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Abstract.  This paper is focused on delamination analysis of a multilayered inhomogeneous viscoelastic beam 
subjected to linear creep under constant applied stress. The viscoelastic model that is used to treat the creep consists of 
consecutively connected units. Each unit consists of one spring and two dashpots. The number of units in the model 
is arbitrary. The modulus of elasticity of the spring in each unit changes with time. Besides, the modulii of elasticity 
and the coefficients of viscosity change continuously along the thickness, width and length in each layer since the 
material is continuously inhomogeneous in each layer of the beam. A time-dependent solution to the strain energy 
release rate for the delamination is derived. A time-dependent solution to the J-integral is derived too. A parametric 
analysis of the strain energy release rate is carried-out by applying the solution derived. The influence of various 
factors such as creep, material inhomogeneity, the change of the modulii of elasticity with time and the number of 
units in the viscoelastic model on the strain energy release rate are clarified. 
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1. Introduction 

 
Multilayered load-bearing beam structures consist of adhesively bonded longitudinal layers of 

different materials. Multilayered materials and structures are attracting considerable attention 
mainly because of increasing demands for high performances in various structural applications in 
modern engineering (Abderezak et al. 2021, Rabia et al. 2020). Also, by using multilayered 
materials, one can achieve significant reduction of structural weight since multilayered materials 
have high strength to weight and stiffness to weight ratios. Therefore, multilayered materials are 
widely used in aeronautics, civil engineering, car industry and other engineering applications 
where structural weight is an important issue. 

Although multilayered materials and structures are quite modern, they have some substantial 
drawbacks. For example, multilayered structural members are rather vulnerable to delamination 
fracture due to their low interlayer strength. Delamination (i.e., separation of layers) affects the 
integrity and reliability of multilayered structures and reduces their strength and stiffness. In fact, 
delamination is the most common failure mechanism in multilayered load-bearing structures. The 
principles of fracture mechanics have been frequently applied to analyze the delamination in 
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multilayered materials. One of the basic purposes of the delamination analyses is to derive 
solutions to the strain energy release rate (Hsueh et al. 2009, Malzbender 2004, Hutchinson and 
Suo 1991). 

Delamination fracture of linear-elastic multilayered beam structures is performed by Hsueh et 
al. (2009). The beams under consideration are simply supported. They are loaded in four-point 
bending symmetrically with respect to the mid-span. A central notch is cut under the top surface of 
the beam in order to induce conditions for delamination fracture. Closed-form solution of the 
strain energy release rate is found for delamination crack located in the central portion of the beam 
(between the two external forces). 

 Analytical studies of delamination in multilayered structural materials are developed in 
(Malzbender 2004). The delamination is caused by external bending moments and thermal loading. 
Delamination in functionally graded elastic materials is also analyzed. A methodology for deriving 
of the strain energy release rate for delamination crack in multilayered materials is presented 
(Malzbender 2004). 

 Delamination analyses of layered beam structures with linear-elastic behavior are reviewed 
and discussed in (Hutchinson and Suo 1991). Various analytical solutions of the strain energy 
release rate for delamination cracks derived by applying the methods of linearly-elastic fracture 
mechanics are presented. Delaminted beam configurations subjected to different loading 
conditions are considered (Hutchinson and Suo 1991). 

It should be mentioned that the delamination fracture is a topical problem also for continuously 
inhomogeneous structural materials. This is due to the fact that such continuously inhomogeneous 
materials as functionally graded ones can be built-up layer by layer (Mahamood and Akinlabi 2017, 
Miyamoto et al. 1999) which is a premise for appearance of delamination cracks. The material 
properties of continuously inhomogeneous materials depend on the coordinates (Ahmed et al. 
2020, Kurşun et al. 2012, 2014, Kurşun and Topçu 2013, Arda 2020, Arda and Aydogdu 2016, 
Butcher et al. 1999, Gasik 2010, Hedia et al. 2014, Aydogdu et al. 2018). Since the variation of the 
properties of continuously inhomogeneous (functionally graded) materials in the solid can be 
formed technologically, these materials are now widely employed in various areas of practical 
engineering (Uymaz 2013, 2014a, b, Mahamood and Akinlabi 2017, Markworth et al. 1995, 
Miyamoto et al. 1999, Nemat-Allal et al. 2011, Wu et al. 2014). 

In contrast to previous papers which deal with instantaneous delamination in multilayered 
beams (Hsueh et al. 2009, Malzbender 2004, Hutchinson and Suo 1991, Rizov 2016, 2017, 2018, 
2020, Rizov and Altenbach 2019, Rizov and Altenbach 2020a, b) or with longitudinal fracture of 
inhomogeneous viscoelastic beams (Rizov 2021), the present paper is concerned with analysis of 
time-dependent delamination in a multilayered inhomogeneous beam configuration that exhibits 
linear creep behavior. The paper is motivated also by the fact that viscoelastic materials are used 
frequently in layered structures (Nguyen et al. 2015, 2020). Therefore, analyzing of delamination 
in layered beams under creep is an important problem for practical engineering. It should be noted 
that the present paper studies also the effect of change of the modulus of elasticity with time on the 
delamination under creep since this effect is not clarified in previous studies (Rizov 2020). A 
viscoelastic model with arbitrary number of consecutively connected units is used for describing 
of creep in the present paper. Each unit of the model has one spring whose modulus of elasticity 
changes with time and two dashpots. The beam layers are inhomogeneous along their width, 
thickness and length. Therefore, the modulus of elasticity and the coefficients of viscosity vary 
continuously in each layer. A time-dependent solution to the strain energy release rate that 
accounts for the creep is derived. The solution can be applied for a delamination crack located 
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Fig. 1 Geometry and loading of a multilayered beam with a delamination crack 
 
 

Fig. 2 Cross-section of the beam
 
 

arbitrary between layers. The J-integral approach is used for verification of the time-dependent 
solution to the strain energy release rate. 

 
 

2. Theoretical model of delaminated multilayered inhomogeneous beam with creep 
 
The present paper deals with the multilayered inhomogeneous viscoelastic beam configuration 

depicted in Fig. 1. The beam is made of adhesively bonded inhomogeneous layers with individual 
properties and thicknesses. The cross-section of the beam is a rectangle of width, 𝑏, and thickness, 
ℎ, as shown in Fig. 2. The length of the beam is 𝑙ଵ + 𝑙ଶ. A delamination crack of length, 𝑎, is 
located between layers. The thicknesses of the lower and upper delamination crack arms are ℎଵ 
and ℎଶ, respectively (Fig. 1). A roller in point, 𝐵ଷ, and a Q-apparatus in the free end of the lower 
delamination crack arm are used to support the beam. The external loading consists of a vertical 
force, 𝐹, applied at right-hand end of the beam (Fig. 1). The crack is located in beam portion, 𝐵ଵ𝐵ଷ, that is loaded in pure bending. It is obvious that the upper delamination crack arm is free of 
stresses. 

Each layer of the beam exhibits creep behavior that is treated by using the linear viscoelastic 
model shown in Fig. 3. The model consists of 𝑛 consecutively connected units. Each unit consists 
of one spring with modulus of elasticity, 𝐸௜௝, and two dashpots with coefficients of viscosity, 𝜂஽೔ೕ 
and 𝜂ு೔ೕ, where subscripts 𝑖 and 𝑗 refer to the unit of the viscoelastic model and to layer of the 
beam, respectively. 
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Fig. 3 Viscoelastic model

 
 
The modulus of elasticity in the i-the unit of the model for the j-th layer of the beam changes 

smoothly with time, 𝑡, according to the following hyperbolic law 
 𝐸௜௝ = 𝐸଴೔ೕ ൤1 + 𝑓௜௝ ൬1 − 11 + 𝑡൰൨ (1)
 

where 
 𝑖 = 1,2, . . . 𝑛 (2)
 𝑗 = 1,2, . . . 𝑚 (3)
 
In the above formulae, 𝑚 is the number of layers in the beam, 𝐸଴೔ೕ is the initial value of the 

modulus of elasticity, 𝑓௜௝  is a material property that controls the change of the modulus of 
elasticity with time. When the modulus of elasticity increases with time, 𝑓௜௝ ൐ 0. If the modulus 
of elasticity decreases with time, −1 ൏ 𝑓௜௝ ൏ 0. 

The stress-strain-time relationship for the i-th unit of the model in Fig. 3 for the j-th layer of the 
beam under constant applied stress, 𝜎௝, is obtained by using the equations for equilibrium 

 𝜎஽೔ೕ⥂ + 𝜎ா೔ೕ = 𝜎௝, 𝜎஽೔ೕ⥂ + 𝜎ு೔ೕ = 𝜎௝ (4)
 

where 𝜎஽೔ೕ⥂, 𝜎ு೔ೕ and 𝜎ா೔ೕ are the stresses in dashpots with coefficients of viscosities, 𝜂஽೔ೕ and 𝜂ு೔ೕ, and in the spring, respectively. 
The stresses involved in (4) are expressed by applying the Hooke’s law 
 𝜎஽೔ೕ⥂ = 𝜂஽೔ೕ𝜀௜• ⥂,      𝜎ு೔ೕ = 𝜂ு೔ೕ𝜀ு೔• , 𝜎ா೔ೕ = 𝐸௜௝ ⥂ 𝜀ா೔ (5)
 

where 𝜀ு೔ and 𝜀ா೔ are the strains in the dashpot with coefficient of viscosity, 𝜂ு೔ೕ, and in the 
spring, respectively. The strains are connected as 

 𝜀ு೔ + 𝜀ா೔ = 𝜀௜ (6)
 
By using of (4), (5) and (6), one obtains the following equation 
 𝜀௜•• + 𝐸௜௝𝛼௜௝𝜀௜• = 𝐸௜⥂𝛽௜௝𝜎௝ (7)
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where 
 𝛼௜௝ = 𝜂ு೔ೕ + 𝜂஽೔ೕ𝜂஽೔ೕ𝜂ு೔ೕ  (8)

 𝛽௜௝ = 1𝜂஽೔ೕ𝜂ு೔ೕ (9)

 
The solution of (7) is found as 
 𝜀௜ = 𝜎௝ 𝛽௜௝𝛼௜௝ 𝑡 + 𝜎௝ 𝛽௜௝𝛼௜௝ 𝑒ିఈ೔ೕఏ೔ೕ௧𝛼௜௝𝜃௜௝ ቊ1 + 𝛿௜௝𝛼௜௝𝜃௜௝ ൫𝛼௜௝𝜃௜௝𝑡 + 1൯

         + 𝛿௜௝൫𝛿௜௝ − 1൯2 ൥𝑡ଶ + 2൫𝛼௜௝𝜃௜௝൯ଶ ൫𝛼௜௝𝜃௜௝𝑡 + 1൯൩ൡ 
     −𝜎௝ 𝛽௜௝𝛼௜௝ଶ 𝜃௜௝ ൥1 + 𝛿௜௝𝛼௜௝𝜃௜௝ + 𝛿௜௝൫𝛿௜௝ − 1൯൫𝛼௜௝𝜃௜௝൯ଶ ൩ 

(10)

 

where 
 𝜃௜௝ = 𝐸଴೔ೕ൫1 + 𝑓௜௝൯ (11)
 𝛿௜௝ = 𝛼௜௝𝐸଴೔ೕ𝑓௜௝ (12)
 
The stress-strain-time relationship is found by summation of the strains in the units of the 

model. The result is 
 𝜀⥂ = ෍ ቊ𝜎௝ 𝛽௜௝𝛼௜௝ 𝑡௜ୀ௡

௜ୀଵ + 𝜎௝ 𝛽௜௝𝛼௜௝ 𝑒ିఈ೔ೕఏ೔ೕ௧𝛼௜௝𝜃௜௝ ቊ1 + 𝛿௜௝𝛼௜௝𝜃௜௝ ൫𝛼௜௝𝜃௜௝𝑡 + 1൯ 
           + 𝛿௜௝൫𝛿௜௝ − 1൯2 ൥𝑡ଶ + 2൫𝛼௜௝𝜃௜௝൯ଶ ൫𝛼௜௝𝜃௜௝𝑡 + 1൯൩ൡ 
          −𝜎௝ 𝛽௜௝𝛼௜௝ଶ 𝜃௜௝ ൥1 + 𝛿௜௝𝛼௜௝𝜃௜௝ + 𝛿௜௝൫𝛿௜௝ − 1൯൫𝛼௜௝𝜃௜௝൯ଶ ൩ൡ 

(13)

 
Each layer of the beam exhibits continuous material inhomogeneity in width, thickness and 

length directions. Therefore, material properties vary continuously in the volume of the layer. 
The distributions of the modulus of elasticity and the coefficients of viscosity for the i-th unit of 

the model in the cross-section of j-th layer are described by using the following exponential 
functions (it should be noted that exponential functions are frequently applied for treating the 
distribution of material properties in continuously inhomogeneous (functionally graded) structural 
members (Kurşun et al. 2012, 2014)) 

 𝐸௜௝’ = 𝐸௜௝𝑒ఒ೔ೕ⥂௕ଶା௬య௕ ାఓ೔ೕ ௭యି௭యೕ௭యೕశభି௭యೕ 
(14)
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 𝜂஽೔ೕ = 𝜂஽ೃ೔ೕ𝑒థ೔ೕ⥂௕ଶା௬య௕ ାట೔ೕ ௭యି௭యೕ௭యೕశభି௭యೕ  (15)

 𝜂ு೔ೕ = 𝜂ுೃ೔ೕ𝑒ఠ೔ೕ⥂௕ଶା௬య௕ ାఘ೔ೕ ௭యି௭యೕ௭యೕశభି௭యೕ  (16)
 

where 
 𝑖 = 1,2, . . . 𝑛 (17)
 𝑗 = 1,2, . . . 𝑚 (18)
 − 𝑏2 ൑ 𝑦ଷ ൑ 𝑏2 (19)

 𝑧ଷ௝ ൑ 𝑧ଷ ൑ 𝑧ଷ௝ାଵ (20)
 
In formulae (14)–(20), 𝐸௜௝ , 𝜂஽ೃ೔ೕ  and 𝜂ுೃ೔ೕ  are the values of 𝐸௜௝’ , 𝜂஽೔ೕ  and 𝜂ு೔ೕ  in the 

upper left-hand vertex of cross-section of the j-th layer, respectively. The distributions of 𝐸௜௝’ , 𝜂஽೔ೕ 
and 𝜂ு೔ೕ along the beam width are controlled by the parameters, 𝜆௜௝, 𝜙௜௝ and 𝜔௜௝, respectively. 
The parameters, 𝜇௜௝ , 𝜓௜௝  and 𝜌௜௝ , control the distributions of 𝐸௜௝’ , 𝜂஽೔ೕ  and 𝜂ு೔ೕ  along the 
thickness of the layer, respectively. In fact, 𝜆௜௝, 𝜙௜௝, 𝜔௜௝, 𝜇௜௝, 𝜓௜௝ and 𝜌௜௝ dictate the modulus 
of elasticity and the coefficients of viscosity variation profiles in the cross-section of the layer. The 
coordinates of the upper and lower surfaces of the layer are denoted by 𝑧ଷ௝  and 𝑧ଷ௝ାଵ , 
respectively (Fig. 2). 

The distributions of 𝐸଴೔ೕ, 𝜂஽ೃ೔ೕ and 𝜂ுೃ೔ೕ along the beam length are written as 
 𝐸଴೔ೕ = 𝐸଴௅೔ೕ𝑒௚೔ೕ ௫య௟భା௟మ (21)
 𝜂஽ೃ೔ೕ = 𝜂஽௅ೃ೔ೕ𝑒௦೔ೕ ௫య௟భା௟మ (22)
 𝜂ுೃ೔ೕ = 𝜂ு௅ೃ೔ೕ𝑒௥೔ೕ ௫య௟భା௟మ (23)
 
 

Fig. 4 Cross-section of the lower delamination crack arm
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where 
 𝑖 = 1,2, . . . 𝑛 (24)

 𝑗 = 1,2, . . . 𝑚 (25)
 0 ൑ 𝑥ଷ ൑ 𝑙ଵ + 𝑙ଶ (26)
 
In formulae (21)–(26), 𝑥ଷ is the longitudinal centroidal axis of the beam (Fig. 1), 𝐸଴௅೔ೕ , 𝜂஽௅ೃ೔ೕ and 𝜂ு௅ೃ೔ೕ  are the values of 𝐸଴೔ೕ, 𝜂஽ೃ೔ೕ  and 𝜂ுೃ೔ೕ  at the left-hand end of the beam, 

respectively. The parameters, 𝑔௜௝, 𝑠௜௝ and 𝑟௜௝, control the distributions of 𝐸଴೔ೕ, 𝜂஽ೃ೔ೕ and 𝜂ுೃ೔ೕ 
along the length of the beam, respectively. 

Since the material exhibits creep behavior, the strain energy release rate for the delamination 
crack in the beam under consideration is a function of time. In the present paper, a time-dependent 
solution to the strain energy release rate, 𝐺, that takes into account the creep and the change of the 
modulus of elasticity with time is derived by applying the formula (Rizov 2020) 

 𝐺 = 1𝑏 ቌ⥂ ෍ ඵ 𝑢଴௝𝑑𝐴(஺ೕ)
௝ୀ௠భ

௝ୀଵ −⥂ ෍ ඵ 𝑢଴௨௝𝑑𝐴(஺ೕ)
௝ୀ௠
௝ୀଵ ቍ (27)

 
where 𝑚ଵ is the number of layers in the lower crack arm (Fig. 4), 𝑢଴௝ is the time-dependent 
strain energy density in the j-th layer behind the crack tip, 𝐴௝ is the area of the cross-section of 
the layer, 𝑢଴௨௝ is the time-dependent strain energy density in the j-th layer of the beam portion, 𝐵ଶ𝐵ଷ, ahead of the crack tip. It should be mentioned that formula (27) takes into account the fact 
that the strain energy in the upper crack arm is zero since this crack arm is free of stresses. 

The time-dependent strain energy density in the j-th layer of the lower crack arm is written as 
 𝑢଴௝ = 12 𝜎௝𝜀⥂ (28)

 
where 𝜀⥂ is a function of time (refer to Eq. (13)). 

In the present paper, the distribution of strains in the beam is treated by applying the Bernoulli’s 
hypothesis for plane sections since the beam under consideration has high length to thickness ratio. 
Therefore, the distribution of strains in the cross-section of the lower crack arm is written as 

 𝜀 = 𝜀஼భ + 𝜅௬భ⥂𝑦ଵ + 𝜅௭భ𝑧ଵ (29)
 

where 𝑦ଵ and 𝑧ଵ are the centroidal axes of the lower crack arm cross-section, 𝜀஼భ is the strain in 
the centre of the cross-section. The curvatures in the planes, 𝑥ଵ𝑦ଵ and 𝑥ଵ𝑧ଵ, are denoted by 𝜅௬భ  
and 𝜅௭భ, respectively. 

The strain in the centre and the two curvatures are determined by using the following equations 
for equilibrium of elementary forces in the cross-section of the lower crack arm 
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𝑁ଵ = ෍ ඵ 𝜎௝𝑑𝑦ଵ𝑑𝑧ଵ൫஺ೕ൯
௝ୀ௠భ

௝ୀଵ  (30)

 𝑀௬భ = ෍ ඵ 𝜎௝𝑧ଵ𝑑𝑦ଵ𝑑𝑧ଵ(஺ೕ)
௝ୀ௠భ

௝ୀଵ  (31)

 𝑀௭భ = ෍ ඵ 𝜎௝𝑦ଵ𝑑𝑦ଵ𝑑𝑧ଵ(஺ೕ)
௝ୀ௠భ

௝ୀଵ  (32)

 
where the axial force, 𝑁ଵ, and the bending moments 𝑀௬భ  and 𝑀௭భ with respect to 𝑦ଵ and 𝑧ଵ 
are written as (Fig. 1) 

 𝑁ଵ = 0 (33)
 𝑀௬భ = 𝐹𝑙ଶ (34)
 𝑀௭భ = 0 (35)
 
The stress, 𝜎௝, is expressed as a function of 𝑡, 𝑦ଵ and 𝑧ଵ by using dependences (13) and (29). 

The result is 
 𝜎௝ = ൫𝜀஼భ + 𝜅௬భ⥂𝑦ଵ + 𝜅௭భ𝑧ଵ൯ ቐ෍ ቊ𝛽௜௝𝛼௜௝

௜ୀ௡
௜ୀଵ 𝑡 + 𝛽௜௝𝛼௜௝ 𝑒ିఈ೔ೕఏ೔ೕ௧𝛼௜௝𝜃௜௝ ቊ1 + 𝛿௜௝𝛼௜௝𝜃௜௝ ൫𝛼௜௝𝜃௜௝𝑡 + 1൯ 

          + 𝛿௜௝൫𝛿௜௝ − 1൯2 ൥𝑡ଶ + 2൫𝛼௜௝𝜃௜௝൯ଶ ൫𝛼௜௝𝜃௜௝𝑡 + 1൯൩ൡ − 𝛽௜௝𝛼௜௝ଶ 𝜃௜௝ ൥1 + 𝛿௜௝𝛼௜௝𝜃௜௝ + 𝛿௜௝൫𝛿௜௝ − 1൯൫𝛼௜௝𝜃௜௝൯ଶ ൩ൡቑିଵ(36)

 
After substituting of (36) in (30), (31) and (32), the three equations for equilibrium are solved 

with respect to the strain in the centre and the two curvatures at various values of time by using the 
MatLab computer program. 

The time-dependent strain energy density in the j-th layer of the beam portion, 𝐵ଶ𝐵ଷ, is found 
as 𝑢଴௨௝ = 12 𝜎௨௝𝜀௨⥂ (37)

 
where the strain, 𝜀௨, is obtained, respectively, by replacing of 𝜀஼భ, 𝜅௬భ , 𝜅௭భ , 𝑦ଵ and 𝑧ଵ with 𝜀஼మ, 𝜅௬మ , 𝜅௭మ , 𝑦ଶ and 𝑧ଶ in (29). 

Here, 𝜀஼మ, 𝜅௬మ  and 𝜅௭మ  are the strain in the centre of the cross-section of portion, 𝐵ଶ𝐵ଷ, of 
the beam, the curvatures in planes, 𝑥ଶ𝑦ଶ and 𝑥ଶ𝑧ଶ, respectively. The centroidal axes of the beam 
are denoted by 𝑦ଶ  and 𝑧ଶ . The quantities, 𝜀஼మ , 𝜅௬మ  and 𝜅௭మ , are determined by using the 
equations for equilibrium (30), (31) and (32). For this purpose, 𝑚ଵ, 𝜎௝, 𝑦ଵ and 𝑧ଵ are replaced 
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with 𝑚, 𝜎௨௝, 𝑦ଶ and 𝑧ଶ, respectively. The stress, 𝜎௨௝, is obtained by replacing of 𝜀஼భ, 𝜅௬భ , 𝜅௭భ , 𝑦ଵ and 𝑧ଵ with 𝜀஼మ, 𝜅௬మ , 𝜅௭మ , 𝑦ଶ and 𝑧ଶ in formula (36). 
After substituting of the strain energy densities in (27), the strain energy release rate is obtained 

at various values of the time. The integration in (27) is carried-out by using the MatLab computer 
program. 

The J-integral approach is also used to analyze the delamination in Fig. 1 (Broek 1986). The J-
integral is solved along the integration contour, 𝐾, shown by a dashed line in Fig. 1. The J-integral 
value in the upper delamination crack arm is zero since this crack arm is free of stresses. Therefore, 
the time-dependent solution of the J-integral is written as 

 𝐽⥂ = 𝐽௄భ + 𝐽௄మ (38)
 

where 𝐽௄భ  and 𝐽௄మ are the J-integral values in segments, 𝐾ଵ and 𝐾ଶ, of the integration contour, 
respectively. Segments, 𝐾ଵ and 𝐾ଶ, coincide with the cross-sections of the lower crack arm and 
the un-cracked beam portions, respectively (Fig. 1). 

The J-integral in segment, 𝐾ଵ, of the integration contour is written as 
 𝐽௄భ = ෍ න ൤𝑢଴௝ 𝑐𝑜𝑠 𝛼௄భ − ൬𝑝௫௝ 𝜕𝑢𝜕𝑥 + 𝑝௬௝ 𝜕𝑣𝜕𝑥൰൨௭భೕశభ௭భೕ

௝ୀ௠భ
௝ୀଵ 𝑑𝑠 (39)

 
where 𝛼௄భ is the angle between the outwards normal vector to the contour of integration and the 
crack direction, 𝑢 and 𝑣 are the horizontal and vertical components of displacement vector, 𝑝௫௝ 
and 𝑝௬௝ are the horizontal and vertical components of stress vector, 𝑑𝑠 is a differential element 
along the contour of integration. 

The components of (39) are obtained as 
 𝑐𝑜𝑠 𝛼௄భ = −1 (40)
 𝑝௫௝ = −𝜎௝ (41)
 𝑝௬௝ = 0 (42)
 𝑑𝑠 = 𝑑𝑧ଵ (43)
 𝜕𝑢𝜕𝑥 = 𝜀 (44)
 
The J-integral in segment, 𝐾ଶ, is expressed as 
 𝐽௄మ = ෍ න ቈ𝑢଴௨௝ 𝑐𝑜𝑠 𝛼௄మ − ቆ𝑝௫௨௝ 𝜕𝑢𝜕𝑥௄మ + 𝑝௬௨௝ 𝜕𝑣𝜕𝑥௄మቇ቉௭మೕశభ௭మೕ

௝ୀ௠⥂
௝ୀଵ 𝑑𝑠௄మ (45)

 

where 
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𝑐𝑜𝑠 𝛼௄మ = 1 (46)
 𝑝௫௨௝ = 𝜎௨௝ (47)
 𝑝௬௨௝ = 0 (48)
 𝑑𝑠௄మ = −𝑑𝑧ଶ (49)
 𝜕𝑢𝜕𝑥௄మ = 𝜀௨ (50)
 
The average value of the J-integral along the delamination crack front is written as 
 𝐽௔௩ = 1𝑏 න 𝐽𝑑𝑦ଵ௕ଶି௕ଶ  (51)

 
By combining of (38), (39) and (51), one derives 
 𝐽௔௩ = 1𝑏 ቐන ෍ න ቎𝑢଴௝ 𝑐𝑜𝑠 𝛼௄భ −൬𝑝௫௝ 𝜕𝑢𝜕𝑥 + 𝑝௬௝ 𝜕𝑣𝜕𝑥൰቏௭భೕశభ௭భೕ

௝ୀ௠భ
௝ୀଵ

௕ଶି௕ଶ 𝑑𝑠𝑑𝑦ଵ
           + න ෍ න ቎𝑢଴௨௝ 𝑐𝑜𝑠 𝛼௄మ −ቆ𝑝௫௨௝ 𝜕𝑢𝜕𝑥௄మ + 𝑝௬௨௝ 𝜕𝑣𝜕𝑥௄మቇ቏௭మೕశభ௭మೕ

௝ୀ௠⥂
௝ୀଵ

௕ଶି௕ଶ 𝑑𝑠௄మ𝑑𝑦ଵቑ 

(52)

 
The solution (52) is used to obtain the J-integral at various values of time. The integration in 

(52) is carried-out by the MatLab computer program. It should be noted that the J-integral values 
obtained by applying (52) are exact matches of the strain energy release rates calculated by using 
(27). This fact proves the correctness of delamination analysis developed in the present paper. The 
accuracy of the analysis of the strain energy release rate is confirmed likewise analytically. For this 
purpose, the fact that the J-integral solution (52) matches the solution of the strain energy release 
rate (27) is proved also in the following way. By using (28) and (40)–(44), one derives 

 𝑢଴௝ 𝑐𝑜𝑠 𝛼௄భ − ቀ𝑝௫௝ డ௨డ௫ + 𝑝௬௝ డ௩డ௫ቁ = 𝑢଴௝. (53)
 
Analogically, by using (37) and (46)–(50), one obtains 
 𝑢଴௨௝ 𝑐𝑜𝑠 𝛼௄మ − ൬𝑝௫௨௝ డ௨డ௫಼మ + 𝑝௬௨௝ డ௩డ௫಼మ൰ = −𝑢଴௨௝. (54)
 
By substituting of (53) and (54) in (52), and by taking into account the fact that the integrals in 

(52) can be replaced by double integrals in the cross-section of the j-th layer of the beam, formula 
(52) is re-written as 

 𝐽௔௩ = ଵ௕ ቀ⥂ ∑௝ୀ௠భ௝ୀଵ ∬ 𝑢଴௝𝑑𝐴(஺ೕ) −⥂ ∑௝ୀ௠௝ୀଵ ∬ 𝑢଴௨௝𝑑𝐴(஺ೕ) ቁ. (55)
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Fig. 5 The strain energy release rate in non-dimensional form, 𝐺ே = 𝐺/൫𝐸଴௅భభ𝑏൯, presented as a function 
of the non-dimensional time, 𝑡ே = 𝑡𝐸଴௅భభ/𝜂஽௅ೃభభ (curve 1 - at 𝑓ଵଵ = −0.4, curve 2 – at 𝑓ଵଵ = 0.4 
and curve 3 – at 𝑓ଵଵ = 0.8) 

 
 

which is exact match of the solution of the strain energy release rate (27). 
 
 

3. Parametric analysis 
 
A parametric analysis is carried-out of the delamination in the multilayered beam in Fig. 1. For 

this purpose, calculations of the strain energy release rate are performed by applying the time-
dependent solution (27). The strain energy release rate is expressed in non-dimensional form by 
applying the formula 𝐺ே = 𝐺/൫𝐸଴௅భభ𝑏൯. A viscoelastic model with four units is used. A beam 
configuration with three layers is considered in the parametric analysis. The thickness of each 
layer is ℎ௧. There are two layers in the lower crack arm. Thus, the thicknesses of the lower and 
upper crack arms are ℎଵ = 2ℎ௧  and ℎଶ = ℎ௧ , respectively. It is assumed that 𝑏 = 0.015 m, ℎ௧ = 0.006 m, 𝑙ଵ = 0.200 m, 𝑙ଶ = 0.050 m and 𝐹 = 5 Nm. 

The variation of the strain energy release rate with time and the influence of the change of the 
modulus of elasticity with time are analyzed. For this purpose, the strain energy release rate is 
obtained at various values of time for three values of 𝑓ଵଵ. The strain energy release rate in non-
dimensional form is presented as a function of non-dimensional time in Fig. 5 at three values of 𝑓ଵଵ. The time is expressed in non-dimensional form by using the formula 𝑡ே = 𝑡𝐸଴௅భభ/𝜂஽௅ೃభభ. 

It is evident from Fig. 5 that the strain energy release rate increases with time which is due to 
the creep. One can observe also in Fig. 5 that increase of 𝑓ଵଵ leads to decrease of the strain energy 
release rate (this finding indicates that the strain energy release rate decreases with increasing of 
the modulus of elasticity with time). 

The influence of the material inhomogeneity on the strain energy release rate is also analyzed. 
First, the effect of the variation of the modulus of elasticity in the cross-section of the layer 1 is 
evaluated by carrying-out calculations at various values of 𝜆ଵଵ and 𝜇ଵଵ. The results obtained are 
illustrated in Fig. 6 where the strain energy release rate in non-dimensional form is presented as a 
function of 𝜆ଵଵ at three values of 𝜇ଵଵ. The curves in Fig. 6 indicate that the strain energy release 
rate decreases with increasing of 𝜆ଵଵ. It can be observed also in Fig. 6 that the increase of 𝜇ଵଵ 
leads to decrease of the strain energy release rate. 
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Fig. 6 The strain energy release rate in non-dimensional form, 𝐺ே = 𝐺/൫𝐸଴௅భభ𝑏൯, presented as a function 
of parameter, 𝜆ଵଵ, controlling the distribution of 𝐸௜௝’  in layer 1 along the beam width (curve 1 – at 𝜇ଵଵ = 0.5, curve 2 – at 𝜇ଵଵ = 1.0 and curve 3 – at 𝜇ଵଵ = 2.0) 

 
 

Fig. 7 The strain energy release rate in non-dimensional form, 𝐺ே = 𝐺/൫𝐸଴௅భభ𝑏൯, presented as a function 
of parameter, 𝜙ଵଵ, controlling the distribution of 𝜂஽೔ೕ in layer 1 along the beam width (curve 1 – at 𝜓ଵଵ = 0.5, curve 2 – at 𝜓ଵଵ = 1.0 and curve 3 – at 𝜓ଵଵ = 2.0)

 
 
The effect of the continuous variation of the coefficient of viscosity, 𝜂஽భభ, in the cross-section 

of layer 1 is indicated in Fig. 7 by presenting of the strain energy release rate as a function of 𝜙ଵଵ 
at three values of 𝜓ଵଵ. One can observe in Fig. 7 that the strain energy release rate decreases with 
increasing of 𝜙ଵଵ. The increase of material property, 𝜓ଵଵ, leads also to decrease of the strain 
energy release rate (Fig. 7). 

Calculations of the strain energy release rate are performed at various values of 𝜔ଵଵ and 𝜌ଵଵ 
in order to assess the influence of the continuous change of the coefficient of viscosity, 𝜂ுభభ, in 
the cross-section of layer 1 of the beam. The strain energy release rate in non-dimensional from is 
presented as a function of 𝜔ଵଵ in Fig. 8 at three values of 𝜌ଵଵ. The curves in Fig. 8 show that the 
strain energy release rate decreases with increasing of 𝜔ଵଵ and 𝜌ଵଵ. 

One can get an idea about the influence of the continuous variation of the coefficients of 
viscosity, 𝜂஽భభ and 𝜂ுభభ, along the length of the beam on the strain energy release rate from Fig. 
9 where the strain energy release rate in non-dimensional form is presented as a function of 𝑠ଵଵ at 
three values of 𝑟ଵଵ. It is evident that the strain energy release rate decreases with increasing of 𝑠ଵଵ 
and 𝑟ଵଵ (Fig. 9). 
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Fig. 8 The strain energy release rate in non-dimensional from, 𝐺ே = 𝐺/൫𝐸଴௅భభ𝑏൯, presented as a function 
of parameter, 𝜔ଵଵ, controlling the distribution of 𝜂ு೔ೕ in layer 1 along the beam width (curve 1 – at 𝜌ଵଵ = 0.5, curve 2 – at 𝜌ଵଵ = 1.0 and curve 3 – at 𝜌ଵଵ = 2.0) 

 
 

Fig. 9 The strain energy release rate in non-dimensional form, 𝐺ே = 𝐺/൫𝐸଴௅భభ𝑏൯, presented as a function 
of parameter, 𝑠ଵଵ, controlling the distribution of 𝜂஽ೃ೔ೕ in layer 1 along the beam length (curve 1 – 
at 𝑟ଵଵ = 0.5, curve 2 – at 𝑟ଵଵ = 1.0 and curve 3 – at 𝑟ଵଵ = 2.0)

 
 

Fig. 10 The strain energy release rate in non-dimensional form, 𝐺ே = 𝐺/൫𝐸଴௅భభ𝑏൯, presented as a function 
of parameter, 𝑔ଵଵ, controlling the distribution of 𝐸଴೔ೕ in layer 1 along the beam length (curve 1 – 
for viscoelastic model with two units, curve 2 – for viscoelastic model with three units and curve 3 - 
for viscoelastic model with four units)
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Fig. 11 The strain energy release rate in non-dimensional form, 𝐺ே = 𝐺/൫𝐸଴௅భభ𝑏൯, presented as a function 
of parameter, 𝜆ଶଶ, controlling the distribution of 𝐸ଶଶ’ ⥂ in layer 2 along the beam width (curve 1 – 
for beam configuration with three layers, curve 2 – for beam configuration with four layers and 
curve 3 – for beam configuration with five layers)

 
 
The influence of the number of the units in the viscoelastic model is investigated too. For this 

purpose, calculations of the strain energy release rate are performed by using models with two and 
three units in the model. 

The results obtained are shown in Fig. 10 where the strain energy release rate in non-
dimensional form is presented as a function of 𝑔ଵଵ (the material property, 𝑔ଵଵ, controls the 
continuous variation of the modulus of elasticity in layer 1 along the beam length) for models with 
two, three and four units. 

It can be observed in Fig. 10 that the strain energy release rate decreases with increasing of 𝑔ଵଵ. 
Concerning the influence of the number of units in the viscoelastic model, the curves in Fig. 10 
indicate that the strain energy release rate increases with increasing the number of units (this 
finding is attributed to the increase of the strain with increasing the number of the units in the 
viscoelastic model at a constant applied stress). 

The effect of the number of layers on the strain energy release rate is also analyzed. Beam 
configurations with three, four and five layers are considered. The thickness of each layer is ℎ௧. 
The stain energy release rate is presented as a function of 𝜆ଶଶ in Fig. 11 for the considered beam 
configurations. One can observe in Fig. 11 that increase of the number of layers causes decrease of 
the strain energy release rate. 

 
 

4. Conclusions 
 
A delamination in a multilayered inhomogeneous beam structure exhibiting linear creep 

behaviour is analyzed. The creep is treated by using a viscoelastic model consisting of an arbitrary 
number of consecutively connected units. Each unit has one spring and two dashpots. The modulus 
of elasticity of the spring in each unit of the model changes with time. Each layer of the beam is 
continuously inhomogeneous in width, thickness and length directions. Therefore, the coefficients 
of viscosity and the modulii of elasticity change continuously along the width, thickness and 
length in each layer. 

A time-dependent solution to the strain energy release rate that accounts for the creep and for 
the change of the modulii of elasticity with time is derived by considering the time-dependent 
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strain energy. The delamination is analyzed also by applying the J-integral for verification. A 
parametric analysis of the strain energy release rate is carried-out. The analysis reveals that the 
strain energy release rate increases with time due to the creep. It is found that the increase of the 
modulii of elasticity with time leads to decrease of the strain energy release rate. Concerning the 
effect of material inhomogeneity, the investigation indicates that the strain energy release rate 
decreases with increasing of 𝜆ଵଵ, 𝜇ଵଵ, 𝜙ଵଵ, 𝜓ଵଵ, 𝜔ଵଵ, 𝜌ଵଵ, 𝑠ଵଵ, 𝑟ଵଵ and 𝑔ଵଵ. The increase of 
the number of units in the viscoelastic model leads to increase of the strain energy release rate (this 
behavior is due to increase of the strain with increase of the number of units in the model under a 
constant applied stress). The effect of the number of layers in the beam structure is also studied. It 
is found that increase of the number of layers causes decrease of the strain energy release rate. It 
should be mentioned that the solution derived in the present paper can be extended for analyzing 
of the strain energy release rates for multiple delaminations in the layered structure under creep. 
For this purpose, the time-dependent strain energy in the beam has to be expressed as a function of 
the lengths of the delaminations. Then the strain energy release rates can be obtained by 
differentiating of the time-dependent strain energy with respect to the areas of the delaminations. 
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