   

(42) 

If 𝑛 > 1, the second and higher order derivatives, the weighting coefficients are determined 
using the following simple recurrence relation 

𝐴𝑖𝑗
(𝑛)

= 𝑛 (𝐴𝑖𝑗
(1)
∗ 𝐴𝑖𝑖

(𝑛−1)
−

𝐴𝑖𝑗
(𝑛−1)

(𝑥𝑖−𝑥𝑗)
) 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,… ,𝑁, 𝑛 > 1

𝐴𝑖𝑖
(𝑛)

= −∑ 𝐴𝑖𝑗
(𝑛)𝑁

𝑗=1,𝑗≠𝑖 𝑖 = 1,2,… ,𝑁

  (43) 

The Gauss-Lobatto quadrature rules theory can be found in the mathematical literature; The 

Gauss-Lobatto quadrature rule with a degree of accuracy. (2𝑛 − 3)  for the function 𝑔(𝑥) defined 
in [-1, 1] is 

∫ 𝑓(𝑥)𝑑𝑥
1

−1
= ∑ 𝐶𝑗𝑔(𝑥𝑗)

𝑁
𝑗=1   (44) 

With the weighting coefficient 𝐶𝑗  of the Gauss-Lobatto integration is given by 

𝐶1 = 𝐶𝑁 =
2

𝑁(𝑁−1)
,     𝐶𝑗 =

2

𝑁(𝑁−1)[𝑃𝑁−1(𝑥𝑗)]
2      (𝑗 ≠ 1,𝑁)  (45) 

𝑥𝑗  is the (𝑗 − 1) zero of the first order derivative of 𝑃𝑁−1(𝑥). We will utilize the recursion 

formula as Eqs. (46) and (47) to solve the roots of Legendre polynomials; it is simple to find 
thousands of roots this way. 

𝑃𝑁+1(𝑥) =
2𝑁+1

𝑁+1
𝑥𝑃𝑁(𝑥) −

𝑁

𝑁+1
𝑃𝑁−1(𝑥)  (46) 

With 𝑃0(𝑥) = 1 , 𝑃1(𝑥) = 𝑥 . The n-order derivation of Legendre polynomials can be 
determined by the following equation 

𝑃𝑁+1
(𝑛)
(𝑥) = 𝑥𝑃𝑁

(𝑛)
(𝑥) + (𝑁 + 𝑛)𝑃𝑁

(𝑛)
(𝑥) (47) 

In order to obtain a denser population near the boundaries, the sample points are selected 
according to the Gauss-Lobatto grid distribution of nodes.  

𝑥𝑗 = −cos (
𝑗−1

𝑁−1
𝜋)  (48) 

The Gauss-Lobatto nodes are solved with the Newton-Raphson iteration method 

𝑥𝑖𝑇+1 = 𝑥𝑖𝑇 −𝑭′(𝑥𝑖𝑇)
−𝟏
𝑭(𝑥𝑖𝑇), 𝑖𝑇 = 0,1,…… (49) 

Were 

𝑥 = [𝑥2, 𝑥3 , …… . . , 𝑥𝑁−1]
𝑇 (50) 

𝑭(𝑥) = [𝑓(𝑥2), 𝑓(𝑥3),… , 𝑓(𝑥𝑁−1)]
𝑇 (51) 

𝑭′(𝑥) = [
𝜕𝑓(𝑥𝑗)

𝜕𝑥𝑖
]
(𝑁−2)×(𝑁−2)

  (52) 

𝑓(𝑥𝑗) = ∑
1

𝑥𝑗−𝑥𝑘

𝑁
𝑘−1,𝑘≠𝑗      𝑗 = 2, 3,… ,𝑁 − 1  (53) 
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𝜕𝑓(𝑥𝑗)

𝜕𝑥𝑖
= {

−∑
1

(𝑥𝑗−𝑥𝑘)
2

𝑁
𝑘=1,𝑘≠𝑗 , (𝑖 = 𝑗)

1

(𝑥𝑗−𝑥𝑖)
2 ,                           (𝑖 ≠ 𝑗)

   (54) 

The value of 𝑥 at the 𝑖𝑇𝑡ℎ iteration step is denoted by k. This approach is less affected by the 

starting value. As beginning values, the values given by Eq. (48) are employed. 
In this section we aim to illustrate the use of DQHFEM through the microbeam, although work 

has already been done for a Euler-Bernoulli uniform beam (Liu et al. 2017), we will follow the 
same steps to determine the differential equation of motion of the porous microbeam. 

The displacement field used for the DQHFEM (Ahmed et al. 2020) 

𝑢[𝑥(𝜉)] = 𝐻1(𝜉)𝑢1 +
𝐿𝑒

2
𝐻2(𝜉)

𝑑𝑢1

𝑑𝑥
+𝐻3(𝜉)𝑢2 +

𝐿𝑒

2
𝐻4(𝜉)

𝑑𝑢2

𝑑𝑥
+∑ 𝜓𝑛(𝜉)𝑈𝑛

𝑀
𝑛=1   (55) 

𝑤[𝑥(𝜉)] = 𝐻1(𝜉)𝑤1 +
𝐿𝑒

2
𝐻2(𝜉)

𝑑𝑤1

𝑑𝑥
+𝐻3(𝜉)𝑤2 +

𝐿𝑒

2
𝐻4(𝜉)

𝑑𝑤2

𝑑𝑥
+ ∑ 𝜓𝑛(𝜉)𝑊𝑛

𝑀
𝑛=1   (56) 

The first four functions 𝐻1(𝜉), 𝐻2(𝜉), 𝐻3(𝜉) and 𝐻4(𝜉) are those of the finite element method 
needed to describe the displacements and rotations at the nodes of the element, for which we use 
the cubic Hermite shape functions (Bardell 1996). 

𝐻1(𝜉) =
1

4
(1 − 𝜉)2(2 + 𝜉) 𝐻2(𝜉) =

1

4
(1 − 𝜉)2(𝜉 + 1)

𝐻3(𝜉) =
1

4
(1 + 𝜉)2(2 − 𝜉) 𝐻4(𝜉) =

1

4
(1 + 𝜉)2(𝜉 − 1)

  (57) 

Or the local coordinates are related to the dimensionless coordinates by the relation 

𝑥 =
𝐿𝑒

2
(𝜉 + 1)  𝑎𝑣𝑒𝑐 − 1 ≤ 𝜉 ≤ 1  (58) 

And 𝜓𝑛(𝜉) are the hierarchical functions that contribute to the internal displacement field 

𝜓𝑛(𝜉) =
(𝜉2−1)

2

𝑛(𝑛+1)(𝑛+2)(𝑛+3)

𝑑2𝑃𝑛+1

𝑑𝜉2
  (59) 

The low-order Legendre polynomial can be calculated from the Rodrigues form of special 
Legendre polynomials (Peano 1976); the generating function is listed below. 

𝑃𝑛(𝜉) = ∑
(−1)𝑘(2𝑛−2𝑘−7)‼

2𝑘𝑘!(𝑛−2𝑘−1)!

(𝑛−1)

2
𝑘=0 𝜉(𝑛−2𝑘−1)  

𝑤𝑖𝑡ℎ  , 𝑛 > 4  

Hence 𝑛‼ = 𝑛(𝑛 − 2)(𝑛 − 4)…(2 𝑜𝑟 1), 0‼ = (−1)‼ = 1, 
And (𝑛 − 1)/2   Designates its own integer part 

(60) 

This Legendre polynomial expression has been used in several papers (Saimi and Hadjoui 
2016, Assem et al. 2022, Saimi et al. 2021) in the h, p and hp versions of the finite element 
method.  

One can also use the recursion formula in Eqs. (46)-(47), the order n can reach several 
thousand. 

The displacement vectors of the element are noted as follows 

𝒖𝑻 = [𝑢1  𝑢′1   𝑢2   𝑢′2   𝑈1   …   𝑈𝑀] 

𝒘𝑻 = [𝑤1  𝑤′1   𝑤2   𝑤′2   𝑊1   …   𝑊𝑀] 
(61) 
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So, the equations of 𝑢[𝑥(𝜉)] became 

𝑢[𝑥(𝜉)] = [𝑁𝑢]
𝑇𝒖 

𝑤[𝑥(𝜉)] = [𝑁𝑤]
𝑇𝒘 

(62) 

Therefore  

N𝑢
𝑇 = [𝐻1(𝜉)  −

𝐿𝑒

2
𝐻2(𝜉)     𝐻3(𝜉)    −

𝐿𝑒

2
𝐻4(𝜉)    𝜓1(𝜉)     𝜓2(𝜉)    …     𝜓𝑀(𝜉)]  

N𝑤
𝑇 = [𝐻1(𝜉)   

𝐿𝑒

2
𝐻2(𝜉)     𝐻3(𝜉)    

𝐿𝑒

2
𝐻4(𝜉)    𝜓1(𝜉)     𝜓2(𝜉)    …     𝜓𝑀(𝜉)]  

(63) 

The Gauss-Lobatto node calculation 𝜉𝑗 , 𝑗 = 1,2,…… , 𝑁 , with 𝑁 = 𝑀+ 4 . Defines the 

following displacement vectors 

�̅�𝑻 = [𝑢(𝑥1)   𝑢(𝑥2)  …… .  𝑢(𝑥𝑁)] 

�̅�𝑻 = [𝑤(𝑥1)   𝑤(𝑥2)  …… .  𝑤(𝑥𝑁)] 
(64) 

According to Eq. (64) the relationship between (63) and (66) is defined by the following 
equation 

�̅� = 𝑮𝒖 𝒖 

�̅� = 𝑮𝒘 𝒘 
(65) 

Were  

𝑮𝒖 = [[N𝑢](𝜉1)       [N𝑢](𝜉2)     ……      [N𝑢](𝜉𝑁)]
𝑻
 

𝑮𝒘 = [[N𝑤](𝜉1)       [N𝑤](𝜉2)     … …      [N𝑤](𝜉𝑁)]
𝑻
 

(66) 

By replacing Eqs. (41), (43), (44), (64) and (66) in the deformation and kinetic energy Eqs. 

(28)-(32), and (38), and using the Lagrangian equation formula, the elementary mass, and stiffness 
matrix are obtained as: 

The elementary mass matrix obtained with (DQHFEM) 

[𝑀𝑒] = [

[𝑀𝑒]11 [𝑀𝑒]12 [𝑀𝑒]13
[𝑀𝑒]22 [𝑀𝑒]23

𝑠𝑦𝑚 [𝑀𝑒]33

] (67) 

Hence the components of the elementary mass matrix are detailed in the annex. 
The stiffness matrices obtained with (DQHFEM) 

[𝐾𝜀
𝑒] = [

[𝐾𝜀
𝑒]11 [𝐾𝜀

𝑒]12 [𝐾𝜀
𝑒]13

[𝐾𝜀
𝑒]22 [𝐾𝜀

𝑒]23
𝑠𝑦𝑚 [𝐾𝜀

𝑒]33

] (68) 

[𝐾𝛾
𝑒] =

[
 
 
 [
𝐾𝛾
𝑒]
11

[𝐾𝛾
𝑒]
12

[𝐾𝛾
𝑒]
13

[𝐾𝛾
𝑒]
22

[𝐾𝛾
𝑒]
23

𝑠𝑦𝑚 [𝐾𝛾
𝑒]
33]
 
 
 

 (69) 
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[𝐾𝜂
𝑒] =

[
 
 
 [
𝐾𝜂
𝑒]
11

[𝐾𝜂
𝑒]
12

[𝐾𝜂
𝑒]
13

[𝐾𝜂
𝑒]
22

[𝐾𝜂
𝑒]
23

𝑠𝑦𝑚 [𝐾𝜂
𝑒]
33]
 
 
 

 (70) 

[𝐾𝜒
𝑒] = [

[0] [0] [0]

[𝐾𝜒
𝑒]
22

[𝐾𝜒
𝑒]
23

𝑠𝑦𝑚 [𝐾𝜒
𝑒]
33

] (71) 

With [𝐾𝜀
𝑒], [𝐾𝛾

𝑒], [𝐾𝜂
𝑒]  and [𝐾𝜒

𝑒]  are, respectively, the elementary deformation, expansion 

gradient, deviatoric stretching gradient, and rotationally symmetric gradient matrices. 
Hence the components of the elementary deformation matrices are detailed in the appendix. 
All knot distribution shapes for differencing and squaring are [-1, 1]. Therefore, in order to 

apply them in practice, the following modifications must be made to the differentiation and 
quadrature matrices 

�̅� =
𝑙𝑒
2
𝐶,       �̅�(1) =

2

𝑙𝑒
𝐴(1),     �̅�(2) =

4

𝑙𝑒
2 𝐴

(2), �̅�(3) =
8

𝑙𝑒
3 𝐴

(3) (72) 

Where  𝑙𝑒 is the length of the beam element. 
The matrices for the entire system are obtained according to the MEF rules for assembling 

elementary matrices 

([𝐾] −𝜔2[𝑀])𝐴𝑚𝑝 = [0] (73) 

 

 

3. Discussion of results 
 
A microbeam made of porous foam metal shown in Fig. 1, and a homogeneous microbeam are 

studied in this section. The material properties for the porous microbeam are: Young’s modulus 

𝐸1 = 200 GPa, a mass density 𝜌1 = 7850 Kg/m
3 , Poisson’s ratio 𝜈 = 0.33, and the material 

length scale parameters 𝑙 = 17.6 𝜇m. The width/thickness ratio for this case is 𝑏/ℎ = 2. 

For the homogeneous microbeam case, the material properties taken are: Young’s modulus 𝐸 =
1.44 GPa, a mass density 𝜌 = 1220 Kg/m3, Poisson’s ratio 𝜈 = 0.38, the material length scale 

parameters 𝑙 = 17.6 𝜇m, and the ratio The width/thickness ratio for this case is 𝑏/ℎ = 2. The 
parameters of the material length scale are equal to 𝑙0 = 𝑙1 = 𝑙2 = 𝑙 for the MSGT case, in the CT 

case all material length scale parameters are zero 𝑙0 = 𝑙1 = 𝑙2 = 0, and in the MCST case 𝑙0 =
𝑙1 = 0 and 𝑙2 ≠ 0. 

In order to examine the current models, a comparative search is first carried out with the 
literature. For the homogeneous microbeam (Akgöz and Civalek 2013, Wang et al. 2018), and for 
the porous microbeam (Wang et al. 2018).  

The following nondimensional parameters are introduced to simplify the results 

𝜔∗ = 𝜔𝐿2√
∫ 𝜌 𝑑𝑧
ℎ/2

−ℎ/2

∫ 𝐸 𝑧2 𝑑𝑧
ℎ/2

−ℎ/2

  (74) 
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Fig. 5 First mode convergence, for various forms models of porosity distributions (ℎ = 𝑙, 𝐿 = 10ℎ,  𝑒0 =
0.5) 

 

 

Fig. 6 Second mode convergence, for various forms models of porosity distributions (ℎ = 𝑙, 𝐿 = 10ℎ, 𝑒0 =
0.5) 

 

 

3.1 Convergence 
 

From the convergence results in Figs. 5-6, we can see that the frequency parameters converge 
quickly, which demonstrate the efficacy of the resolution approach used, and to ensure a good 
validation with the literature. In the following, we will choose a number of sampling N=20. 
Because according to the convergence results the frequency parameters have already been 
converged. 

 

3.2 Validation 
 
In a first validation, for a homogenous microbeam, a comparison of natural nondimensional 

frequencies is made. Simply supported in both edges. 
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Table 1 Non-dimensional fundamental frequencies first mode 

h/l Theory 
L=10h L=30h L=100h 

CT MCST MSGT CT MCST MSGT CT MCST MSGT 

1 

(Akgöz and Civalek 

2013) 
13.1239 24.3157 40.3106 13.4595 24.5801 40.8962 13.4996 24.6112 40.9659 

(Wang et al. 2018)   40.3106   40.8962   40.9659 

Present 13.3857 23.3053 40.3190 13.4903 24.4564 40.8931 13.5024 24.6000 40.9655 

5 

(Akgöz and Civalek 

2013) 
13.1239 13.7542 15.1796 13.4595 14.0749 15.5184 13.4996 14.1132 15.5589 

(Wang et al. 2018)   15.1796   15.5184   15.5589 

Present 13.3857 13.9722 15.3986 13.4903 14.1006 15.5441 13.5024 14.1155 15.5612 

10 

(Akgöz and Civalek 

2013) 
13.1239 13.2844 13.6670 13.4595 13.6160 14.0027 13.4996 13.6556 14.0428 

(Wang et al. 2018)   13.6670   14.0027   14.0428 

Present 13.3857 13.5352 13.9170 13.4903 13.6455 14.0320 13.5024 13.6583 14.0455 

 
Table 2 Non-dimensional fundamental frequencies for second mode 

h/l Theory 
L=10h L=30h L=100h 

CT MCST MSGT CT MCST MSGT CT MCST MSGT 

1 

(Akgöz and Civalek 
2013) 

48.6922 94.1134 154.5577 53.3206 97.9163 162.6833 53.9507 98.4080 163.7807 

(Wang et al. 2018)   154.5577   162.6833   163.7807 

Present 52.2237 81.8122 152.8290 53.8027 96.0096 162.6629 53.9953 98.2283 163.7743 

5 

(Akgöz and Civalek 

2013) 
48.6922 51.3623 56.8752 53.3206 55.8057 61.5514 53.9507 56.4071 62.1874 

(Wang et al. 2018)   56.8752   61.5514   62.1874 

Present 52.2237 54.2862 59.8753 53.8027 56.2075 61.9549 53.9953 56.4442 62.2244 

10 

(Akgöz and Civalek 

2013) 
48.6922 49.3752 50.8635 53.3206 53.9529 55.4932 53.9507 54.5752 56.1234 

(Wang et al. 2018)   50.8635   55.4932   56.1234 

Present 52.2237 52.7532 54.2390 53.8027 54.4147 55.9529 53.9953 54.6179 56.1658 

 
 

For the validation of the accuracy of the results obtained in this work with other research works 
in the literature, Tables 1-2 presenting the results provided from the current DQHFEM method 
compared with the analytical used in the works (Akgöz and Civalek 2013) and (Wang et al. 2018), 
for a homogeneous microbeam. The second validation, is done for a porous metal foam 
microbeam, Table 3 compares the results of the present DQHFEM method to the analytical 
approaches used in the study (Wang et al. 2018). As can be seen, the current tabulated results and 
those published in the open literature are quite similar, with only a little percentage difference, 

suggesting that the resolution approach utilized in this investigation was correct. 
Tables 1 and 2 show that CT predicts lower dimensions natural frequencies than the others, but 

MSGT predicts higher dimensional natural frequencies. Furthermore, as the ℎ/𝑙 ratio rises, the 
difference between the non-dimensional natural frequencies corresponding to the classical and 
non-classical models decreases, and this difference is bigger for higher modes. 
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Table 3 Comparison of porous microbeam’s non-dimensional natural frequencies. (MSGT) (ℎ = 𝑙 , 𝑒0 =
0.5) 

Mode 𝐿/ℎ  Solid metal UPD NUDP1 NUDP2 

01 

10 
Present 40.5387 36.5645 37.3727 37.1491 

(Wang et al. 2018) 40.5569 36.5808 37.4324 37.1877 

30 
Present 41.1148 37.0840 37.9505 37.6853 

(Wang et al. 2018) 41.1210 37.0896 37.9617 37.7066 

100 
Present 41.1874 37.1496 38.0236 37.7528 

(Wang et al. 2018) 41.1881 37.1502 38.0248 37.7684 

02 

10 
Present 156.0761 140.7749 143.4398 143.3775 

(Wang et al. 2018) 155.764 140.494 143.687 142.809 

30 
Present 163.5465 147.5130 150.8845 149.6080 

(Wang et al. 2018) 163.616 147.576 151.032 150.028 

100 
Present 164.6615 148.5187 152.0057 150.6734 

(Wang et al. 2018) 164.673 148.529 152.024 151.000 

 

 

Fig. 7 Frequency parameters * for various porosity distributions as a function of thickness 

(e0=0.5, L=10h) (MSGT) 

 
 

3.3 Parametric study 
 
In this section, a parametric study will be provided to study the influence of some geometrical 

and physical parameters on the maximum value of the dimensionless frequency *, such as the 
scale length, the nature of the material porosity distribution, and other. 

For different forms of porosity distributions, Fig. 7 displays the frequency parameters versus to 
the ratio of the microbeam thickness and parameter of material length scale. The results in this 
figure, clearly show that the frequency parameters decrease with increasing value of the ratio of 

the microbeam thickness and the material length scale parameter ℎ/𝑙 . The deviation of the 
frequency parameters between the different types of porosity distribution is small for small values 

of the ℎ/𝑙 ratio. This indicates that the impact of the distribution model of the porosity is important  
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Fig. 8 Frequency parameters * for various porosity distributions as a function of porosity 

coefficient (h/l=1, L=10h) (MSGT) 

 

 

Fig. 9 Frequency parameters * according to length/thickness ratio for various porosity 

distributions (h/l=1, e0=0.5) (MSGT) 

 
 

for thick microbeams. 
Fig. 8 shows the variation of the frequency parameters against the porosity coefficient, for 

different types of porosity distributions. It can be seen that the values of the frequency parameters 
decrease as the value of the porosity coefficient increases. And this is explained physically, that the 

stiffness and the mass density decrease by increasing the porosity coefficient, and that the stiffness 
is largely reduced compared to the mass density. 

The results in Fig. 8 also show, that for a low value of porosity coefficient, the deviation 
between the frequency parameters for different type of porosity distribution is largely small,  
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Fig. 10 Frequency parameters * for various porosity distributions based on porosity coefficient (h/l=1, 

L=10 h, b/h=2) (MSGT), (a) Clamped-Clamped, (b) Simply Supported-Simply supported (c) Clamped- 

Simply supported, (d) Clamped-Free. 

 
 

however, as the porosity coefficient rises, this deviation grows more and higher. 
It can also be seen that the UDP type microbeam is very different from the NUDP1 and 

NUDP2 microbeams. The frequency parameter value continued to decrease with the increase of 

the porosity coefficient, while in the case of the NUDP1 and NUDP2 microbeams, the frequency 
parameter values initially decrease and then at a certain porosity coefficient value they start to 
increase. 

Fig. 9 shows the frequency parameters versus slenderness ratio for different types of 
microbeam porosity distributions. We can also see that the frequency parameter’s value increases 
quickly at small length-to-thickness ratios, but varies slightly when L/h>50. This means that when 
the length-to-thickness ratio is small, the frequency parameter of porous microbeams is affected 

significantly. 
Fig. 10 shows the frequency parameters as a function of porosity coefficient, for different types 

of porosity distribution and boundary conditions, (a): Clamped-Clamped, (b): Simply Supported-
Simply supported, (c): Clamped- Simply supported, (d): Clamped-Free. According to the results, 
one can see that an increment in the value of porosity parameter e0 leads to a reduction in the 
nondimensional frequency, and that for all types of end supports conditions. Furthermore, we 
notice that the boundary conditions have a large influence on the frequency parameters, the C-C 
boundary condition type gives a large value of frequency parameter, followed by C-S, S-S and C-

F, respectively due to stiffening effect of the support, and the C-F graded material porous 
microbeam has the smallest fundamental frequency than other supports. 

For a porous microbeam with a UDP distribution model, Figs. 11, 12 and 13 show the influence 
of the porosity coefficient and the thickness-material length (h/l) scale parameter ratio of 
microbeam on the natural frequency parameter. The natural frequencies based on MSGT are  
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Fig. 11 First frequencies parameters with respect to the porosity distribution and the thickness-material 

length scale parameter ratio (L/h=10, b/h=2. Porosity distribution UDP) 

 

 

Fig. 12 First frequencies parameters with respect to the porosity distribution and the thickness-material 

length scale parameter ratio (L/h=10, b/h=2. Porosity distribution NUDP1) 

 

 

Fig. 13 First frequencies parameters with respect to the porosity distribution and the thickness-material 

length scale parameter ratio (L/h=10, b/h=2. Porosity distribution NUDP2) 
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always larger than CT and MCST, regardless of the porosity distribution model, as demonstrated in 
Figs. 12 and 13 for the NUDP1 and NUDP2 models, respectively. Moreover, from these figures 
we notice that the influence of  

h/l ratio on the maximum values of natural frequencies is significantly important when the 
value of this parameter is in range of 1 and 4, in which the variation shape take a nonlinear 
variation due to the significant stiffness drop for the FG microstructure, and this for the three cases 

provided considering: MSGT, MSCT and CT. Furthermore, it is seen that by increasing the h/l 
ratio the gap becomes small between MSGT, CT and MSCT because of the last one has more 
length scale parameter compared to others and can capture the size dependency more efficiently. In 
addition, from the Figs. 11, 12 and 13 it is shown that the natural frequency of the FG porous 
microbeam decreases as the porosity coefficient increases with no noticeable difference between 
the three micro size dependency models. This phenomenon occurs because increasing the porosity 
coefficient reduces both stiffness and mass density, with the stiffness reduction being significantly 

greater than the mass density reduction. 
 

 

4. Conclusions 
 

In this paper we have presented an analysis on the dynamic free vibration response of a porous 
microbeam based on the refined high order beam deformation theory, with sinusoidal shear 
deformation function in conjunction with the modified gradient deformation theory MSGT. The 

Lagrange principle is used with the hierarchical deferential quadrature finite element method 
DQHFEM to obtain the governing equations. Three kinds of porosity distribution models UDP, 
NUDP1, and NUDP2 were considered to see their effects on the maximum value of the non-
dimensional frequency. The results are compared with analytical results in the literature to show 
the effectiveness of the provided numerical resolution procedure. The numerical results in this 
work led us to conclude that:  

• The actual numerical method based on DQHFEM gives precise results and very close to the 

analytical results found in the literature with fast convergence rate, which confirms its 
effectiveness. 
• Microbeams that are based on non-classical theories, such as MSGT, are more rigid than those 
that are based on classical theory, which explains why the frequencies for the MSGT case are 
large compared to those for the CT case. 

• If there is only one material length scaling parameter (𝑙0  =  𝑙1  =  0, 𝑙2  =  𝑙), the present 
non-classical model based on MSGT will become another non-classical model based on MCST. 

Furthermore, if all material length scale parameters are equal to zero (𝑙0  =  𝑙1  =  𝑙2  =  0), the 
current non-classical model will become a classical model. 
• Natural frequencies of porous microbeams are lower than those of solid metallic microbeams. 
With a high coefficient of porosity and microbeam thickness, the porosity shape distribution 
has a substantial impact on the natural frequency. 

• The present numerical method can easily administer mixed boundary conditions, for dynamic 
study of macro/micro structure. 
• The natural frequencies of the UDP porous microbeam degrade as the porosity coefficient 
increase, whereas for the NUPD 1 and NUPD 2 porous microbeams, they initially reduce and 
then increase as the porosity coefficient increases. 
• The length-to-thickness ratio (L/h) has a significant effect on the natural frequencies, where 
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an increase in its value will lead to an increase in the magnitude of the frequency parameter. 
• The UPD always corresponds to the lowest frequency among the various forms of porosity 
distribution. Natural frequency differences between the UPD and the other two are rather 
evident. On the other hand, the FG NUPD 1 microbeam natural frequencies are a bit higher 
compared to those of the NUPD 2 microbeam. 
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Appendix 
 

Component of the elementary mass matrix  

{
 
 
 
 

 
 
 
 

[𝑀𝑒]11 = 𝐽1[𝐺
𝑇𝐶̅𝐺]

[𝑀𝑒]12 = −𝐽2[𝐺
𝑇𝐶̅�̅�(1)𝐺]

[𝑀𝑒]13 = 𝐽3[𝐺
𝑇𝐶̅�̅�(1)𝐺]

[𝑀𝑒]22 = 𝐽1[𝐺
𝑇𝐶̅𝐺] + 𝐽5 [𝐺

𝑇�̅�(1)
𝑇
𝐶̅�̅�(1)𝐺]

[𝑀𝑒]23 = 𝐽1[𝐺
𝑇𝐶̅𝐺] − 𝐽4 [𝐺

𝑇�̅�(1)
𝑇
𝐶̅�̅�(1)𝐺]

[𝑀𝑒]33 = 𝐽1[𝐺
𝑇𝐶̅𝐺] + 𝐽6 [𝐺

𝑇�̅�(1)
𝑇
𝐶̅�̅�(1)𝐺]

 (75) 

The components of the elementary strain matrices 

{
 
 
 
 

 
 
 
 [𝐾𝜀

𝑒]11 = 𝐼1 [𝐺
𝑇�̅�(1)

𝑇
𝐶̅�̅�(1)𝐺]

[𝐾𝜀
𝑒]12 = −𝐼2 [𝐺

𝑇�̅�(1)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝜀
𝑒]13 = 𝐼3 [𝐺

𝑇�̅�(1)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝜀
𝑒]22 = 𝐼5 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝜀
𝑒]23 = −𝐼4 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝜀
𝑒]33 = 𝐼6 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺] + 𝐼7 [𝐺

𝑇�̅�(1)
𝑇
𝐶̅�̅�(1)𝐺]

 (76) 

{
 
 
 
 

 
 
 
 [𝐾𝛾

𝑒]
11
= 𝐵1 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝛾
𝑒]
12
= −𝐵2 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(3)𝐺]

[𝐾𝛾
𝑒]
13
= 𝐵3 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(3)𝐺]

[𝐾𝛾
𝑒]
22
= 𝐵1 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺] + 𝐵5 [𝐺

𝑇�̅�(3)
𝑇
𝐶̅�̅�(3)𝐺]

[𝐾𝛾
𝑒]
23
= −𝐵4 [𝐺

𝑇�̅�(3)
𝑇
𝐶̅�̅�(3)𝐺] − 𝐵7 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝛾
𝑒]
33
= 𝐵6 [𝐺

𝑇�̅�(3)
𝑇
𝐶̅�̅�(3)𝐺] + 𝐵8 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

 (77) 

{
 
 
 
 

 
 
 
 [𝐾𝜂

𝑒]
11
= 𝑅1 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝜂
𝑒]
12
= −𝑅2 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(3)𝐺]

[𝐾𝜂
𝑒]
13
= 𝑅3 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(3)𝐺] −

1

2
𝑅8 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(1)𝐺]

[𝐾𝜂
𝑒]
22
=

2

3
𝑅1 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺] +

1

2
𝑅5 [𝐺

𝑇�̅�(3)
𝑇
𝐶̅�̅�(3)𝐺]

[𝐾𝜂
𝑒]
23
= −𝑅4 [𝐺

𝑇�̅�(3)
𝑇
𝐶̅�̅�(3)𝐺] +

1

2
𝑅9 [𝐺

𝑇�̅�(3)
𝑇
𝐶̅�̅�(1)𝐺] −

2

3
𝑅11 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝜂
𝑒]
33
= 𝑅6 [𝐺

𝑇�̅�(3)
𝑇
𝐶̅�̅�(3)𝐺] +

2

3
𝑅7 [𝐺

𝑇�̅�(1)
𝑇
𝐶̅�̅�(1)𝐺] − 𝑅10 [𝐺

𝑇�̅�(3)
𝑇
𝐶̅�̅�(1)𝐺] +

2

3
𝑅12 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

  

(78) 
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Dynamic analysis of a porous microbeam model based on refined beam strain gradient theory… 

{
 
 

 
 [𝐾𝜒

𝑒]
22
= 𝐷1 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝜒
𝑒]
23
= −

1

2
𝐷3 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

[𝐾𝜒
𝑒]
33
=
1

4
𝐷2 [𝐺

𝑇�̅�(1)
𝑇
𝐶̅�̅�(1)𝐺] +

1

4
𝐷4 [𝐺

𝑇�̅�(2)
𝑇
𝐶̅�̅�(2)𝐺]

 (78) 
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