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Abstract.  Urban heat island (UHI) is one of the most important climatic implications of urbanization and 

thus a matter of key concern for environmentalists of the world in the twenty-first century. The relationship 

between climate and urbanization has been better understood with the introduction of thermal remote 

sensing. So, this study is an attempt to understand the influence of urbanization on local temperature for a 

small developing city. The study focuses on the investigation of intensity of atmospheric and surface urban 

heat island for a small urbanizing district of Punjab, India. Landsat 8 OLI/TIRS satellite data and field 

observations were used to examine the spatial pattern of surface and atmospheric UHI effect respectively, for 

the month of April, 2018. The satellite data has been used to cover the larger geographical area while field 

observations were taken for simultaneous and daily temperature measurements for different land use types. 

The significant influence of land use/land cover (LULC) patterns on UHI effect was analyzed using 

normalized built-up and vegetation indices (NDBI, NDVI) that were derived from remote sensing satellite 

data. The statistical analysis carried out for land surface temperature (LST) and LULC indicators displayed 

negative correlation for LST and NDVI while NDBI and LST exhibited positive correlation depicting 

attenuation in UHI effect by abundant vegetation. The comparison of remote sensing and in-situ observations 

were also carried out in the study. The research concluded in finding both nocturnal and daytime UHI effect 

based on diurnal air temperature observations. The study recommends the urgent need to explore and impose 

effective UHI mitigation measures for the sustainable urban growth.   
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1. Introduction 
 

With the ongoing development in the era of urbanization, more than half of the world’s 

population (~54%) has been reported to reside in urban areas in the year 2014 and is expected to 

rise up to 66% by 2050 (United Nations 2014). The swift urban population growth has altered land 

use land cover (LULC) patterns throughout the world by conversion of vegetation and green cover 

into dense urban infrastructure and built-up areas that have consequently expanded the urban 

clusters (Vitousek et al. 1997). So, the significant variations in thermal conditions of these 

expanded urban areas are the direct implication of change in LULC induced by urbanization; that 
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thus causes urban-rural temperature contrast, which is popularly known as ‘Urban Heat Island’ 

(UHI) (Oke 1982, Chakraborty et al. 2015). UHI is a major environmental issue related to urban 

climate, the concept of which was introduced by Luke Howard in 1833. The UHI hence, can be 

elaborated as the phenomenon of higher temperature of urban areas than surrounding suburban and 

rural areas (Oke 1982). 

The urban areas with impervious surfaces and dense infrastructure have low sky-view factor, 

evapo-transpiration rates, and soil moisture than rural areas (Oke 1981, Svensson 2004). 

Additionally, the urban clusters due to different thermal characteristics such as high heat storage 

capacity, thermal emissivity and low solar reflectance; possess higher sensible heat flux from land 

surfaces while higher latent heat flux is observed in rural areas with higher vegetated surfaces and 

water bodies (Gallo et al. 1993, Taha 1997, Mohan et al. 2012). This increase in sensible heat flux 

by various urban surfaces causes urban-rural temperature difference, or in other words, the UHI 

effect.   

The intensity of UHI phenomenon depends on the extent of urbanization, topography, urban 

geometry, surface characteristics, density of built-up area, solar insolation, anthropogenic heat, 

vegetated areas and meteorological conditions (Oke 1987, Taha 1997, Sun et al. 2010). The 

variations in UHI effect also depends on the day and night-time air circulations. The heat island 

effect is more frequent for calm atmospheric conditions especially at night-time for clear sky (Kim 

and Baik 2004, Lam et al. 2005).  

The UHI effect, been reported in even small urban areas having population less than 10,000 

(Karl et al. 1988), is known to degrade urban environment quality. So, this phenomenon has 

numerous environmental implications such as it increases air pollution (Sarrat et al. 2006, Han et 

al. 2009), changes water quality (Gober et al. 2009), alters precipitation patterns (Grimm et al. 

2008, Shastri et al. 2015) and increases energy requirement (Santamouris et al. 2015). The UHI 

phenomenon is also known to affect human health (Lo and Quattrochi 2003, Kovats and Hajat 

2008) due to the higher temperature and thermal discomfort (Steeneveld et al. 2011).   

Based on the method of measurement, the UHI phenomenon is characterized as atmospheric 

and surface UHI phenomenon. Surface UHI is the phenomenon of the temperature difference 

between urban and rural land surfaces while atmospheric UHI is associated with the air 

temperature of urban and rural canopies (Yuan and Bauer 2007). Meanwhile, numerous studies 

have contributed towards this thermal phenomenon by estimating air temperature either through 

the conventional method of field measurements, mobile transitory pathways or from weather 

stations for analysis of atmospheric UHIs (Landsberg 1981, Eliasson 1994). As a recent alternative 

approach of ground-based measurements, the spatio-temporal patterns of LST can be readily 

retrieved with the introduction of thermal remote sensing combined with Geographical 

Information System (GIS) technique for surface UHI effect estimation (Imhoff et al. 2010). A 

variety of sensors with different spatial and spectral resolution are nowadays available that 

includes National Oceanic and Atmospheric Administration-Advanced Very High Resolution 

Radiometer (NOAA -AVHRR) (Roth et al. 1989, Streutker 2002), Advanced Space-borne 

Thermal Emission and Reflection (ASTER) (Liu and Zhang 2011), Moderate Resolution Imaging 

Spectro-radiometer (MODIS) (Rajasekar and Weng 2009, Pandey et al. 2012), Landsat TM/ETM+ 

(Chen et al. 2006, Klok et al. 2012). Besides, the Landsat program has been significantly 

contributing in Earth surface monitoring studies since the launch of its first satellite in 1972 (Phiri 

and Morgenroth 2017). So, these enduring advancements in resolution of satellite data have 

significantly contributed for research regarding UHI effect throughout the world (Liu and Zhang 

2011). The remote sensing technology can also be used to estimate vegetation indices, surface 
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parameters like temperature, emissivity and albedo that are significant in UHI studies. 

The existing literature shows the occurrence of UHI been documented throughout the urban 

areas of world such as in Seoul (Kim and Baik 2005), London (Kolokotroni and Giridharan 2008), 

USA (Rajasekar and Weng 2009), Netherlands (Klok et al. 2012), China (Zhang et al. 2013). 

According to estimation, UHI effect has been reported in more than 1100 cities worldwide, 

irrespective of climatic conditions, size of the urban area, its latitude, scale and altitude (Stewart 

2011).  

The estimation of air and land surface temperature had remained a major focus for most of the 

UHI studies. The UHI indicators such as NDVI, percent impervious area, NDBI etc has also been 

widely studied to estimate LULC impact on UHI. In this context, a number of studies have been 

carried out such as the influence of urban LULC on temperature has been studied by Gallo et al. 

(1993) using surface temperature and NDVI. Yuan and Bauer (2007) investigated relationship 

between surface UHI indicators i.e., LST, NDVI and percent impervious surface area for the 

Metropolitan area of Minnesota using Landsat satellite data. Temporal analysis of NDVI and LST 

was carried out using NOAA-AVHRR satellite data by Julien et al. (2011). Li et al. (2014) 

analyzed the relationship between LST and land use type for Shanghai, China concluding that 

beyond the type of land cover, anthropogenic forces also affect urban UHI. Other than analyzing 

UHI effect, the influence of meteorological parameters such as speed and direction of wind and 

cloud cover on the intensity of UHI effect has been determined for New York City by Gedzelman 

et al. (2003). The urban characteristics such as size and shape of the urban area and its 

composition were analyzed as driving factors of UHI intensity for Paris (Lemonsu et al. 2015). 

The effect of surface geometry on satellite retrieved LST was estimated by Voogt and Oke (1998).  

The Indian sub-continent facing one of the highest population growths with 377 million of 

urban population also not lags behind in analyzing the UHI effect. But the studies in developing 

country like India are limited only to a few metropolitan or mega-cities due to the size of 

remaining cities and density of the population in these cities. Some of the previous UHI studies 

conducted in India are mentioned here. Kikon et al. (2016) estimated the UHI effect using multi-

temporal satellite data for Noida, India. The study showed an increase in temperature with increase 

in impervious area for the year 2000 and 2013. The researchers also conducted a statistical 

analysis between UHI and albedo, NDBI, NDVI and emissivity, to find out the correlation among 

LST and LULC. Shastri et al. (2017) made an attempt to investigate surface UHI effect for diurnal 

and seasonal characteristics for 84 locations in urban and surrounding rural areas of India, using 

MODIS data. Mukherjee et al. (2017) carried out a study for 12 districts of Punjab, India using 

downscaled MODIS data. The Landsat TM satellite data was explored for urban area of Delhi to 

estimate seasonal variations in UHI effect by Singh et al. (2014). Similarly, the impact of change 

in LULC from 1999 to 2006 on LST was studied by Nesarikar-Patki and Raykar-Alange (2012) 

for Pune, India. The study concluded in finding an increase of 1-4°C in LST with 32.48% increase 

in built-up area and a certain decrease in area under vegetation and barren land. Borbora and Das 

(2014) carried out another UHI study for summer months for Guwahati, India using in-situ 

temperature measurements. The spatio-temporal changes in UHI were studied for Delhi, India with 

respect to LULC variations (Pandey et al. 2014) in which urban-rural temperature contrast was 

also observed for different seasons as well as during day and nighttime.  

Despite these few Indian UHI studies, very less number of studies have been conducted that 

involve both LST from remote sensing data and air temperature by field observations for UHI 

estimation. So, in context of this discussion, this paper focuses on the specific objectives: a) to 

compute the urban-rural air and surface temperature difference for UHI estimation for Mansa 
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district of Punjab, India, b) to investigate spatial distribution of LULC by using NDBI and NDVI 

indices, c) to compare air temperature recorded by field observations and LST derived from 

remote sensing data, d) to examine the correlation between LST and NDBI and NDVI.    

 

 

2. Materials and methods 
 

2.1 Study area 
 

The Mansa district is located in Malwa region of southern Punjab that came into existence in 

1992 from the former Bathinda district. It is known as cotton belt of Punjab. The study area as 

shown in Fig. 1 lies between 29°32ʹ: 30°12ʹ N and 75°10ʹ: 75°46ʹ E with total geographic area of 

2174 sq km (https://mansa.nic.in/). The district is covered in topographic sheet 44 N/08,12 and 44 

O/01,02,05,06,09. It is bordered by Sirsa district of Haryana in south, Sangrur district in east, 

Barnala district in north and Bathinda district in west. The Mansa district is categorized into three 

sub-divisions (Mansa, Budhlada and Sardulgarh) and five blocks 

(http://mansa.nic.in/html/about.html). About 27 sq km of district area is covered under forest area, 

1900 sq km is net sown area and 139 sq km is permanent fallow land of district. As per population 

census 2011, total population of Punjab is 27,743,338 while total population of Mansa district is 

769,751 out of which 163,604 is urban population and remaining 606,147 is rural population. The 

population density of district is 350 per sq km. There has been 11.76% decadal population growth 

in the district between the years 2001-2011.  

The district faces typical semi-arid type climate which can be further categorized as sub-

tropical steppe, semi-arid and hot. The district is generally dry except the monsoon season (June to 

September) receiving southwest monsoon with average annual rainfall of 378 mm. The months of 

July and August are recognized as rainiest months for the region. Besides, the district has 

extremely high temperature in summer (48°C-May, June) and low in winters (3.5°C-January) 

(PCA, 2011).  

The table below (Table 1) represents the geographical co-ordinates of the study sites selected 

for air temperature estimation. The sites S1 and S2 mentioned in the table lie inside the core of the 

city encircled in Google Earth image (Fig. 2) while sites S3 and S4 are few meters apart from the 

urban cluster. The remaining two sites S5 and S6 are the rural sites surrounding the Mansa urban 

area. None of the UHI studies using ground measurements have been conducted till date for Mansa 

district of Punjab. Thus, this study is maiden attempt to report UHI occurrence using air 

temperature in this region.  

 

 
Table 1 Geographical co-ordinates of the study sites for air temperature  

Site code Site name Site description Latitude Longitude 

S1 Near Cinema road Urban 29.99289° 75.39954° 

S2 Nangal colony Urban 29.98148° 75.40744° 

S3 Arvind Nagar Urban 30.01298° 75.39224° 

S4 Green valley colony Urban 29.9791° 75.38123° 

S5 Chakeriyan Rural 29.97732° 75.45026° 

S6 Barnala Rural 29.94837° 75.43394° 
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Fig. 1 Schematic diagram showing location map of study area 

 

 

Fig. 2 Google Earth images of (a) boundary of Mansa district, (b) urban settlements of Mansa city and (c) 

False color composite image of Mansa district 
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Table 2 Specifications of satellite data used in this study 

Satellite Sensor Path Row 
Image Acquisition 

Date 

Spatial 

resolution 

Temporal 

resolution 
Spectral range 

Landsat 8 OLI/TIRS 148 39 
7th April , 2018 

30-100 m 16 days 0.43-12.51 µm 
23rd April, 2018 

 

 

2.2 Data collection 
 

2.2.1 Satellite data 
The use of satellite data is getting wider due to its real time data analysis. The Landsat data has 

undergone several advancements in spatial and spectral resolution from Landsat 3 to Landsat 8, 

launched in the years 1978 and 2013, respectively (Markham et al. 2004). The two thermal bands 

of Landsat 8 (band 10 and 11) have application of retrieval of surface temperature values.  
In this study, two Landsat 8-OLI/TIRS (Operational Land Imager/Thermal Infrared Sensor) 

images without cloud cover, with below tabulated (Table 2) specifications were procured from 

United States Geological Survey (USGS) Earth Explorer website for LST, NDVI and NDBI 

estimation of the study area. The satellite data was processed in ArcGIS 10.7 software for the 

current study.  

 

2.2.2 Field data 
In this study, due to the lack of official meteorological stations in the district, air temperature 

measurements were taken by placing thermometers at various residential buildings in the city and 

surrounding rural sites. The Mextech Digital thermometer with range from -50°C to +200°C has 

been used for daily air temperature measurements. The in-situ air temperature measurements were 

carried out at six sites at an interval of three hours for both the day and nighttime for the month of 

April, 2018. Out of the six sites selected for air temperature measurement, four sites lies inside and 

two outside the city representing surrounding rural area. Furthermore, Garmin GPS was used to 

note down the geographical co-ordinates of selected sites.  
 

2.3 Methodology  
 

The LST estimation was carried out using the following steps reviewed from literature and 

described in Landsat 8 Data Users Handbook:   

Step 1: Conversion to Top of Atmospheric (TOA) Radiance-The thermal band of Landsat 8 

OLI/TIRS data was first converted to TOA radiance using following equation: 

  Lλ=MLQcal + AL (1) 

where, Lλ= TOA radiance in W/(m2×Sr×µm), ML= multiplicative rescaling factor, AL= additive 

rescaling factor, Qcal= quantized calibrated pixel value in digital number 

Step 2: Conversion of TOA Radiance to Brightness Temperature (TB)-The TOA radiance was 

then converted to Brightness Temperature (in °C) using thermal band data of Landsat 8 OLI/TIRS 

as follows: 

 TB =  K2/ ln (
K1

Lλ + 1
) −273 (2) 
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where, K1 and K2 are calibration constants (provided in metadata file) 

Step 3: Estimation of Normalized difference vegetation index (NDVI)-NDVI is a vegetation 

index with its value lies between +1 and -1. The positive (higher) NDVI values represent higher 

extent of vegetation while the negative (lower) values indicate non-vegetative surfaces. The index 

is calculated by using unique spectral characteristics of green vegetation from the following 

equation (Dai et al. 2018):  

NDVI =
RNIR − RRed

RNIR + RRed
 (3) 

RNIR= reflectance in near infrared band, Band 5 (0.85-0.88 µm) for Landsat 8 

RRed= reflectance in red band, Band 4 (0.64-0.67 µm) for Landsat 8  

Step 4: Estimation of fractional vegetation cover (FVC)- The FVC estimation was done using 

minimum and maximum NDVI values (Stathopoulou et al. 2007).   

FVC =  (
NDVI − NDVImin

NDVImax − NDVImin
)

2

 (4) 

Step 5: Estimation of land surface emissivity (ε)- The land surface emissivity was derived from 

NDVI using the following equation (Sobrino et al. 2004, Rajeshwari and Mani 2014):  

ε = εs(1 − FVC) + εv × FVC  (5) 

Step 6: Estimation of Land surface temperature (T)-The land surface temperature is computed 

from Landsat 8 data using following equation of Mono-window algorithm (Artis and Carnahan 

1982, Kumari et al. 2018):   

T =  
TB

[1 + (λTB/c2) ln(ε)]
 (6) 

where, λ= wavelength of emitted radiance in µm, c2= hc/s (h=Planck’s constant, s=Boltzmann 

constant, c=velocity of light in m/s) 

Estimation of Normalized difference vegetation index (NDBI): This index is significant for 

estimation of impervious built-up surfaces. The following equation was used for estimation of 

NDBI using Landsat 8 data (Zha et al. 2003, Habert et al. 2016):  

NDBI =
RSWIR−RNIR

RSWIR+RNIR
  (7) 

where, RSWIR= reflectance in short wave infrared band, Band 6 of Landsat 8 (1.57-1.65 µm), 

RNIR= reflectance in near infrared band, Band 5 (0.85 – 0.88 µm) for Landsat 8  

 

 

3. Results and discussion 
 

3.1 Air temperature and atmospheric UHI  
 

3.1.1 Air temperature variations 
The significant variations in daily air temperature at an interval of three hours were observed 

for the month of April, 2018 for six different sites of the Mansa district as shown in Figs. 3 and 4 

for the day and nighttime, respectively. Amongst all the days of the field campaign, the highest  
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Fig. 3 Air temperatures for six selected sites from 1st April to 30th April, 2018 for both day and nighttime 

 

 

Fig. 4 Air temperatures for six selected sites from 1st April to 30th April, 2018 for both day and nighttime 

 

 

ambient air temperature was recorded on 28th April, 2018 i.e., 40.8°C for urban site (S4) while 

lowest temperature of 18.9°C was observed near green areas of rural sites (S6) on 1st April, 2018 

except during the rainfall.  

The in-situ measurements for air temperature depict the highest temperature for S4 and lowest 

temperature for S5 during the daytime whereas S3 and S5 have highest and lowest temperature 

during the nighttime for the overall study period. This shows the low temperature for rural sites 

with green cover. The site S1 and S2 being in the urban core shows average highest air 

temperature both during the day and nighttime. So, the variations in air temperature can be seen 

for different land cover types of the district. The evapo-transpiration due to vegetation causes drop 

in air temperature of the rural regions. Previous studies have reported the decrease in air 

temperature of about 1-5°C because of the evapo-transpiration by vegetated surfaces (EPA 2009, 

Farina 2012).  

 

3.1.2 Atmospheric UHI effect  
The three hourly urban-rural air temperature measurements were averaged and subtracted to 

compute magnitude of UHI effect. The average UHI of magnitude 1.80°C was observed at 12:00 

am, 2.04°C at 3:00 am, 2.43°C at 6:00 am, 1.81°C at 9:00 am, 1.97°C at 12:00 pm, 1.98°C at 3:00 

pm, 1.67°C at 6:00 pm and 1.48°C at 9:00 pm. So, the mean UHI intensity lies between 1.5°C to 

2.5°C for day and nighttime. Also, the average UHI was highest for 6:00 am depicting that highest 

UHI effect occurs for the study area during early morning hours i.e., before the sunrise.  

The maximum nocturnal UHI of magnitude 4.75°C was observed on 13th April at 6.00 am and 

maximum daytime UHI of magnitude 3.62°C was recorded for 14th April at 12.00 pm; during the  
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Fig. 5 The average UHI effect for day and nighttime for the April, 2018 for Mansa district 

 

 

Fig. 6 Frequency of UHI of different magnitudes for day and nighttime 

 

 

entire study period. The higher urban-rural temperature contrast has been reported during 

nighttime for previous studies also (Oke 1987, Azevedo et al. 2016). Fig. 5 shows the average UHI 

pattern for day and nighttime during the month of April 2018.  

The dense urban infrastructure for urban sites (S1-S4) with residential buildings, commercial 

shops etc and low green cover have higher air temperature than surrounding rural regions. The 

busy traffic with certain emissions because of bus stand and railway station in the city clusters also 

builds up the heat island in the region. Moreover, the lower emission of long-wave radiation 

during the nighttime by urban surfaces traps the heat inside urban clusters consequently increasing 

urban temperature than surrounding rural areas. 

The significant daytime UHI has been reported in previous studies carried out in Hong Kong by 

Giridharan et al. (2004), in Spain by Alonso et al. (2003). So, the results of this study are in 

consistence with earlier study conducted by Mohan et al. (2012) for Delhi, which reveals higher 

temperature of urban areas with dense infrastructure and also high UHI intensity for afternoon and 

night hours.   

The frequency diagram (Fig. 6) shows that the UHI intensity of magnitude 1.5-2.0°C is most 

frequent for the region for both day and nighttime. However, higher intensity UHI (4.0-4.5°C) 

occurs only for the nighttime. Furthermore, the nocturnal UHI as can be seen from frequency 

diagram is more prominent for the Mansa district. This trend of nocturnal heat island is in 

conformity with the study done by Yuan and Bauer (2007) that states higher atmospheric UHI 
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effect for the nighttime.  

Meanwhile, the decrease in urban temperature was observed due to rainfall on 9th, 10th and 11th 

April. This decrease in temperature nullified the UHI effect for respective days.  

 

3.2 Spatial pattern of LST and surface UHI  
 

The estimation of land surface temperature is a key step for UHI analysis as it is identified to 

affect UHI phenomenon the most (Liu and Zhang 2011). Two different dated (7th and 21st April, 

2018) LST maps were prepared using Landsat 8 data for Mansa district as shown in Fig. 7(a) and 

8(a). The map (7(a)) illustrates the land surface temperature variation from 38.46°C to 16.40°C 

with an average LST of 28.70°C for 7th April, 2018. The highest land surface temperature in the 

range of 38.46°C-30.95°C was observed for urban built-up areas with very low or no vegetation 

whereas the nearby rural areas with agricultural land exhibited comparatively low temperature. 

The water bodies located in the study area however have lowest temperature lying between 

25.32°C-16.41°C.   

The map (8(a)) illustrates the land surface temperature variation between 48.36°C and 27.91°C 

with an average LST of 41.25°C for 23rd April, 2018. The surface temperature difference of 10°C 

was noticeable between two images within the period of 16 days. This difference is due to the 

changing season i.e. winters to summer and more probably due to harvesting of wheat crops in 

agricultural fields of the study area. The loss of crops led to decreased green cover and hence 

increased temperature. The highest land surface temperature (41.23°C-48.36°C) for this image was 

observed for built-up areas and open surfaces without vegetation as well. The water bodies and 

trees/vegetation surrounding these water bodies have lowest temperature in the range (38.42°C-

27.91°C) for 23rd April.  

The visual analysis of the images demonstrates the spatial pattern of the LST. The map 7(a) 

shows higher temperature for eastern part of the district while temperature was more dispersed 

across the district for map 8(a).The results for LST over agricultural land are in accordance with 

study done by Chakraborty et al. (2015) for Delhi, India. The noticeable decrease in temperature 

while moving from the core of the city towards surrounding regions, is also in validation with the 

existing literature that states the proportion and density of vegetation and impermeable surfaces, as 

reason behind these temperature variations (Zhang et al. 2013, Adams and Smith 2014, Mallick 

2014).    

The urban-rural temperature contrast for the study area can be clearly seen from two images. 

The dense settlements occupying larger area showed higher temperature such as for Mansa city 

while small towns with low density residential areas have comparatively low temperature that was 

although higher than rural sites. The average temperature difference of approximately 4°C was 

observed between higher density settlements (34.7°C) and low density residential surfaces 

(30.03°C). Although, besides the density of buildings, the surface temperature also depends on 

multiple factors that include the thermal characteristics of the building surfaces, impervious 

surfaces made up of concrete, asphalt, vegetation cover, water bodies and LULC of area (Kuang et 

al. 2015). The sparse settlements of rural areas have lower temperature than dense urban buildings 

but higher than that of vegetated areas. Moreover, agricultural land covering most of rural pixels 

show temperature of 27.225°C while the water bodies of the region displayed lowest temperature 

(20.865°C). So, the decrease in temperature can be observed while moving from urban cores to the 

periphery of city and further drop in temperature occurs while moving away from the city i.e., 

towards rural areas. In other words, land surface temperature was found to show a decreasing  
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Fig. 7 Maps obtained for 7th April, 2018 using Landsat 8 OLI/TIRS images for (a) LST, (b) NDVI and 

(c) NDBI of Mansa district 

 

 

Fig. 8 Maps obtained for 23rd April, 2018 using Landsat 8 OLI/TIRS images for (a) LST, (b) NDVI and 

(c) NDBI of Mansa district 
 

Table 3 UHI intensity of some major Indian cities reported in literature 

Sr. 

no. 
Study area Climate Study period Data used UHI intensity Reference 

1. 
Four cities of 

Punjab, India 

Sub-Tropical 

and semi-arid 
September, 2010 MODIS data Mean UHI: 6.4 °C 

Mukherjee et al. 

(2017) 

2. Delhi, India 
Humid sub-

tropical climate 
May 2008 

Field 

observations 

Daytime UHI: 

3.8°C to 7.6°C 

Nighttime UHI: 

2.8°C to 8.3°C 

Mohan et al. 

(2012_ 

3. Delhi, India 
Humid sub-

tropical climate 

January 2010 to 

December 2013 

Field 

observations 

 

Maximum UHI: 

3°C 

Minimum 

UHI:0.2°C 

Yadav et al. 

(2017) 
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Table 3 Continued 

Sr. 

no. 
Study area Climate Study period Data used UHI intensity Reference 

4. Guwahati, India 
Humid sub-

tropical climate 

1May to 17 

October 2009 

Field 

observations 

Maximum daytime 

UHI: 2.12°C 

Maximum 

nighttime UHI:  

2.29°C 

Borbora and 

Das (2014) 

5. 
Chandigarh, 

India 

Humid sub-

tropical climate 
2009-2013 MODIS data 

Average seasonal 

UHI: 3.84K to 

6.16K 

Mathew et al. 

(2016) 

 

 

pattern for urban sites followed by semi-urban and rural sites confirming the formation of surface 

urban heat island of magnitude of 4-8°C for Mansa district.  

Higher absorption of solar radiations by dense urban buildings, variations among thermal 

characteristics of urban-rural surfaces and reduced evapo-transpiration rates can be categorized as 

key factors accountable for UHI occurrence (Streutker 2002). The trends of the current study are 

consistent with some studies conducted in past such as higher temperature of dense built-up areas 

have been reported by Cheng et al. (2010), Mallick (2014), Mukherjee et al. (2017), Mathew et al. 

(2018) as shown in Table 3.  
 

3.3 NDVI 
 

The quantitative investigation of the vegetation for study area has been done by this vegetation 

index. Figs. 7(b) and 8(b) demonstrate the spatial pattern of NDVI for the study area. The highest 

NDVI value for the study area is 0.49 while -0.12 is the lowest NDVI value with an average of 

0.16 for 7th April, 2018. The NDVI map suggests that the green areas are inclined more towards 

the western part of the district for 7th April, 2018 as high NDVI values ranging from 0.19 to 0.49 

corresponding to vegetated surfaces such as agricultural fields, trees or plantation are visualized in 

this region of the district. The residential areas without vegetation have low NDVI values in the 

range of 0.13 to -0.12. The urban areas of Mansa district i.e., Mansa city and small towns present 

in the district with dense settlements show low NDVI values.   

In the second image, for 23rd April, the highest NDVI value is 0.51 while lowest value is -0.16 

with an average of 0.14. Although the maximum NDVI value is higher for 23rd April but there is 

decrease in average NDVI value for 23rd April due to crop harvesting and hence, there is a 

tremendous change in vegetation distribution.  

The clear difference in vegetation patterns can be observed on comparison of NDVI values for 

urban and surrounding rural areas. The urban areas have low NDVI values due to low vegetation 

because of higher built-up surfaces in urban clusters while the rural areas have abundance of 

agricultural land with crops sown. The areas having higher NDVI value are represented with dark 

green color green areas whereas NDVI values below zero or near to zero are displayed by red 

color representing non-vegetated surfaces such as barren lands, built-up areas. So, the higher 

NDVI areas were mostly covered in rural regions corresponding to the agricultural lands. But with 

the harvesting of crops, this agricultural land appears as barren land resulting in higher LST.  

Different evaluations have been made regarding NDVI values in literature. The urban-rural 

contrast for NDVI values has been evaluated because of the different surface properties of urban  
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Table 4 NDVI, NDBI and LST values for acquired images 

Image 

acquisition date 

NDVI NDBI LST 

Max Min Mean Max Min Mean Max Min Mean 

7th April 

 
0.49 -0.12 0.16 0.17 -0.36 -0.06 38.46 16.40 28.70 

23rd April 0.51 -0.16 0.14 0.20 -0.34 0.04 48.36 27.91 41.25 

 
Table 5 Correlation between LST, NDVI and NDBI  

 LST NDVI NDBI 

LST 1 - - 

NDVI -0.65895 1 - 

NDBI 0.738143 -0.85835 1 

 

 

and rural areas that ultimately affect thermal conditions by evaporation, heat storage, reflectance 

etc. (Gallo et al. 1993). A study by Gallo and Owen (1999) examined that the seasonal variations 

in LST and NDVI values accounts for 40% of differences in urban and surrounding rural 

temperatures. Also, the temperature of an area is directly linked with the amount of vegetation 

present there. The latent heat flux from the surface to atmosphere by vegetation determines the 

land surface temperature. The higher amount of vegetation in a pixel is depicted by higher NDVI 

value corresponding to low LST values.  

 

3.4 NDBI 
 

The built-up area of the district has been examined using NDBI index. The highest NDBI value 

for the study area is 0.17 with lowest NDBI value of -0.36 and an average of -0.06 for 7th April, 

2018. The spatial pattern of NDBI for Mansa district calculated using Landsat 8 satellite data is 

displayed in Figs. 7(c) and 8(c). From the map, the dominance of built-up area can be observed for 

eastern part of the district. The dense built-up area of the district shows high NDBI values while 

negative values are observed for vegetated surfaces, water bodies distributed in the western part of 

the study area. The patches of settlements with high concentration of buildings have higher NDBI 

values than the open land.  

For the second image, highest and lowest NDBI values are 0.20 and -0.34 respectively with an 

average of 0.04. The increased difference between average NDBI values of these two images is 

also due to the crop harvesting. The harvested agricultural fields resemble the open surface and 

hence are covered by built-up index. Also, the population in urban areas has expanded the built-up 

area, network of roads and other impervious surfaces with consequent loss of vegetation thereby 

leading to higher NDBI values of urban areas. 

 

3.5 Correlation between LST and NDVI, NDBI  
 
The significant influence of LULC indicators such as NDVI, NDWI and NDBI on LST has 

been documented in previous literature revealing that the relationship among these LULC 

indicators show temporal variations and also depict these indices as significant tools for 

quantitative analysis of surface temperature (Chen et al. 2006, Yuan and Bauer 2007, Liu and  
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(a) (b) 

Fig. 9 Scatter plots for relationship among (a) LST and NDVI and  (b) LST and NDBI 

 

 

Zhang 2011). Therefore, the correlation study was carried out among LST and LULC parameters 

i.e., NDVI and NDBI, to examine the relationship between the LST and type of land cover for the 

study area. The temperature variations and distribution of vegetation and built-up surfaces has 

been observed for 48 sites by creating point features for the Mansa district. These temperature 

variations and indices values were then exported as XML file and used as input for Pearson 

correlation analysis.   
So, the correlation examined for 48 observations of LST, NDVI and NDBI of the study area 

extracted using Landsat 8 satellite data is tabulated in Table 5:  

Table 5 shows negative correlation between LST and NDVI with (correlation coefficient) r=-

0.659 while positive correlation among NDBI and LST can be seen, with r= 0.738. Besides, 

negative correlation between NDVI and NDBI with r= -0.858, is also evident for the district. The 

statistical analysis carried out in this study illustrates similar results as observed for previous 

studies done by Santos et al. (2017) for Vila Velha, Brazil; Kikon et al. (2016) for Noida, India; 

Mallick et al. (2008) for Delhi, India; Liang and Weng (2008) for Indianapolis, US.      

Furthermore, the Fig. 9 indicates the scatter plots depicting relationship between LST and 

NDVI, LST and NDBI.  

The negative correlation between LST and NDVI is clearly evident from the scatter plot as low 

NDVI sites have higher LST value and vice-versa. The regression equation thus obtained for LST 

and NDVI is: y= -0.015 x+0.610 with the (coefficient of determination) r2= 0.434.   

On the other side, regression equation y= 0.019x-0.627, with the (coefficient of determination) 

r2= 0.594, has been obtained for NDBI and LST affirming a positive correlation among them. This 

positive correlation can be explained as the impervious built-up surfaces with less water storage 

capacity, lower down the humidity. This decreased humidity refers to less transpiration from land 

surface and ultimately rise of surface temperature (Lu et al. 2009, Santos et al. 2017). 

Additionally, high heat storage capacity of anthropogenic built-up surfaces made up of concrete, 

asphalt etc. with low albedo causes higher solar radiation absorption, which raises urban surface 

temperature.  

The negative correlation analyzed among NDVI and LST validated in existing literature is due  
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Table 6 Comparison of LST extracted from Landsat satellite data air temperature  

Site 

code 

Minimum air 

temperature 

Maximum air 

temperature 
Mean air temperature 

Land surface 

temperature 

 7th April 23rd April 7th April 23rd April 7th April 23rd April 7th April 23rd April 

S1 25.1 23.6 35.8 33.4 30.45 28.5 32.24 41.09 

S2 23.4 24.1 33.2 33.6 28.3 28.85 31.94 40.23 

S3 23.8 25.5 32.2 34.5 28 30 31.43 42.01 

S4 22.1 22.1 34.6 35.6 28.35 28.85 33.38 42.24 

S5 19.9 21.8 33.7 32.5 26.8 27.15 31.01 40.69 

S6 21.6 20.1 30.8 31.9 26.2 26 31.31 41.59 

 

 

Fig. 10 Scatter plot for the comparison of LST with the air temperature for the study area 

 

 

to the cooling effect of vegetation on the land surface temperature (Kumari et al. 2018). The 

vegetation absorbs the thermal energy and releases it as water vapor by transpiration, hence 

cooling the nearby air. Also, the trees provide shade preventing direct heating of surface by 

incoming solar radiations, thus preventing rise in temperature (Senanayake et al. 2013). So, the 

negative correlation between NDVI and LST is significant for urban climate studies and hence, the 

major reason for which vegetation is considered as an important mitigation measure of UHI effect, 

cited in many research studies.   

 

3.6 Comparison between LST and in-situ observations 
 

The satellite data facilitates higher spatial area coverage whereas higher temporal resolution 

can be obtained from in-situ observations. So, the use of both satellite and in-situ observations 

provides more information regarding UHI effect for the study area. Furthermore, the statistical 

analysis of both the observations depicts the relationship among them as there are various surface 

energy balance processes that strongly relate both the surface and air temperatures together. The 

air temperature of lower layers of the atmosphere is modulated by the land surface temperature of 

that region (Voogt and Oke 2003). Thus, this study compares both the air temperature recorded 
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using field observations and LST retrieved using satellite data (shown in Table 6) for higher 

knowledge regarding UHI effect. The LST derived from satellite data is taken for same 

geographical co-ordinates that of air temperature measured using Mextech digital thermometers.  

Positive correlation (r= 0.553) is analyzed between air and surface temperature (Fig. 10). The 

air temperature recorded as few meters above the ground level shows higher variations than that of 

surface temperature for six sites of Mansa district of Punjab. The surface temperature values are 

high due to complex urban surfaces and different types of urban topography (Nichol 1996, 

Streutker 2002). The surface UHI thus differs from atmospheric UHI due to temperature variations 

in air and land surface because of variations in heat capacities of air and land surface. Moreover, 

strong correlation between LST derived from remote sensing data and temperature from field 

observations has been validated in earlier UHI studies conducted by Fung et al. (2009) for and 

Klok et al. (2012) for Rotterdam, Netherlands concluding that the variations in spatial pattern of 

Hong Kong surface temperature represents air temperature variations. Also, Chakraborty et al. 

(2015) carried out a comparison study between LST derived from Landsat satellite data and from 

ground measurements using thermal infrared thermometers, and determined a close correlation 

between both the temperatures. The comparison study for in-situ observations and remote sensing 

observations carried out by Mohan et al. (2012) in Delhi showed that UHI hotspots were well 

correlated for nighttime only. 
 
 

4. Conclusions 
 

The rising population has significantly developed urban areas by changing LULC patterns. The 

continuing transformation of rural vegetated areas into built-up areas at noticeable rate has 

significant influence on urban climate implying UHI effect. The introduction of remote sensing 

and GIS technology has brought new insights in this field for better quantification of UHI effect. 

So, this study involves the use of satellite remote sensing for monitoring spatial distribution of 

LST because of its time saving procedure and cost-effectiveness. This paper presents a case study 

for an urban area of Punjab having following main aspects i.e., investigation of LST retrieved 

using TIR band of Landsat 8 comparing UHI occurrence of remote sensing data and field 

observations. The significant temperature variations were observed for the study area. The results 

of diurnal variations of air temperature for the study area depicted higher UHI effect during night 

hours for urban sites. The LST retrieved from Landsat 8 data was observed higher for the urban 

clusters with dense infrastructure due to lack of vegetation content and water surfaces. The NDVI, 

NDBI depicting the land use pattern of area were analyzed to evaluate the impact of LULC on 

UHI effect. The study concludes in finding negative correlation between NDVI and LST due to 

cooling effect of vegetation on the land surface temperature whereas NDBI and LST are positively 

correlated with each other. The air and land surface temperature were found to have positive 

correlation by Pearson correlation analysis. So, this study facilitates the warm pockets of Mansa 

district that can be helpful in proper planning of urbanization to maintain the thermal comfort of 

city residents. It also demonstrates the need of green cover in urban areas.  
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